Properties

Label 735.2.y.j.263.1
Level $735$
Weight $2$
Character 735.263
Analytic conductor $5.869$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [735,2,Mod(128,735)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(735, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([6, 9, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("735.128");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 735 = 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 735.y (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.86900454856\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(12\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 105)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 263.1
Character \(\chi\) \(=\) 735.263
Dual form 735.2.y.j.422.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.658710 + 2.45834i) q^{2} +(0.405074 - 1.68402i) q^{3} +(-3.87749 - 2.23867i) q^{4} +(0.108509 - 2.23343i) q^{5} +(3.87306 + 2.10509i) q^{6} +(4.45829 - 4.45829i) q^{8} +(-2.67183 - 1.36430i) q^{9} +(5.41906 + 1.73794i) q^{10} +(-1.35854 - 0.784351i) q^{11} +(-5.34063 + 5.62293i) q^{12} +(2.21881 + 2.21881i) q^{13} +(-3.71719 - 1.08744i) q^{15} +(3.54593 + 6.14174i) q^{16} +(-4.92759 + 1.32034i) q^{17} +(5.11388 - 5.66959i) q^{18} +(1.45527 - 0.840200i) q^{19} +(-5.42066 + 8.41719i) q^{20} +(2.82308 - 2.82308i) q^{22} +(-1.36036 - 0.364506i) q^{23} +(-5.70190 - 9.31377i) q^{24} +(-4.97645 - 0.484694i) q^{25} +(-6.91613 + 3.99303i) q^{26} +(-3.37980 + 3.94676i) q^{27} -8.91955 q^{29} +(5.12184 - 8.42181i) q^{30} +(-1.37417 + 2.38013i) q^{31} +(-5.25396 + 1.40779i) q^{32} +(-1.87117 + 1.97008i) q^{33} -12.9834i q^{34} +(7.30576 + 11.2714i) q^{36} +(-0.601543 - 0.161183i) q^{37} +(1.10690 + 4.13100i) q^{38} +(4.63529 - 2.83773i) q^{39} +(-9.47353 - 10.4411i) q^{40} -6.44292i q^{41} +(-5.47734 - 5.47734i) q^{43} +(3.51180 + 6.08262i) q^{44} +(-3.33700 + 5.81932i) q^{45} +(1.79216 - 3.10412i) q^{46} +(1.35194 - 5.04552i) q^{47} +(11.7792 - 3.48356i) q^{48} +(4.46958 - 11.9145i) q^{50} +(0.227443 + 8.83299i) q^{51} +(-3.63622 - 13.5706i) q^{52} +(1.03716 + 3.87074i) q^{53} +(-7.47618 - 10.9085i) q^{54} +(-1.89921 + 2.94909i) q^{55} +(-0.825420 - 2.79104i) q^{57} +(5.87540 - 21.9273i) q^{58} +(-2.77436 + 4.80533i) q^{59} +(11.9789 + 12.5381i) q^{60} +(-3.70333 - 6.41435i) q^{61} +(-4.94599 - 4.94599i) q^{62} +0.340400i q^{64} +(5.19632 - 4.71480i) q^{65} +(-3.61056 - 5.89768i) q^{66} +(-1.37347 - 5.12587i) q^{67} +(22.0625 + 5.91162i) q^{68} +(-1.16488 + 2.14321i) q^{69} +3.61943i q^{71} +(-17.9943 + 5.82933i) q^{72} +(8.05596 - 2.15859i) q^{73} +(0.792485 - 1.37262i) q^{74} +(-2.83207 + 8.18409i) q^{75} -7.52372 q^{76} +(3.92279 + 13.2644i) q^{78} +(-14.7720 + 8.52862i) q^{79} +(14.1019 - 7.25318i) q^{80} +(5.27735 + 7.29037i) q^{81} +(15.8389 + 4.24402i) q^{82} +(3.21312 - 3.21312i) q^{83} +(2.41421 + 11.1487i) q^{85} +(17.0731 - 9.85718i) q^{86} +(-3.61308 + 15.0207i) q^{87} +(-9.55360 + 2.55988i) q^{88} +(4.70137 + 8.14301i) q^{89} +(-12.1077 - 12.0367i) q^{90} +(4.45876 + 4.45876i) q^{92} +(3.45154 + 3.27825i) q^{93} +(11.5131 + 6.64707i) q^{94} +(-1.71862 - 3.34142i) q^{95} +(0.242507 + 9.41801i) q^{96} +(4.39640 - 4.39640i) q^{97} +(2.55968 + 3.94911i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 4 q^{3} + 16 q^{10} - 16 q^{12} - 16 q^{13} - 32 q^{15} + 16 q^{16} + 20 q^{18} + 16 q^{22} + 16 q^{25} - 32 q^{27} - 20 q^{30} - 28 q^{33} + 32 q^{36} + 16 q^{37} - 64 q^{40} - 80 q^{43} - 20 q^{45}+ \cdots + 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/735\mathbb{Z}\right)^\times\).

\(n\) \(346\) \(442\) \(491\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{3}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.658710 + 2.45834i −0.465779 + 1.73831i 0.188517 + 0.982070i \(0.439632\pi\)
−0.654295 + 0.756239i \(0.727035\pi\)
\(3\) 0.405074 1.68402i 0.233870 0.972268i
\(4\) −3.87749 2.23867i −1.93874 1.11933i
\(5\) 0.108509 2.23343i 0.0485266 0.998822i
\(6\) 3.87306 + 2.10509i 1.58117 + 0.859399i
\(7\) 0 0
\(8\) 4.45829 4.45829i 1.57624 1.57624i
\(9\) −2.67183 1.36430i −0.890610 0.454768i
\(10\) 5.41906 + 1.73794i 1.71366 + 0.549584i
\(11\) −1.35854 0.784351i −0.409614 0.236491i 0.281010 0.959705i \(-0.409331\pi\)
−0.690624 + 0.723214i \(0.742664\pi\)
\(12\) −5.34063 + 5.62293i −1.54171 + 1.62320i
\(13\) 2.21881 + 2.21881i 0.615386 + 0.615386i 0.944345 0.328958i \(-0.106697\pi\)
−0.328958 + 0.944345i \(0.606697\pi\)
\(14\) 0 0
\(15\) −3.71719 1.08744i −0.959774 0.280775i
\(16\) 3.54593 + 6.14174i 0.886484 + 1.53543i
\(17\) −4.92759 + 1.32034i −1.19512 + 0.320230i −0.800906 0.598790i \(-0.795648\pi\)
−0.394210 + 0.919020i \(0.628982\pi\)
\(18\) 5.11388 5.66959i 1.20535 1.33633i
\(19\) 1.45527 0.840200i 0.333862 0.192755i −0.323693 0.946162i \(-0.604924\pi\)
0.657554 + 0.753407i \(0.271591\pi\)
\(20\) −5.42066 + 8.41719i −1.21210 + 1.88214i
\(21\) 0 0
\(22\) 2.82308 2.82308i 0.601883 0.601883i
\(23\) −1.36036 0.364506i −0.283654 0.0760049i 0.114187 0.993459i \(-0.463574\pi\)
−0.397841 + 0.917454i \(0.630240\pi\)
\(24\) −5.70190 9.31377i −1.16390 1.90117i
\(25\) −4.97645 0.484694i −0.995290 0.0969389i
\(26\) −6.91613 + 3.99303i −1.35637 + 0.783098i
\(27\) −3.37980 + 3.94676i −0.650443 + 0.759555i
\(28\) 0 0
\(29\) −8.91955 −1.65632 −0.828159 0.560493i \(-0.810612\pi\)
−0.828159 + 0.560493i \(0.810612\pi\)
\(30\) 5.12184 8.42181i 0.935116 1.53760i
\(31\) −1.37417 + 2.38013i −0.246808 + 0.427484i −0.962638 0.270790i \(-0.912715\pi\)
0.715830 + 0.698274i \(0.246048\pi\)
\(32\) −5.25396 + 1.40779i −0.928777 + 0.248865i
\(33\) −1.87117 + 1.97008i −0.325728 + 0.342946i
\(34\) 12.9834i 2.22664i
\(35\) 0 0
\(36\) 7.30576 + 11.2714i 1.21763 + 1.87857i
\(37\) −0.601543 0.161183i −0.0988930 0.0264983i 0.209033 0.977909i \(-0.432968\pi\)
−0.307926 + 0.951410i \(0.599635\pi\)
\(38\) 1.10690 + 4.13100i 0.179562 + 0.670136i
\(39\) 4.63529 2.83773i 0.742241 0.454400i
\(40\) −9.47353 10.4411i −1.49790 1.65088i
\(41\) 6.44292i 1.00622i −0.864224 0.503108i \(-0.832190\pi\)
0.864224 0.503108i \(-0.167810\pi\)
\(42\) 0 0
\(43\) −5.47734 5.47734i −0.835286 0.835286i 0.152948 0.988234i \(-0.451123\pi\)
−0.988234 + 0.152948i \(0.951123\pi\)
\(44\) 3.51180 + 6.08262i 0.529424 + 0.916989i
\(45\) −3.33700 + 5.81932i −0.497450 + 0.867492i
\(46\) 1.79216 3.10412i 0.264240 0.457677i
\(47\) 1.35194 5.04552i 0.197201 0.735965i −0.794485 0.607284i \(-0.792259\pi\)
0.991686 0.128681i \(-0.0410743\pi\)
\(48\) 11.7792 3.48356i 1.70018 0.502808i
\(49\) 0 0
\(50\) 4.46958 11.9145i 0.632095 1.68497i
\(51\) 0.227443 + 8.83299i 0.0318484 + 1.23687i
\(52\) −3.63622 13.5706i −0.504253 1.88190i
\(53\) 1.03716 + 3.87074i 0.142465 + 0.531687i 0.999855 + 0.0170196i \(0.00541776\pi\)
−0.857390 + 0.514667i \(0.827916\pi\)
\(54\) −7.47618 10.9085i −1.01738 1.48446i
\(55\) −1.89921 + 2.94909i −0.256089 + 0.397655i
\(56\) 0 0
\(57\) −0.825420 2.79104i −0.109330 0.369683i
\(58\) 5.87540 21.9273i 0.771478 2.87919i
\(59\) −2.77436 + 4.80533i −0.361191 + 0.625600i −0.988157 0.153446i \(-0.950963\pi\)
0.626967 + 0.779046i \(0.284296\pi\)
\(60\) 11.9789 + 12.5381i 1.54647 + 1.61866i
\(61\) −3.70333 6.41435i −0.474162 0.821273i 0.525400 0.850855i \(-0.323916\pi\)
−0.999562 + 0.0295820i \(0.990582\pi\)
\(62\) −4.94599 4.94599i −0.628141 0.628141i
\(63\) 0 0
\(64\) 0.340400i 0.0425500i
\(65\) 5.19632 4.71480i 0.644524 0.584799i
\(66\) −3.61056 5.89768i −0.444429 0.725954i
\(67\) −1.37347 5.12587i −0.167797 0.626225i −0.997667 0.0682690i \(-0.978252\pi\)
0.829870 0.557956i \(-0.188414\pi\)
\(68\) 22.0625 + 5.91162i 2.67547 + 0.716890i
\(69\) −1.16488 + 2.14321i −0.140235 + 0.258012i
\(70\) 0 0
\(71\) 3.61943i 0.429548i 0.976664 + 0.214774i \(0.0689015\pi\)
−0.976664 + 0.214774i \(0.931099\pi\)
\(72\) −17.9943 + 5.82933i −2.12064 + 0.686993i
\(73\) 8.05596 2.15859i 0.942878 0.252644i 0.245541 0.969386i \(-0.421034\pi\)
0.697338 + 0.716743i \(0.254368\pi\)
\(74\) 0.792485 1.37262i 0.0921245 0.159564i
\(75\) −2.83207 + 8.18409i −0.327019 + 0.945018i
\(76\) −7.52372 −0.863030
\(77\) 0 0
\(78\) 3.92279 + 13.2644i 0.444168 + 1.50189i
\(79\) −14.7720 + 8.52862i −1.66198 + 0.959544i −0.690211 + 0.723608i \(0.742482\pi\)
−0.971769 + 0.235936i \(0.924184\pi\)
\(80\) 14.1019 7.25318i 1.57664 0.810930i
\(81\) 5.27735 + 7.29037i 0.586372 + 0.810042i
\(82\) 15.8389 + 4.24402i 1.74911 + 0.468674i
\(83\) 3.21312 3.21312i 0.352686 0.352686i −0.508422 0.861108i \(-0.669771\pi\)
0.861108 + 0.508422i \(0.169771\pi\)
\(84\) 0 0
\(85\) 2.41421 + 11.1487i 0.261858 + 1.20925i
\(86\) 17.0731 9.85718i 1.84104 1.06293i
\(87\) −3.61308 + 15.0207i −0.387363 + 1.61039i
\(88\) −9.55360 + 2.55988i −1.01842 + 0.272884i
\(89\) 4.70137 + 8.14301i 0.498344 + 0.863157i 0.999998 0.00191126i \(-0.000608372\pi\)
−0.501654 + 0.865068i \(0.667275\pi\)
\(90\) −12.1077 12.0367i −1.27627 1.26878i
\(91\) 0 0
\(92\) 4.45876 + 4.45876i 0.464858 + 0.464858i
\(93\) 3.45154 + 3.27825i 0.357908 + 0.339939i
\(94\) 11.5131 + 6.64707i 1.18748 + 0.685593i
\(95\) −1.71862 3.34142i −0.176327 0.342822i
\(96\) 0.242507 + 9.41801i 0.0247508 + 0.961222i
\(97\) 4.39640 4.39640i 0.446386 0.446386i −0.447765 0.894151i \(-0.647780\pi\)
0.894151 + 0.447765i \(0.147780\pi\)
\(98\) 0 0
\(99\) 2.55968 + 3.94911i 0.257258 + 0.396900i
\(100\) 18.2111 + 13.0200i 1.82111 + 1.30200i
\(101\) 0.875832 + 0.505662i 0.0871485 + 0.0503152i 0.542941 0.839771i \(-0.317311\pi\)
−0.455792 + 0.890086i \(0.650644\pi\)
\(102\) −21.8643 5.25925i −2.16489 0.520743i
\(103\) −1.47530 + 5.50588i −0.145365 + 0.542511i 0.854374 + 0.519659i \(0.173941\pi\)
−0.999739 + 0.0228513i \(0.992726\pi\)
\(104\) 19.7842 1.94000
\(105\) 0 0
\(106\) −10.1988 −0.990593
\(107\) 1.03131 3.84892i 0.0997009 0.372089i −0.897989 0.440017i \(-0.854972\pi\)
0.997690 + 0.0679285i \(0.0216390\pi\)
\(108\) 21.9406 7.73728i 2.11124 0.744520i
\(109\) −5.56202 3.21123i −0.532744 0.307580i 0.209389 0.977832i \(-0.432853\pi\)
−0.742133 + 0.670252i \(0.766186\pi\)
\(110\) −5.99884 6.61150i −0.571967 0.630381i
\(111\) −0.515104 + 0.947718i −0.0488915 + 0.0899534i
\(112\) 0 0
\(113\) 3.29246 3.29246i 0.309729 0.309729i −0.535075 0.844804i \(-0.679717\pi\)
0.844804 + 0.535075i \(0.179717\pi\)
\(114\) 7.40505 0.190675i 0.693546 0.0178583i
\(115\) −0.961712 + 2.99871i −0.0896801 + 0.279632i
\(116\) 34.5854 + 19.9679i 3.21118 + 1.85397i
\(117\) −2.90115 8.95540i −0.268211 0.827927i
\(118\) −9.98563 9.98563i −0.919252 0.919252i
\(119\) 0 0
\(120\) −21.4204 + 11.7242i −1.95541 + 1.07027i
\(121\) −4.26959 7.39514i −0.388144 0.672286i
\(122\) 18.2081 4.87884i 1.64848 0.441709i
\(123\) −10.8500 2.60986i −0.978311 0.235323i
\(124\) 10.6566 6.15262i 0.956995 0.552521i
\(125\) −1.62252 + 11.0620i −0.145123 + 0.989414i
\(126\) 0 0
\(127\) 14.2818 14.2818i 1.26730 1.26730i 0.319826 0.947476i \(-0.396376\pi\)
0.947476 0.319826i \(-0.103624\pi\)
\(128\) −11.3447 3.03981i −1.00274 0.268684i
\(129\) −11.4427 + 7.00520i −1.00747 + 0.616774i
\(130\) 8.16771 + 15.8800i 0.716356 + 1.39277i
\(131\) 4.24118 2.44864i 0.370553 0.213939i −0.303147 0.952944i \(-0.598037\pi\)
0.673700 + 0.739005i \(0.264704\pi\)
\(132\) 11.6658 3.45002i 1.01538 0.300286i
\(133\) 0 0
\(134\) 13.5059 1.16673
\(135\) 8.44810 + 7.97682i 0.727097 + 0.686535i
\(136\) −16.0821 + 27.8551i −1.37903 + 2.38856i
\(137\) 6.22744 1.66864i 0.532046 0.142561i 0.0172133 0.999852i \(-0.494521\pi\)
0.514833 + 0.857290i \(0.327854\pi\)
\(138\) −4.50143 4.27543i −0.383187 0.363949i
\(139\) 10.2045i 0.865536i 0.901505 + 0.432768i \(0.142463\pi\)
−0.901505 + 0.432768i \(0.857537\pi\)
\(140\) 0 0
\(141\) −7.94911 4.32050i −0.669435 0.363852i
\(142\) −8.89780 2.38416i −0.746687 0.200074i
\(143\) −1.27400 4.75465i −0.106538 0.397604i
\(144\) −1.09494 21.2474i −0.0912449 1.77062i
\(145\) −0.967850 + 19.9212i −0.0803755 + 1.65437i
\(146\) 21.2262i 1.75669i
\(147\) 0 0
\(148\) 1.97164 + 1.97164i 0.162068 + 0.162068i
\(149\) 0.461562 + 0.799449i 0.0378126 + 0.0654934i 0.884312 0.466896i \(-0.154628\pi\)
−0.846500 + 0.532389i \(0.821294\pi\)
\(150\) −18.2538 12.3531i −1.49041 1.00863i
\(151\) 6.86549 11.8914i 0.558705 0.967706i −0.438900 0.898536i \(-0.644632\pi\)
0.997605 0.0691699i \(-0.0220350\pi\)
\(152\) 2.74216 10.2339i 0.222418 0.830077i
\(153\) 14.9670 + 3.19499i 1.21001 + 0.258300i
\(154\) 0 0
\(155\) 5.16675 + 3.32738i 0.415004 + 0.267262i
\(156\) −24.3260 + 0.626378i −1.94764 + 0.0501504i
\(157\) −5.02228 18.7434i −0.400822 1.49589i −0.811634 0.584166i \(-0.801422\pi\)
0.410812 0.911720i \(-0.365245\pi\)
\(158\) −11.2358 41.9325i −0.893870 3.33597i
\(159\) 6.93851 0.178662i 0.550260 0.0141688i
\(160\) 2.57411 + 11.8871i 0.203501 + 0.939759i
\(161\) 0 0
\(162\) −21.3985 + 8.17128i −1.68122 + 0.641997i
\(163\) 2.41784 9.02349i 0.189380 0.706775i −0.804271 0.594263i \(-0.797444\pi\)
0.993650 0.112512i \(-0.0358895\pi\)
\(164\) −14.4236 + 24.9823i −1.12629 + 1.95079i
\(165\) 4.19700 + 4.39290i 0.326736 + 0.341987i
\(166\) 5.78243 + 10.0155i 0.448804 + 0.777350i
\(167\) −3.11442 3.11442i −0.241001 0.241001i 0.576263 0.817264i \(-0.304510\pi\)
−0.817264 + 0.576263i \(0.804510\pi\)
\(168\) 0 0
\(169\) 3.15379i 0.242599i
\(170\) −28.9976 1.40882i −2.22401 0.108051i
\(171\) −5.03452 + 0.259443i −0.385000 + 0.0198401i
\(172\) 8.97636 + 33.5002i 0.684441 + 2.55437i
\(173\) −11.1040 2.97531i −0.844222 0.226209i −0.189313 0.981917i \(-0.560626\pi\)
−0.654909 + 0.755708i \(0.727293\pi\)
\(174\) −34.5460 18.7764i −2.61892 1.42344i
\(175\) 0 0
\(176\) 11.1250i 0.838580i
\(177\) 6.96844 + 6.61858i 0.523780 + 0.497483i
\(178\) −23.1151 + 6.19368i −1.73255 + 0.464236i
\(179\) −8.29901 + 14.3743i −0.620297 + 1.07439i 0.369133 + 0.929377i \(0.379655\pi\)
−0.989430 + 0.145010i \(0.953679\pi\)
\(180\) 25.9667 15.0939i 1.93544 1.12503i
\(181\) 11.6532 0.866174 0.433087 0.901352i \(-0.357424\pi\)
0.433087 + 0.901352i \(0.357424\pi\)
\(182\) 0 0
\(183\) −12.3020 + 3.63818i −0.909390 + 0.268942i
\(184\) −7.68994 + 4.43979i −0.566910 + 0.327306i
\(185\) −0.425264 + 1.32602i −0.0312660 + 0.0974907i
\(186\) −10.3326 + 6.32564i −0.757625 + 0.463819i
\(187\) 7.72992 + 2.07123i 0.565268 + 0.151463i
\(188\) −16.5374 + 16.5374i −1.20611 + 1.20611i
\(189\) 0 0
\(190\) 9.34642 2.02393i 0.678060 0.146831i
\(191\) −11.1322 + 6.42717i −0.805497 + 0.465054i −0.845390 0.534150i \(-0.820632\pi\)
0.0398927 + 0.999204i \(0.487298\pi\)
\(192\) 0.573240 + 0.137887i 0.0413700 + 0.00995116i
\(193\) 11.0123 2.95074i 0.792684 0.212399i 0.160315 0.987066i \(-0.448749\pi\)
0.632370 + 0.774667i \(0.282082\pi\)
\(194\) 7.91189 + 13.7038i 0.568040 + 0.983875i
\(195\) −5.83491 10.6605i −0.417847 0.763417i
\(196\) 0 0
\(197\) −18.7512 18.7512i −1.33597 1.33597i −0.899929 0.436036i \(-0.856382\pi\)
−0.436036 0.899929i \(-0.643618\pi\)
\(198\) −11.3943 + 3.69125i −0.809760 + 0.262326i
\(199\) −3.64362 2.10364i −0.258289 0.149123i 0.365265 0.930904i \(-0.380978\pi\)
−0.623554 + 0.781780i \(0.714312\pi\)
\(200\) −24.3474 + 20.0256i −1.72162 + 1.41602i
\(201\) −9.18842 + 0.236595i −0.648101 + 0.0166882i
\(202\) −1.82001 + 1.82001i −0.128055 + 0.128055i
\(203\) 0 0
\(204\) 18.8922 34.7590i 1.32272 2.43361i
\(205\) −14.3898 0.699114i −1.00503 0.0488282i
\(206\) −12.5635 7.25356i −0.875343 0.505380i
\(207\) 3.13734 + 2.82984i 0.218061 + 0.196687i
\(208\) −5.75959 + 21.4951i −0.399356 + 1.49042i
\(209\) −2.63605 −0.182339
\(210\) 0 0
\(211\) −21.5211 −1.48158 −0.740788 0.671739i \(-0.765548\pi\)
−0.740788 + 0.671739i \(0.765548\pi\)
\(212\) 4.64372 17.3306i 0.318932 1.19027i
\(213\) 6.09519 + 1.46614i 0.417636 + 0.100458i
\(214\) 8.78261 + 5.07064i 0.600367 + 0.346622i
\(215\) −12.8276 + 11.6389i −0.874836 + 0.793768i
\(216\) 2.52769 + 32.6639i 0.171988 + 2.22250i
\(217\) 0 0
\(218\) 11.5581 11.5581i 0.782810 0.782810i
\(219\) −0.371840 14.4408i −0.0251266 0.975816i
\(220\) 13.9662 7.18336i 0.941600 0.484302i
\(221\) −13.8630 8.00378i −0.932524 0.538393i
\(222\) −1.99051 1.89057i −0.133594 0.126887i
\(223\) 12.4001 + 12.4001i 0.830375 + 0.830375i 0.987568 0.157193i \(-0.0502445\pi\)
−0.157193 + 0.987568i \(0.550244\pi\)
\(224\) 0 0
\(225\) 12.6350 + 8.08441i 0.842331 + 0.538961i
\(226\) 5.92522 + 10.2628i 0.394139 + 0.682670i
\(227\) 11.8920 3.18646i 0.789301 0.211493i 0.158420 0.987372i \(-0.449360\pi\)
0.630881 + 0.775879i \(0.282693\pi\)
\(228\) −3.04766 + 12.6701i −0.201836 + 0.839096i
\(229\) 3.86544 2.23171i 0.255435 0.147476i −0.366815 0.930294i \(-0.619552\pi\)
0.622251 + 0.782818i \(0.286219\pi\)
\(230\) −6.73837 4.33950i −0.444315 0.286138i
\(231\) 0 0
\(232\) −39.7659 + 39.7659i −2.61076 + 2.61076i
\(233\) 7.70659 + 2.06497i 0.504875 + 0.135281i 0.502262 0.864716i \(-0.332501\pi\)
0.00261362 + 0.999997i \(0.499168\pi\)
\(234\) 23.9264 1.23300i 1.56412 0.0806035i
\(235\) −11.1221 3.56696i −0.725528 0.232683i
\(236\) 21.5151 12.4217i 1.40051 0.808586i
\(237\) 8.37859 + 28.3310i 0.544248 + 1.84030i
\(238\) 0 0
\(239\) 11.8594 0.767124 0.383562 0.923515i \(-0.374697\pi\)
0.383562 + 0.923515i \(0.374697\pi\)
\(240\) −6.50215 26.6860i −0.419712 1.72257i
\(241\) 9.03617 15.6511i 0.582071 1.00818i −0.413163 0.910657i \(-0.635576\pi\)
0.995234 0.0975190i \(-0.0310907\pi\)
\(242\) 20.9922 5.62484i 1.34943 0.361579i
\(243\) 14.4148 5.93401i 0.924712 0.380667i
\(244\) 33.1621i 2.12298i
\(245\) 0 0
\(246\) 13.5629 24.9538i 0.864741 1.59100i
\(247\) 5.09321 + 1.36472i 0.324073 + 0.0868351i
\(248\) 4.48487 + 16.7378i 0.284789 + 1.06285i
\(249\) −4.10940 6.71250i −0.260423 0.425388i
\(250\) −26.1253 11.2754i −1.65231 0.713116i
\(251\) 3.19253i 0.201511i 0.994911 + 0.100755i \(0.0321259\pi\)
−0.994911 + 0.100755i \(0.967874\pi\)
\(252\) 0 0
\(253\) 1.56219 + 1.56219i 0.0982141 + 0.0982141i
\(254\) 25.7019 + 44.5170i 1.61268 + 2.79324i
\(255\) 19.7526 + 0.450477i 1.23695 + 0.0282100i
\(256\) 14.6054 25.2973i 0.912836 1.58108i
\(257\) 4.32342 16.1352i 0.269687 1.00649i −0.689631 0.724161i \(-0.742227\pi\)
0.959319 0.282326i \(-0.0911059\pi\)
\(258\) −9.68378 32.7443i −0.602886 2.03857i
\(259\) 0 0
\(260\) −30.7035 + 6.64874i −1.90415 + 0.412337i
\(261\) 23.8315 + 12.1690i 1.47513 + 0.753240i
\(262\) 3.22589 + 12.0392i 0.199296 + 0.743784i
\(263\) 4.81330 + 17.9635i 0.296801 + 1.10768i 0.939777 + 0.341789i \(0.111033\pi\)
−0.642976 + 0.765886i \(0.722301\pi\)
\(264\) 0.440967 + 17.1254i 0.0271396 + 1.05399i
\(265\) 8.75757 1.89642i 0.537974 0.116496i
\(266\) 0 0
\(267\) 15.6174 4.61866i 0.955767 0.282658i
\(268\) −6.14950 + 22.9503i −0.375641 + 1.40191i
\(269\) 14.6703 25.4096i 0.894461 1.54925i 0.0599909 0.998199i \(-0.480893\pi\)
0.834470 0.551053i \(-0.185774\pi\)
\(270\) −25.1746 + 15.5139i −1.53208 + 0.944145i
\(271\) −1.59183 2.75713i −0.0966968 0.167484i 0.813619 0.581399i \(-0.197494\pi\)
−0.910316 + 0.413915i \(0.864161\pi\)
\(272\) −25.5821 25.5821i −1.55114 1.55114i
\(273\) 0 0
\(274\) 16.4083i 0.991263i
\(275\) 6.38051 + 4.56176i 0.384759 + 0.275084i
\(276\) 9.31475 5.70250i 0.560682 0.343250i
\(277\) 6.17251 + 23.0361i 0.370870 + 1.38411i 0.859286 + 0.511495i \(0.170908\pi\)
−0.488416 + 0.872611i \(0.662425\pi\)
\(278\) −25.0862 6.72182i −1.50457 0.403148i
\(279\) 6.91877 4.48452i 0.414216 0.268481i
\(280\) 0 0
\(281\) 24.8052i 1.47975i 0.672742 + 0.739877i \(0.265116\pi\)
−0.672742 + 0.739877i \(0.734884\pi\)
\(282\) 15.8574 16.6956i 0.944296 0.994211i
\(283\) −7.40274 + 1.98356i −0.440047 + 0.117910i −0.472039 0.881578i \(-0.656482\pi\)
0.0319914 + 0.999488i \(0.489815\pi\)
\(284\) 8.10271 14.0343i 0.480807 0.832783i
\(285\) −6.32318 + 1.54067i −0.374553 + 0.0912613i
\(286\) 12.5277 0.740781
\(287\) 0 0
\(288\) 15.9583 + 3.40661i 0.940354 + 0.200736i
\(289\) 7.81541 4.51223i 0.459730 0.265425i
\(290\) −48.3356 15.5016i −2.83836 0.910286i
\(291\) −5.62274 9.18447i −0.329611 0.538403i
\(292\) −36.0692 9.66472i −2.11079 0.565585i
\(293\) 8.60739 8.60739i 0.502849 0.502849i −0.409473 0.912322i \(-0.634288\pi\)
0.912322 + 0.409473i \(0.134288\pi\)
\(294\) 0 0
\(295\) 10.4313 + 6.71776i 0.607336 + 0.391123i
\(296\) −3.40045 + 1.96325i −0.197647 + 0.114112i
\(297\) 7.68722 2.71087i 0.446058 0.157301i
\(298\) −2.26935 + 0.608072i −0.131460 + 0.0352246i
\(299\) −2.20960 3.82714i −0.127784 0.221329i
\(300\) 29.3028 25.3937i 1.69180 1.46610i
\(301\) 0 0
\(302\) 24.7107 + 24.7107i 1.42194 + 1.42194i
\(303\) 1.20632 1.27009i 0.0693013 0.0729645i
\(304\) 10.3206 + 5.95859i 0.591926 + 0.341749i
\(305\) −14.7279 + 7.57512i −0.843315 + 0.433750i
\(306\) −17.7133 + 34.6895i −1.01260 + 1.98307i
\(307\) −11.8525 + 11.8525i −0.676457 + 0.676457i −0.959197 0.282740i \(-0.908757\pi\)
0.282740 + 0.959197i \(0.408757\pi\)
\(308\) 0 0
\(309\) 8.67440 + 4.71471i 0.493469 + 0.268211i
\(310\) −11.5832 + 10.5099i −0.657883 + 0.596920i
\(311\) 25.3572 + 14.6400i 1.43788 + 0.830158i 0.997702 0.0677541i \(-0.0215833\pi\)
0.440174 + 0.897912i \(0.354917\pi\)
\(312\) 8.01405 33.3169i 0.453706 1.88620i
\(313\) 0.448664 1.67444i 0.0253600 0.0946448i −0.952086 0.305831i \(-0.901066\pi\)
0.977446 + 0.211186i \(0.0677325\pi\)
\(314\) 49.3859 2.78701
\(315\) 0 0
\(316\) 76.3710 4.29620
\(317\) −1.57449 + 5.87608i −0.0884322 + 0.330034i −0.995942 0.0899974i \(-0.971314\pi\)
0.907510 + 0.420031i \(0.137981\pi\)
\(318\) −4.13126 + 17.1749i −0.231670 + 0.963122i
\(319\) 12.1175 + 6.99605i 0.678451 + 0.391704i
\(320\) 0.760261 + 0.0369364i 0.0424999 + 0.00206481i
\(321\) −6.06388 3.29585i −0.338453 0.183956i
\(322\) 0 0
\(323\) −6.06162 + 6.06162i −0.337278 + 0.337278i
\(324\) −4.14213 40.0826i −0.230119 2.22681i
\(325\) −9.96634 12.1172i −0.552833 0.672143i
\(326\) 20.5902 + 11.8877i 1.14038 + 0.658401i
\(327\) −7.66080 + 8.06575i −0.423643 + 0.446037i
\(328\) −28.7244 28.7244i −1.58604 1.58604i
\(329\) 0 0
\(330\) −13.5638 + 7.42400i −0.746665 + 0.408678i
\(331\) −16.6301 28.8042i −0.914074 1.58322i −0.808252 0.588837i \(-0.799586\pi\)
−0.105822 0.994385i \(-0.533747\pi\)
\(332\) −19.6519 + 5.26572i −1.07854 + 0.288994i
\(333\) 1.38732 + 1.25134i 0.0760245 + 0.0685730i
\(334\) 9.70781 5.60481i 0.531188 0.306681i
\(335\) −11.5973 + 2.51136i −0.633630 + 0.137210i
\(336\) 0 0
\(337\) 10.3056 10.3056i 0.561383 0.561383i −0.368317 0.929700i \(-0.620066\pi\)
0.929700 + 0.368317i \(0.120066\pi\)
\(338\) 7.75309 + 2.07743i 0.421712 + 0.112997i
\(339\) −4.21087 6.87826i −0.228703 0.373576i
\(340\) 15.5972 48.6336i 0.845877 2.63753i
\(341\) 3.73371 2.15566i 0.202192 0.116736i
\(342\) 2.67849 12.5475i 0.144836 0.678489i
\(343\) 0 0
\(344\) −48.8391 −2.63323
\(345\) 4.66032 + 2.83424i 0.250903 + 0.152590i
\(346\) 14.6286 25.3376i 0.786441 1.36216i
\(347\) −26.2606 + 7.03650i −1.40974 + 0.377739i −0.881833 0.471562i \(-0.843691\pi\)
−0.527909 + 0.849301i \(0.677024\pi\)
\(348\) 47.6360 50.1540i 2.55356 2.68854i
\(349\) 30.1301i 1.61283i −0.591353 0.806413i \(-0.701406\pi\)
0.591353 0.806413i \(-0.298594\pi\)
\(350\) 0 0
\(351\) −16.2562 + 1.25799i −0.867694 + 0.0671463i
\(352\) 8.24189 + 2.20841i 0.439294 + 0.117708i
\(353\) −6.23486 23.2688i −0.331848 1.23847i −0.907246 0.420600i \(-0.861820\pi\)
0.575398 0.817873i \(-0.304847\pi\)
\(354\) −20.8609 + 12.7711i −1.10874 + 0.678774i
\(355\) 8.08377 + 0.392740i 0.429042 + 0.0208445i
\(356\) 42.0992i 2.23125i
\(357\) 0 0
\(358\) −29.8703 29.8703i −1.57869 1.57869i
\(359\) −0.368991 0.639111i −0.0194746 0.0337310i 0.856124 0.516771i \(-0.172866\pi\)
−0.875598 + 0.483040i \(0.839533\pi\)
\(360\) 11.0669 + 40.8215i 0.583276 + 2.15148i
\(361\) −8.08813 + 14.0090i −0.425691 + 0.737318i
\(362\) −7.67607 + 28.6475i −0.403445 + 1.50568i
\(363\) −14.1831 + 4.19448i −0.744417 + 0.220153i
\(364\) 0 0
\(365\) −3.94692 18.2267i −0.206591 0.954028i
\(366\) −0.840432 32.6390i −0.0439301 1.70607i
\(367\) 8.52557 + 31.8179i 0.445031 + 1.66088i 0.715854 + 0.698250i \(0.246038\pi\)
−0.270822 + 0.962629i \(0.587296\pi\)
\(368\) −2.58503 9.64747i −0.134754 0.502909i
\(369\) −8.79010 + 17.2144i −0.457594 + 0.896146i
\(370\) −2.97967 1.91890i −0.154906 0.0997591i
\(371\) 0 0
\(372\) −6.04438 20.4382i −0.313387 1.05967i
\(373\) −1.93302 + 7.21411i −0.100088 + 0.373533i −0.997742 0.0671685i \(-0.978603\pi\)
0.897654 + 0.440701i \(0.145270\pi\)
\(374\) −10.1836 + 17.6384i −0.526579 + 0.912062i
\(375\) 17.9713 + 7.21328i 0.928035 + 0.372492i
\(376\) −16.4670 28.5217i −0.849222 1.47090i
\(377\) −19.7908 19.7908i −1.01928 1.01928i
\(378\) 0 0
\(379\) 3.38353i 0.173800i −0.996217 0.0869000i \(-0.972304\pi\)
0.996217 0.0869000i \(-0.0276961\pi\)
\(380\) −0.816390 + 16.8037i −0.0418799 + 0.862013i
\(381\) −18.2656 29.8359i −0.935774 1.52854i
\(382\) −8.46729 31.6004i −0.433224 1.61681i
\(383\) −3.91696 1.04955i −0.200147 0.0536293i 0.157353 0.987542i \(-0.449704\pi\)
−0.357500 + 0.933913i \(0.616371\pi\)
\(384\) −9.71455 + 17.8734i −0.495744 + 0.912097i
\(385\) 0 0
\(386\) 29.0157i 1.47686i
\(387\) 7.16176 + 22.1073i 0.364053 + 1.12378i
\(388\) −26.8890 + 7.20490i −1.36508 + 0.365773i
\(389\) 5.10508 8.84225i 0.258838 0.448320i −0.707093 0.707120i \(-0.749994\pi\)
0.965931 + 0.258800i \(0.0833272\pi\)
\(390\) 30.0507 7.32199i 1.52168 0.370763i
\(391\) 7.18455 0.363339
\(392\) 0 0
\(393\) −2.40557 8.13410i −0.121345 0.410311i
\(394\) 58.4483 33.7452i 2.94458 1.70006i
\(395\) 17.4452 + 33.9177i 0.877764 + 1.70658i
\(396\) −1.08440 21.0429i −0.0544931 1.05744i
\(397\) 32.8576 + 8.80417i 1.64908 + 0.441869i 0.959354 0.282205i \(-0.0910658\pi\)
0.689723 + 0.724074i \(0.257732\pi\)
\(398\) 7.57156 7.57156i 0.379528 0.379528i
\(399\) 0 0
\(400\) −14.6693 32.2828i −0.733465 1.61414i
\(401\) −17.3995 + 10.0456i −0.868891 + 0.501654i −0.866980 0.498344i \(-0.833942\pi\)
−0.00191140 + 0.999998i \(0.500608\pi\)
\(402\) 5.47087 22.7441i 0.272862 1.13437i
\(403\) −8.33007 + 2.23203i −0.414950 + 0.111186i
\(404\) −2.26402 3.92139i −0.112639 0.195097i
\(405\) 16.8552 10.9955i 0.837542 0.546373i
\(406\) 0 0
\(407\) 0.690793 + 0.690793i 0.0342413 + 0.0342413i
\(408\) 40.3940 + 38.3660i 1.99980 + 1.89940i
\(409\) −29.0207 16.7551i −1.43498 0.828487i −0.437487 0.899225i \(-0.644131\pi\)
−0.997495 + 0.0707377i \(0.977465\pi\)
\(410\) 11.1974 34.9146i 0.553000 1.72431i
\(411\) −0.287441 11.1630i −0.0141784 0.550632i
\(412\) 18.0463 18.0463i 0.889077 0.889077i
\(413\) 0 0
\(414\) −9.02331 + 5.84862i −0.443471 + 0.287444i
\(415\) −6.82764 7.52494i −0.335156 0.369385i
\(416\) −14.7811 8.53389i −0.724705 0.418408i
\(417\) 17.1846 + 4.13359i 0.841533 + 0.202423i
\(418\) 1.73639 6.48030i 0.0849297 0.316962i
\(419\) 25.8773 1.26419 0.632093 0.774892i \(-0.282196\pi\)
0.632093 + 0.774892i \(0.282196\pi\)
\(420\) 0 0
\(421\) 10.4030 0.507013 0.253507 0.967334i \(-0.418416\pi\)
0.253507 + 0.967334i \(0.418416\pi\)
\(422\) 14.1762 52.9063i 0.690086 2.57544i
\(423\) −10.4958 + 11.6363i −0.510322 + 0.565777i
\(424\) 21.8808 + 12.6329i 1.06263 + 0.613508i
\(425\) 25.1619 4.18225i 1.22053 0.202869i
\(426\) −7.61923 + 14.0183i −0.369153 + 0.679188i
\(427\) 0 0
\(428\) −12.6154 + 12.6154i −0.609786 + 0.609786i
\(429\) −8.52298 + 0.219461i −0.411493 + 0.0105957i
\(430\) −20.1628 39.2013i −0.972335 1.89045i
\(431\) −0.388850 0.224503i −0.0187303 0.0108139i 0.490606 0.871382i \(-0.336776\pi\)
−0.509336 + 0.860568i \(0.670109\pi\)
\(432\) −36.2245 6.76288i −1.74285 0.325379i
\(433\) −17.7813 17.7813i −0.854517 0.854517i 0.136169 0.990686i \(-0.456521\pi\)
−0.990686 + 0.136169i \(0.956521\pi\)
\(434\) 0 0
\(435\) 33.1556 + 9.69944i 1.58969 + 0.465053i
\(436\) 14.3778 + 24.9030i 0.688570 + 1.19264i
\(437\) −2.28594 + 0.612517i −0.109352 + 0.0293007i
\(438\) 35.7452 + 8.59817i 1.70797 + 0.410836i
\(439\) −25.5732 + 14.7647i −1.22054 + 0.704679i −0.965033 0.262128i \(-0.915576\pi\)
−0.255507 + 0.966807i \(0.582243\pi\)
\(440\) 4.68067 + 21.6151i 0.223142 + 1.03046i
\(441\) 0 0
\(442\) 28.8077 28.8077i 1.37024 1.37024i
\(443\) 21.2613 + 5.69694i 1.01015 + 0.270670i 0.725693 0.688018i \(-0.241519\pi\)
0.284460 + 0.958688i \(0.408186\pi\)
\(444\) 4.11894 2.52162i 0.195476 0.119671i
\(445\) 18.6970 9.61660i 0.886323 0.455871i
\(446\) −38.6519 + 22.3157i −1.83022 + 1.05668i
\(447\) 1.53325 0.453443i 0.0725204 0.0214471i
\(448\) 0 0
\(449\) 16.3214 0.770252 0.385126 0.922864i \(-0.374158\pi\)
0.385126 + 0.922864i \(0.374158\pi\)
\(450\) −28.1970 + 25.7358i −1.32922 + 1.21320i
\(451\) −5.05351 + 8.75294i −0.237961 + 0.412160i
\(452\) −20.1372 + 5.39575i −0.947175 + 0.253795i
\(453\) −17.2442 16.3785i −0.810205 0.769528i
\(454\) 31.3336i 1.47056i
\(455\) 0 0
\(456\) −16.1232 8.76332i −0.755040 0.410380i
\(457\) 28.1810 + 7.55108i 1.31825 + 0.353225i 0.848323 0.529479i \(-0.177613\pi\)
0.469929 + 0.882704i \(0.344279\pi\)
\(458\) 2.94010 + 10.9726i 0.137382 + 0.512717i
\(459\) 11.4432 23.9105i 0.534122 1.11605i
\(460\) 10.4422 9.47452i 0.486868 0.441752i
\(461\) 15.2893i 0.712094i −0.934468 0.356047i \(-0.884124\pi\)
0.934468 0.356047i \(-0.115876\pi\)
\(462\) 0 0
\(463\) 0.492195 + 0.492195i 0.0228743 + 0.0228743i 0.718451 0.695577i \(-0.244851\pi\)
−0.695577 + 0.718451i \(0.744851\pi\)
\(464\) −31.6281 54.7815i −1.46830 2.54317i
\(465\) 7.69628 7.35307i 0.356907 0.340990i
\(466\) −10.1528 + 17.5852i −0.470320 + 0.814619i
\(467\) −3.29439 + 12.2948i −0.152446 + 0.568937i 0.846864 + 0.531809i \(0.178488\pi\)
−0.999311 + 0.0371280i \(0.988179\pi\)
\(468\) −8.79901 + 41.2192i −0.406734 + 1.90536i
\(469\) 0 0
\(470\) 16.0951 24.9924i 0.742410 1.15281i
\(471\) −33.5986 + 0.865141i −1.54814 + 0.0398636i
\(472\) 9.05465 + 33.7924i 0.416774 + 1.55542i
\(473\) 3.14500 + 11.7373i 0.144607 + 0.539682i
\(474\) −75.1664 + 1.93548i −3.45251 + 0.0888996i
\(475\) −7.64932 + 3.47586i −0.350975 + 0.159483i
\(476\) 0 0
\(477\) 2.50974 11.7570i 0.114913 0.538314i
\(478\) −7.81194 + 29.1546i −0.357310 + 1.33350i
\(479\) 11.3786 19.7083i 0.519901 0.900496i −0.479831 0.877361i \(-0.659302\pi\)
0.999732 0.0231347i \(-0.00736465\pi\)
\(480\) 21.0608 + 0.480313i 0.961291 + 0.0219232i
\(481\) −0.977074 1.69234i −0.0445507 0.0771641i
\(482\) 32.5235 + 32.5235i 1.48141 + 1.48141i
\(483\) 0 0
\(484\) 38.2328i 1.73785i
\(485\) −9.34201 10.2961i −0.424199 0.467522i
\(486\) 5.09262 + 39.3454i 0.231006 + 1.78474i
\(487\) −4.20631 15.6982i −0.190606 0.711352i −0.993361 0.115042i \(-0.963300\pi\)
0.802754 0.596310i \(-0.203367\pi\)
\(488\) −45.1075 12.0865i −2.04192 0.547131i
\(489\) −14.2163 7.72687i −0.642884 0.349421i
\(490\) 0 0
\(491\) 0.301729i 0.0136168i −0.999977 0.00680841i \(-0.997833\pi\)
0.999977 0.00680841i \(-0.00216720\pi\)
\(492\) 36.2281 + 34.4092i 1.63329 + 1.55129i
\(493\) 43.9519 11.7769i 1.97949 0.530404i
\(494\) −6.70989 + 11.6219i −0.301892 + 0.522893i
\(495\) 9.09781 5.28837i 0.408916 0.237694i
\(496\) −19.4909 −0.875165
\(497\) 0 0
\(498\) 19.2085 5.68071i 0.860754 0.254559i
\(499\) −17.5116 + 10.1103i −0.783928 + 0.452601i −0.837821 0.545946i \(-0.816170\pi\)
0.0538926 + 0.998547i \(0.482837\pi\)
\(500\) 31.0554 39.2604i 1.38884 1.75578i
\(501\) −6.50631 + 3.98317i −0.290681 + 0.177955i
\(502\) −7.84832 2.10295i −0.350288 0.0938593i
\(503\) −23.8859 + 23.8859i −1.06502 + 1.06502i −0.0672882 + 0.997734i \(0.521435\pi\)
−0.997734 + 0.0672882i \(0.978565\pi\)
\(504\) 0 0
\(505\) 1.22440 1.90124i 0.0544850 0.0846042i
\(506\) −4.86943 + 2.81137i −0.216473 + 0.124980i
\(507\) −5.31104 1.27752i −0.235871 0.0567366i
\(508\) −87.3495 + 23.4052i −3.87551 + 1.03844i
\(509\) 5.88603 + 10.1949i 0.260894 + 0.451881i 0.966480 0.256743i \(-0.0826494\pi\)
−0.705586 + 0.708624i \(0.749316\pi\)
\(510\) −14.1186 + 48.2618i −0.625184 + 2.13707i
\(511\) 0 0
\(512\) 35.9587 + 35.9587i 1.58917 + 1.58917i
\(513\) −1.60245 + 8.58332i −0.0707498 + 0.378963i
\(514\) 36.8179 + 21.2569i 1.62397 + 0.937600i
\(515\) 12.1369 + 3.89241i 0.534817 + 0.171520i
\(516\) 60.0511 1.54627i 2.64360 0.0680709i
\(517\) −5.79412 + 5.79412i −0.254825 + 0.254825i
\(518\) 0 0
\(519\) −9.50842 + 17.4941i −0.417373 + 0.767907i
\(520\) 2.14676 44.1866i 0.0941415 1.93771i
\(521\) −25.7965 14.8936i −1.13016 0.652500i −0.186187 0.982514i \(-0.559613\pi\)
−0.943976 + 0.330014i \(0.892947\pi\)
\(522\) −45.6135 + 50.5702i −1.99645 + 2.21340i
\(523\) 6.39348 23.8608i 0.279567 1.04336i −0.673151 0.739505i \(-0.735060\pi\)
0.952719 0.303854i \(-0.0982736\pi\)
\(524\) −21.9268 −0.957877
\(525\) 0 0
\(526\) −47.3309 −2.06373
\(527\) 3.62875 13.5427i 0.158071 0.589929i
\(528\) −18.7347 4.50646i −0.815325 0.196118i
\(529\) −18.2009 10.5083i −0.791343 0.456882i
\(530\) −1.10666 + 22.7783i −0.0480701 + 0.989426i
\(531\) 13.9685 9.05395i 0.606183 0.392908i
\(532\) 0 0
\(533\) 14.2956 14.2956i 0.619211 0.619211i
\(534\) 1.06693 + 41.4352i 0.0461704 + 1.79307i
\(535\) −8.48439 2.72101i −0.366812 0.117640i
\(536\) −28.9760 16.7293i −1.25157 0.722595i
\(537\) 20.8449 + 19.7983i 0.899523 + 0.854361i
\(538\) 52.8021 + 52.8021i 2.27646 + 2.27646i
\(539\) 0 0
\(540\) −14.8999 49.8425i −0.641192 2.14488i
\(541\) 11.5559 + 20.0153i 0.496825 + 0.860526i 0.999993 0.00366246i \(-0.00116580\pi\)
−0.503168 + 0.864188i \(0.667832\pi\)
\(542\) 7.82652 2.09711i 0.336178 0.0900786i
\(543\) 4.72040 19.6242i 0.202572 0.842153i
\(544\) 24.0306 13.8741i 1.03030 0.594845i
\(545\) −7.77560 + 12.0739i −0.333070 + 0.517191i
\(546\) 0 0
\(547\) −25.6689 + 25.6689i −1.09752 + 1.09752i −0.102823 + 0.994700i \(0.532787\pi\)
−0.994700 + 0.102823i \(0.967213\pi\)
\(548\) −27.8824 7.47105i −1.19108 0.319148i
\(549\) 1.14354 + 22.1905i 0.0488051 + 0.947068i
\(550\) −15.4173 + 12.6806i −0.657394 + 0.540703i
\(551\) −12.9804 + 7.49421i −0.552982 + 0.319264i
\(552\) 4.36169 + 14.7484i 0.185646 + 0.627735i
\(553\) 0 0
\(554\) −60.6965 −2.57875
\(555\) 2.06077 + 1.25329i 0.0874749 + 0.0531991i
\(556\) 22.8445 39.5679i 0.968824 1.67805i
\(557\) 14.4497 3.87177i 0.612252 0.164052i 0.0606487 0.998159i \(-0.480683\pi\)
0.551603 + 0.834107i \(0.314016\pi\)
\(558\) 6.46701 + 19.9627i 0.273771 + 0.845088i
\(559\) 24.3063i 1.02805i
\(560\) 0 0
\(561\) 6.61917 12.1783i 0.279462 0.514169i
\(562\) −60.9796 16.3394i −2.57227 0.689238i
\(563\) −3.99759 14.9192i −0.168478 0.628769i −0.997571 0.0696580i \(-0.977809\pi\)
0.829093 0.559111i \(-0.188857\pi\)
\(564\) 21.1504 + 34.5481i 0.890592 + 1.45474i
\(565\) −6.99624 7.71076i −0.294334 0.324394i
\(566\) 19.5050i 0.819858i
\(567\) 0 0
\(568\) 16.1365 + 16.1365i 0.677072 + 0.677072i
\(569\) −21.0355 36.4346i −0.881854 1.52742i −0.849277 0.527947i \(-0.822962\pi\)
−0.0325765 0.999469i \(-0.510371\pi\)
\(570\) 0.377653 16.5594i 0.0158182 0.693596i
\(571\) −5.41712 + 9.38272i −0.226699 + 0.392655i −0.956828 0.290655i \(-0.906127\pi\)
0.730129 + 0.683310i \(0.239460\pi\)
\(572\) −5.70415 + 21.2882i −0.238502 + 0.890103i
\(573\) 6.31411 + 21.3503i 0.263776 + 0.891921i
\(574\) 0 0
\(575\) 6.59308 + 2.47331i 0.274950 + 0.103144i
\(576\) 0.464409 0.909492i 0.0193504 0.0378955i
\(577\) 5.37966 + 20.0772i 0.223958 + 0.835823i 0.982819 + 0.184571i \(0.0590895\pi\)
−0.758861 + 0.651253i \(0.774244\pi\)
\(578\) 5.94450 + 22.1852i 0.247259 + 0.922782i
\(579\) −0.508297 19.7402i −0.0211241 0.820375i
\(580\) 48.3498 75.0776i 2.00762 3.11743i
\(581\) 0 0
\(582\) 26.2823 7.77271i 1.08944 0.322189i
\(583\) 1.62700 6.07203i 0.0673833 0.251478i
\(584\) 26.2922 45.5394i 1.08798 1.88443i
\(585\) −20.3161 + 5.50778i −0.839967 + 0.227719i
\(586\) 15.4901 + 26.8297i 0.639891 + 1.10832i
\(587\) 4.89737 + 4.89737i 0.202136 + 0.202136i 0.800915 0.598779i \(-0.204347\pi\)
−0.598779 + 0.800915i \(0.704347\pi\)
\(588\) 0 0
\(589\) 4.61831i 0.190294i
\(590\) −23.3858 + 21.2187i −0.962777 + 0.873561i
\(591\) −39.1729 + 23.9817i −1.61136 + 0.986475i
\(592\) −1.14309 4.26606i −0.0469806 0.175334i
\(593\) 30.8223 + 8.25882i 1.26572 + 0.339149i 0.828390 0.560151i \(-0.189257\pi\)
0.437331 + 0.899300i \(0.355924\pi\)
\(594\) 1.60059 + 20.6835i 0.0656729 + 0.848654i
\(595\) 0 0
\(596\) 4.13314i 0.169300i
\(597\) −5.01850 + 5.28378i −0.205394 + 0.216251i
\(598\) 10.8639 2.91097i 0.444258 0.119039i
\(599\) −3.40986 + 5.90604i −0.139323 + 0.241314i −0.927241 0.374466i \(-0.877826\pi\)
0.787918 + 0.615781i \(0.211159\pi\)
\(600\) 23.8609 + 49.1132i 0.974117 + 2.00504i
\(601\) −8.46733 −0.345390 −0.172695 0.984975i \(-0.555247\pi\)
−0.172695 + 0.984975i \(0.555247\pi\)
\(602\) 0 0
\(603\) −3.32356 + 15.5693i −0.135346 + 0.634031i
\(604\) −53.2417 + 30.7391i −2.16637 + 1.25076i
\(605\) −16.9799 + 8.73340i −0.690329 + 0.355063i
\(606\) 2.32769 + 3.80216i 0.0945558 + 0.154452i
\(607\) −8.60998 2.30704i −0.349468 0.0936398i 0.0798148 0.996810i \(-0.474567\pi\)
−0.429283 + 0.903170i \(0.641234\pi\)
\(608\) −6.46309 + 6.46309i −0.262113 + 0.262113i
\(609\) 0 0
\(610\) −8.92083 41.1959i −0.361194 1.66797i
\(611\) 14.1947 8.19533i 0.574258 0.331548i
\(612\) −50.8820 45.8948i −2.05678 1.85519i
\(613\) 7.16791 1.92064i 0.289509 0.0775738i −0.111142 0.993805i \(-0.535451\pi\)
0.400651 + 0.916231i \(0.368784\pi\)
\(614\) −21.3301 36.9448i −0.860812 1.49097i
\(615\) −7.00627 + 23.9496i −0.282520 + 0.965739i
\(616\) 0 0
\(617\) −2.10719 2.10719i −0.0848323 0.0848323i 0.663417 0.748250i \(-0.269105\pi\)
−0.748250 + 0.663417i \(0.769105\pi\)
\(618\) −17.3043 + 18.2190i −0.696080 + 0.732875i
\(619\) 18.2501 + 10.5367i 0.733534 + 0.423506i 0.819714 0.572773i \(-0.194133\pi\)
−0.0861795 + 0.996280i \(0.527466\pi\)
\(620\) −12.5851 24.4685i −0.505431 0.982679i
\(621\) 6.03636 4.13705i 0.242231 0.166014i
\(622\) −52.6932 + 52.6932i −2.11280 + 2.11280i
\(623\) 0 0
\(624\) 33.8650 + 18.4063i 1.35569 + 0.736844i
\(625\) 24.5301 + 4.82412i 0.981206 + 0.192965i
\(626\) 3.82080 + 2.20594i 0.152710 + 0.0881670i
\(627\) −1.06779 + 4.43915i −0.0426436 + 0.177283i
\(628\) −22.4864 + 83.9205i −0.897306 + 3.34879i
\(629\) 3.17697 0.126674
\(630\) 0 0
\(631\) −11.6376 −0.463287 −0.231643 0.972801i \(-0.574410\pi\)
−0.231643 + 0.972801i \(0.574410\pi\)
\(632\) −27.8348 + 103.881i −1.10721 + 4.13216i
\(633\) −8.71765 + 36.2420i −0.346496 + 1.44049i
\(634\) −13.4083 7.74127i −0.532511 0.307445i
\(635\) −30.3477 33.4471i −1.20431 1.32731i
\(636\) −27.3040 14.8403i −1.08267 0.588455i
\(637\) 0 0
\(638\) −25.1806 + 25.1806i −0.996910 + 0.996910i
\(639\) 4.93801 9.67051i 0.195345 0.382560i
\(640\) −8.02022 + 25.0079i −0.317027 + 0.988522i
\(641\) −31.2666 18.0518i −1.23496 0.713003i −0.266898 0.963725i \(-0.585999\pi\)
−0.968059 + 0.250722i \(0.919332\pi\)
\(642\) 12.0967 12.7361i 0.477417 0.502653i
\(643\) −21.0115 21.0115i −0.828614 0.828614i 0.158711 0.987325i \(-0.449266\pi\)
−0.987325 + 0.158711i \(0.949266\pi\)
\(644\) 0 0
\(645\) 14.4040 + 26.3165i 0.567158 + 1.03621i
\(646\) −10.9087 18.8944i −0.429196 0.743389i
\(647\) −25.8213 + 6.91879i −1.01514 + 0.272006i −0.727775 0.685816i \(-0.759446\pi\)
−0.287364 + 0.957821i \(0.592779\pi\)
\(648\) 56.0306 + 8.97464i 2.20109 + 0.352557i
\(649\) 7.53812 4.35214i 0.295897 0.170836i
\(650\) 36.3532 16.5189i 1.42589 0.647925i
\(651\) 0 0
\(652\) −29.5757 + 29.5757i −1.15828 + 1.15828i
\(653\) −16.7835 4.49712i −0.656788 0.175986i −0.0849922 0.996382i \(-0.527087\pi\)
−0.571796 + 0.820396i \(0.693753\pi\)
\(654\) −14.7821 24.1458i −0.578026 0.944177i
\(655\) −5.00868 9.73809i −0.195705 0.380499i
\(656\) 39.5707 22.8462i 1.54498 0.891994i
\(657\) −24.4691 5.22339i −0.954631 0.203784i
\(658\) 0 0
\(659\) 0.708622 0.0276040 0.0138020 0.999905i \(-0.495607\pi\)
0.0138020 + 0.999905i \(0.495607\pi\)
\(660\) −6.43956 26.4291i −0.250660 1.02875i
\(661\) −8.71029 + 15.0867i −0.338791 + 0.586803i −0.984206 0.177029i \(-0.943351\pi\)
0.645414 + 0.763833i \(0.276685\pi\)
\(662\) 81.7650 21.9089i 3.17789 0.851512i
\(663\) −19.0940 + 20.1033i −0.741551 + 0.780749i
\(664\) 28.6500i 1.11184i
\(665\) 0 0
\(666\) −3.99006 + 2.58623i −0.154612 + 0.100214i
\(667\) 12.1338 + 3.25123i 0.469821 + 0.125888i
\(668\) 5.10397 + 19.0483i 0.197479 + 0.737000i
\(669\) 25.9050 15.8591i 1.00155 0.613147i
\(670\) 1.46551 30.1644i 0.0566174 1.16535i
\(671\) 11.6188i 0.448540i
\(672\) 0 0
\(673\) −8.20389 8.20389i −0.316237 0.316237i 0.531083 0.847320i \(-0.321785\pi\)
−0.847320 + 0.531083i \(0.821785\pi\)
\(674\) 18.5463 + 32.1231i 0.714377 + 1.23734i
\(675\) 18.7324 18.0027i 0.721010 0.692925i
\(676\) −7.06029 + 12.2288i −0.271550 + 0.470338i
\(677\) 12.0278 44.8882i 0.462264 1.72519i −0.203539 0.979067i \(-0.565244\pi\)
0.665803 0.746128i \(-0.268089\pi\)
\(678\) 19.6828 5.82098i 0.755915 0.223554i
\(679\) 0 0
\(680\) 60.4675 + 38.9409i 2.31882 + 1.49332i
\(681\) −0.548901 21.3171i −0.0210339 0.816874i
\(682\) 2.83991 + 10.5987i 0.108746 + 0.405845i
\(683\) −10.4309 38.9287i −0.399128 1.48957i −0.814634 0.579975i \(-0.803062\pi\)
0.415506 0.909590i \(-0.363604\pi\)
\(684\) 20.1021 + 10.2646i 0.768623 + 0.392478i
\(685\) −3.05106 14.0896i −0.116575 0.538338i
\(686\) 0 0
\(687\) −2.19245 7.41347i −0.0836473 0.282842i
\(688\) 14.2181 53.0626i 0.542060 2.02299i
\(689\) −6.28716 + 10.8897i −0.239522 + 0.414864i
\(690\) −10.0373 + 9.58972i −0.382115 + 0.365074i
\(691\) −2.89969 5.02242i −0.110310 0.191062i 0.805586 0.592480i \(-0.201851\pi\)
−0.915895 + 0.401418i \(0.868518\pi\)
\(692\) 36.3949 + 36.3949i 1.38353 + 1.38353i
\(693\) 0 0
\(694\) 69.1925i 2.62651i
\(695\) 22.7911 + 1.10728i 0.864516 + 0.0420015i
\(696\) 50.8584 + 83.0747i 1.92778 + 3.14894i
\(697\) 8.50687 + 31.7481i 0.322221 + 1.20254i
\(698\) 74.0699 + 19.8470i 2.80359 + 0.751219i
\(699\) 6.59919 12.1416i 0.249604 0.459236i
\(700\) 0 0
\(701\) 4.92775i 0.186118i −0.995661 0.0930592i \(-0.970335\pi\)
0.995661 0.0930592i \(-0.0296646\pi\)
\(702\) 7.61559 40.7920i 0.287432 1.53960i
\(703\) −1.01083 + 0.270852i −0.0381243 + 0.0102154i
\(704\) 0.266993 0.462446i 0.0100627 0.0174291i
\(705\) −10.5121 + 17.2850i −0.395909 + 0.650990i
\(706\) 61.3096 2.30742
\(707\) 0 0
\(708\) −12.2032 41.2635i −0.458625 1.55078i
\(709\) 14.8889 8.59609i 0.559163 0.322833i −0.193647 0.981071i \(-0.562032\pi\)
0.752809 + 0.658239i \(0.228698\pi\)
\(710\) −6.29035 + 19.6139i −0.236073 + 0.736098i
\(711\) 51.1039 2.63353i 1.91655 0.0987649i
\(712\) 57.2639 + 15.3438i 2.14606 + 0.575034i
\(713\) 2.73693 2.73693i 0.102499 0.102499i
\(714\) 0 0
\(715\) −10.7574 + 2.32948i −0.402305 + 0.0871177i
\(716\) 64.3586 37.1575i 2.40519 1.38864i
\(717\) 4.80395 19.9715i 0.179407 0.745850i
\(718\) 1.81421 0.486116i 0.0677057 0.0181417i
\(719\) −6.12782 10.6137i −0.228529 0.395824i 0.728843 0.684681i \(-0.240058\pi\)
−0.957372 + 0.288856i \(0.906725\pi\)
\(720\) −47.5735 + 0.139941i −1.77296 + 0.00521528i
\(721\) 0 0
\(722\) −29.1113 29.1113i −1.08341 1.08341i
\(723\) −22.6964 21.5569i −0.844089 0.801711i
\(724\) −45.1850 26.0876i −1.67929 0.969538i
\(725\) 44.3877 + 4.32326i 1.64852 + 0.160562i
\(726\) −0.968939 37.6297i −0.0359607 1.39657i
\(727\) 5.83842 5.83842i 0.216535 0.216535i −0.590501 0.807037i \(-0.701070\pi\)
0.807037 + 0.590501i \(0.201070\pi\)
\(728\) 0 0
\(729\) −4.15390 26.6786i −0.153848 0.988094i
\(730\) 47.4072 + 2.30323i 1.75462 + 0.0852462i
\(731\) 34.2220 + 19.7581i 1.26575 + 0.730780i
\(732\) 55.8455 + 13.4331i 2.06411 + 0.496502i
\(733\) 4.97574 18.5697i 0.183783 0.685888i −0.811105 0.584901i \(-0.801133\pi\)
0.994888 0.100987i \(-0.0321999\pi\)
\(734\) −83.8351 −3.09441
\(735\) 0 0
\(736\) 7.66040 0.282366
\(737\) −2.15457 + 8.04096i −0.0793646 + 0.296193i
\(738\) −36.5287 32.9484i −1.34464 1.21285i
\(739\) −13.1464 7.59007i −0.483598 0.279205i 0.238317 0.971187i \(-0.423404\pi\)
−0.721915 + 0.691982i \(0.756738\pi\)
\(740\) 4.61747 4.18959i 0.169741 0.154012i
\(741\) 4.36134 8.02424i 0.160218 0.294778i
\(742\) 0 0
\(743\) −34.4215 + 34.4215i −1.26280 + 1.26280i −0.313073 + 0.949729i \(0.601358\pi\)
−0.949729 + 0.313073i \(0.898642\pi\)
\(744\) 30.0034 0.772566i 1.09998 0.0283236i
\(745\) 1.83560 0.944121i 0.0672512 0.0345899i
\(746\) −16.4614 9.50402i −0.602696 0.347967i
\(747\) −12.9686 + 4.20124i −0.474496 + 0.153715i
\(748\) −25.3359 25.3359i −0.926371 0.926371i
\(749\) 0 0
\(750\) −29.5706 + 39.4282i −1.07977 + 1.43971i
\(751\) 11.1258 + 19.2704i 0.405985 + 0.703186i 0.994436 0.105347i \(-0.0335952\pi\)
−0.588451 + 0.808533i \(0.700262\pi\)
\(752\) 35.7822 9.58780i 1.30484 0.349631i
\(753\) 5.37628 + 1.29321i 0.195922 + 0.0471272i
\(754\) 61.6888 35.6160i 2.24657 1.29706i
\(755\) −25.8136 16.6239i −0.939454 0.605007i
\(756\) 0 0
\(757\) −1.88407 + 1.88407i −0.0684777 + 0.0684777i −0.740516 0.672038i \(-0.765419\pi\)
0.672038 + 0.740516i \(0.265419\pi\)
\(758\) 8.31786 + 2.22876i 0.302118 + 0.0809523i
\(759\) 3.26356 1.99795i 0.118460 0.0725212i
\(760\) −22.5591 7.23489i −0.818305 0.262437i
\(761\) −30.8889 + 17.8337i −1.11972 + 0.646472i −0.941330 0.337488i \(-0.890423\pi\)
−0.178392 + 0.983960i \(0.557089\pi\)
\(762\) 85.3786 25.2498i 3.09294 0.914703i
\(763\) 0 0
\(764\) 57.5532 2.08220
\(765\) 8.75986 33.0812i 0.316714 1.19605i
\(766\) 5.16028 8.93787i 0.186449 0.322938i
\(767\) −16.8179 + 4.50633i −0.607258 + 0.162714i
\(768\) −36.6848 34.8430i −1.32375 1.25729i
\(769\) 31.7331i 1.14432i 0.820141 + 0.572162i \(0.193895\pi\)
−0.820141 + 0.572162i \(0.806105\pi\)
\(770\) 0 0
\(771\) −25.4207 13.8167i −0.915503 0.497595i
\(772\) −49.3059 13.2115i −1.77456 0.475491i
\(773\) 1.82223 + 6.80067i 0.0655412 + 0.244603i 0.990922 0.134434i \(-0.0429218\pi\)
−0.925381 + 0.379038i \(0.876255\pi\)
\(774\) −59.0647 + 3.04377i −2.12304 + 0.109406i
\(775\) 7.99212 11.1786i 0.287085 0.401545i
\(776\) 39.2008i 1.40723i
\(777\) 0 0
\(778\) 18.3745 + 18.3745i 0.658758 + 0.658758i
\(779\) −5.41335 9.37619i −0.193953 0.335937i
\(780\) −1.24061 + 54.3985i −0.0444211 + 1.94778i
\(781\) 2.83891 4.91713i 0.101584 0.175949i
\(782\) −4.73254 + 17.6621i −0.169235 + 0.631595i
\(783\) 30.1463 35.2034i 1.07734 1.25807i
\(784\) 0 0
\(785\) −42.4071 + 9.18310i −1.51357 + 0.327759i
\(786\) 21.5810 0.555695i 0.769767 0.0198210i
\(787\) 6.86494 + 25.6203i 0.244709 + 0.913266i 0.973530 + 0.228561i \(0.0734021\pi\)
−0.728821 + 0.684705i \(0.759931\pi\)
\(788\) 30.7298 + 114.685i 1.09470 + 4.08549i
\(789\) 32.2005 0.829142i 1.14637 0.0295182i
\(790\) −94.8726 + 20.5443i −3.37542 + 0.730934i
\(791\) 0 0
\(792\) 29.0181 + 6.19445i 1.03111 + 0.220110i
\(793\) 6.01524 22.4492i 0.213607 0.797194i
\(794\) −43.2873 + 74.9758i −1.53621 + 2.66079i
\(795\) 0.353860 15.5161i 0.0125501 0.550299i
\(796\) 9.41871 + 16.3137i 0.333837 + 0.578223i
\(797\) −7.92792 7.92792i −0.280821 0.280821i 0.552615 0.833437i \(-0.313630\pi\)
−0.833437 + 0.552615i \(0.813630\pi\)
\(798\) 0 0
\(799\) 26.6473i 0.942713i
\(800\) 26.8284 4.45925i 0.948527 0.157658i
\(801\) −1.45172 28.1708i −0.0512940 0.995367i
\(802\) −13.2343 49.3911i −0.467320 1.74406i
\(803\) −12.6374 3.38618i −0.445964 0.119496i
\(804\) 36.1576 + 19.6524i 1.27518 + 0.693088i
\(805\) 0 0
\(806\) 21.9484i 0.773099i
\(807\) −36.8477 34.9977i −1.29710 1.23198i
\(808\) 6.15910 1.65032i 0.216676 0.0580582i
\(809\) −16.6141 + 28.7764i −0.584119 + 1.01172i 0.410865 + 0.911696i \(0.365227\pi\)
−0.994985 + 0.100028i \(0.968107\pi\)
\(810\) 15.9281 + 48.6787i 0.559656 + 1.71040i
\(811\) −49.8680 −1.75110 −0.875550 0.483127i \(-0.839501\pi\)
−0.875550 + 0.483127i \(0.839501\pi\)
\(812\) 0 0
\(813\) −5.28787 + 1.56383i −0.185454 + 0.0548458i
\(814\) −2.15324 + 1.24317i −0.0754709 + 0.0435732i
\(815\) −19.8910 6.37921i −0.696752 0.223454i
\(816\) −53.4434 + 32.7181i −1.87089 + 1.14536i
\(817\) −12.5731 3.36894i −0.439876 0.117864i
\(818\) 60.3060 60.3060i 2.10855 2.10855i
\(819\) 0 0
\(820\) 54.2313 + 34.9249i 1.89384 + 1.21963i
\(821\) −28.0956 + 16.2210i −0.980542 + 0.566116i −0.902434 0.430829i \(-0.858221\pi\)
−0.0781084 + 0.996945i \(0.524888\pi\)
\(822\) 27.6319 + 6.64659i 0.963773 + 0.231826i
\(823\) 44.7011 11.9776i 1.55818 0.417514i 0.626095 0.779747i \(-0.284652\pi\)
0.932088 + 0.362233i \(0.117985\pi\)
\(824\) 17.9695 + 31.1241i 0.625998 + 1.08426i
\(825\) 10.2667 8.89705i 0.357439 0.309755i
\(826\) 0 0
\(827\) −36.7198 36.7198i −1.27687 1.27687i −0.942408 0.334465i \(-0.891444\pi\)
−0.334465 0.942408i \(-0.608556\pi\)
\(828\) −5.82994 17.9961i −0.202605 0.625409i
\(829\) 12.3817 + 7.14860i 0.430036 + 0.248281i 0.699362 0.714768i \(-0.253468\pi\)
−0.269326 + 0.963049i \(0.586801\pi\)
\(830\) 22.9963 11.8279i 0.798214 0.410553i
\(831\) 41.2935 1.06328i 1.43246 0.0368848i
\(832\) −0.755282 + 0.755282i −0.0261847 + 0.0261847i
\(833\) 0 0
\(834\) −21.4814 + 39.5227i −0.743841 + 1.36856i
\(835\) −7.29380 + 6.61791i −0.252412 + 0.229022i
\(836\) 10.2212 + 5.90123i 0.353509 + 0.204098i
\(837\) −4.74940 13.4679i −0.164163 0.465518i
\(838\) −17.0456 + 63.6151i −0.588831 + 2.19755i
\(839\) −33.6309 −1.16107 −0.580534 0.814236i \(-0.697156\pi\)
−0.580534 + 0.814236i \(0.697156\pi\)
\(840\) 0 0
\(841\) 50.5583 1.74339
\(842\) −6.85259 + 25.5742i −0.236156 + 0.881346i
\(843\) 41.7724 + 10.0479i 1.43872 + 0.346069i
\(844\) 83.4479 + 48.1787i 2.87240 + 1.65838i
\(845\) −7.04378 0.342214i −0.242313 0.0117725i
\(846\) −21.6923 33.4672i −0.745798 1.15062i
\(847\) 0 0
\(848\) −20.0953 + 20.0953i −0.690077 + 0.690077i
\(849\) 0.341689 + 13.2698i 0.0117267 + 0.455420i
\(850\) −6.29299 + 64.6114i −0.215848 + 2.21615i
\(851\) 0.759561 + 0.438533i 0.0260374 + 0.0150327i
\(852\) −20.3518 19.3300i −0.697242 0.662236i
\(853\) 26.5544 + 26.5544i 0.909206 + 0.909206i 0.996208 0.0870025i \(-0.0277288\pi\)
−0.0870025 + 0.996208i \(0.527729\pi\)
\(854\) 0 0
\(855\) 0.0331586 + 11.2724i 0.00113400 + 0.385509i
\(856\) −12.5617 21.7575i −0.429350 0.743655i
\(857\) −31.5157 + 8.44459i −1.07655 + 0.288462i −0.753184 0.657810i \(-0.771483\pi\)
−0.323371 + 0.946272i \(0.604816\pi\)
\(858\) 5.07467 21.0969i 0.173246 0.720238i
\(859\) −15.0032 + 8.66212i −0.511903 + 0.295548i −0.733616 0.679565i \(-0.762169\pi\)
0.221712 + 0.975112i \(0.428835\pi\)
\(860\) 75.7946 16.4130i 2.58457 0.559680i
\(861\) 0 0
\(862\) 0.808044 0.808044i 0.0275221 0.0275221i
\(863\) 12.3656 + 3.31336i 0.420931 + 0.112788i 0.463066 0.886324i \(-0.346749\pi\)
−0.0421348 + 0.999112i \(0.513416\pi\)
\(864\) 12.2011 25.4942i 0.415090 0.867330i
\(865\) −7.85004 + 24.4772i −0.266909 + 0.832250i
\(866\) 55.4253 31.9998i 1.88343 1.08740i
\(867\) −4.43285 14.9891i −0.150548 0.509056i
\(868\) 0 0
\(869\) 26.7577 0.907693
\(870\) −45.6845 + 75.1187i −1.54885 + 2.54676i
\(871\) 8.32585 14.4208i 0.282111 0.488630i
\(872\) −39.1137 + 10.4805i −1.32456 + 0.354914i
\(873\) −17.7444 + 5.74840i −0.600558 + 0.194554i
\(874\) 6.02310i 0.203734i
\(875\) 0 0
\(876\) −30.8863 + 56.8263i −1.04355 + 1.91998i
\(877\) −21.1228 5.65985i −0.713267 0.191119i −0.116102 0.993237i \(-0.537040\pi\)
−0.597166 + 0.802118i \(0.703707\pi\)
\(878\) −19.4513 72.5932i −0.656449 2.44990i
\(879\) −11.0084 17.9816i −0.371303 0.606505i
\(880\) −24.8470 1.20716i −0.837592 0.0406935i
\(881\) 3.93409i 0.132543i 0.997802 + 0.0662714i \(0.0211103\pi\)
−0.997802 + 0.0662714i \(0.978890\pi\)
\(882\) 0 0
\(883\) 13.5688 + 13.5688i 0.456625 + 0.456625i 0.897546 0.440921i \(-0.145348\pi\)
−0.440921 + 0.897546i \(0.645348\pi\)
\(884\) 35.8356 + 62.0691i 1.20528 + 2.08761i
\(885\) 15.5383 14.8454i 0.522314 0.499021i
\(886\) −28.0100 + 48.5148i −0.941015 + 1.62989i
\(887\) 1.80264 6.72756i 0.0605269 0.225889i −0.929036 0.369988i \(-0.879362\pi\)
0.989563 + 0.144099i \(0.0460284\pi\)
\(888\) 1.92872 + 6.52168i 0.0647235 + 0.218853i
\(889\) 0 0
\(890\) 11.3250 + 52.2982i 0.379614 + 1.75304i
\(891\) −1.45126 14.0435i −0.0486190 0.470476i
\(892\) −20.3216 75.8412i −0.680417 2.53935i
\(893\) −2.27181 8.47850i −0.0760231 0.283722i
\(894\) 0.104747 + 4.06795i 0.00350326 + 0.136052i
\(895\) 31.2035 + 20.0950i 1.04302 + 0.671703i
\(896\) 0 0
\(897\) −7.34002 + 2.17073i −0.245076 + 0.0724786i
\(898\) −10.7510 + 40.1234i −0.358767 + 1.33894i
\(899\) 12.2570 21.2297i 0.408793 0.708050i
\(900\) −30.8936 59.6327i −1.02979 1.98776i
\(901\) −10.2214 17.7040i −0.340524 0.589806i
\(902\) −18.1889 18.1889i −0.605624 0.605624i
\(903\) 0 0
\(904\) 29.3575i 0.976416i
\(905\) 1.26447 26.0266i 0.0420325 0.865153i
\(906\) 51.6228 31.6035i 1.71505 1.04996i
\(907\) −6.96610 25.9978i −0.231305 0.863244i −0.979780 0.200080i \(-0.935880\pi\)
0.748474 0.663164i \(-0.230787\pi\)
\(908\) −53.2446 14.2668i −1.76698 0.473462i
\(909\) −1.65020 2.54594i −0.0547336 0.0844436i
\(910\) 0 0
\(911\) 17.7669i 0.588644i −0.955706 0.294322i \(-0.904906\pi\)
0.955706 0.294322i \(-0.0950938\pi\)
\(912\) 14.2150 14.9664i 0.470705 0.495586i
\(913\) −6.88535 + 1.84492i −0.227872 + 0.0610581i
\(914\) −37.1263 + 64.3046i −1.22803 + 2.12701i
\(915\) 6.79076 + 27.8705i 0.224496 + 0.921370i
\(916\) −19.9842 −0.660298
\(917\) 0 0
\(918\) 51.2425 + 43.8814i 1.69125 + 1.44830i
\(919\) −7.36529 + 4.25235i −0.242958 + 0.140272i −0.616536 0.787327i \(-0.711464\pi\)
0.373577 + 0.927599i \(0.378131\pi\)
\(920\) 9.08155 + 17.6567i 0.299410 + 0.582125i
\(921\) 15.1586 + 24.7609i 0.499494 + 0.815900i
\(922\) 37.5863 + 10.0712i 1.23784 + 0.331678i
\(923\) −8.03083 + 8.03083i −0.264338 + 0.264338i
\(924\) 0 0
\(925\) 2.91542 + 1.09368i 0.0958586 + 0.0359601i
\(926\) −1.53420 + 0.885769i −0.0504169 + 0.0291082i
\(927\) 11.4534 12.6980i 0.376180 0.417058i
\(928\) 46.8629 12.5569i 1.53835 0.412200i
\(929\) 7.07945 + 12.2620i 0.232269 + 0.402302i 0.958476 0.285175i \(-0.0920517\pi\)
−0.726206 + 0.687477i \(0.758718\pi\)
\(930\) 13.0067 + 23.7636i 0.426507 + 0.779240i
\(931\) 0 0
\(932\) −25.2594 25.2594i −0.827399 0.827399i
\(933\) 34.9256 36.7717i 1.14341 1.20385i
\(934\) −28.0548 16.1975i −0.917982 0.529997i
\(935\) 5.46471 17.0395i 0.178715 0.557252i
\(936\) −52.8599 26.9916i −1.72778 0.882248i
\(937\) 28.7165 28.7165i 0.938127 0.938127i −0.0600678 0.998194i \(-0.519132\pi\)
0.998194 + 0.0600678i \(0.0191317\pi\)
\(938\) 0 0
\(939\) −2.63804 1.43383i −0.0860891 0.0467912i
\(940\) 35.1407 + 38.7296i 1.14616 + 1.26322i
\(941\) −15.0690 8.70007i −0.491234 0.283614i 0.233852 0.972272i \(-0.424867\pi\)
−0.725086 + 0.688658i \(0.758200\pi\)
\(942\) 20.0049 83.1667i 0.651796 2.70972i
\(943\) −2.34849 + 8.76467i −0.0764773 + 0.285417i
\(944\) −39.3508 −1.28076
\(945\) 0 0
\(946\) −30.9259 −1.00549
\(947\) −2.98564 + 11.1426i −0.0970204 + 0.362085i −0.997318 0.0731898i \(-0.976682\pi\)
0.900298 + 0.435275i \(0.143349\pi\)
\(948\) 30.9359 128.610i 1.00475 4.17706i
\(949\) 22.6641 + 13.0851i 0.735708 + 0.424761i
\(950\) −3.50615 21.0942i −0.113755 0.684387i
\(951\) 9.25764 + 5.03172i 0.300199 + 0.163165i
\(952\) 0 0
\(953\) 38.6159 38.6159i 1.25089 1.25089i 0.295569 0.955321i \(-0.404491\pi\)
0.955321 0.295569i \(-0.0955091\pi\)
\(954\) 27.2494 + 13.9142i 0.882232 + 0.450490i
\(955\) 13.1467 + 25.5604i 0.425418 + 0.827115i
\(956\) −45.9848 26.5494i −1.48726 0.858668i
\(957\) 16.6900 17.5722i 0.539510 0.568028i
\(958\) 40.9545 + 40.9545i 1.32318 + 1.32318i
\(959\) 0 0
\(960\) 0.370164 1.26533i 0.0119470 0.0408384i
\(961\) 11.7233 + 20.3054i 0.378172 + 0.655012i
\(962\) 4.80396 1.28722i 0.154886 0.0415015i
\(963\) −8.00659 + 8.87663i −0.258009 + 0.286045i
\(964\) −70.0753 + 40.4580i −2.25697 + 1.30306i
\(965\) −5.39535 24.9155i −0.173683 0.802058i
\(966\) 0 0
\(967\) −18.6836 + 18.6836i −0.600824 + 0.600824i −0.940531 0.339707i \(-0.889672\pi\)
0.339707 + 0.940531i \(0.389672\pi\)
\(968\) −52.0047 13.9346i −1.67150 0.447876i
\(969\) 7.75247 + 12.6633i 0.249045 + 0.406803i
\(970\) 31.4650 16.1837i 1.01028 0.519627i
\(971\) 49.7947 28.7490i 1.59799 0.922599i 0.606114 0.795378i \(-0.292728\pi\)
0.991874 0.127221i \(-0.0406057\pi\)
\(972\) −69.1776 9.26098i −2.21887 0.297046i
\(973\) 0 0
\(974\) 41.3622 1.32533
\(975\) −24.4427 + 11.8751i −0.782794 + 0.380308i
\(976\) 26.2635 45.4897i 0.840674 1.45609i
\(977\) 2.84837 0.763219i 0.0911275 0.0244175i −0.212967 0.977059i \(-0.568313\pi\)
0.304095 + 0.952642i \(0.401646\pi\)
\(978\) 28.3597 29.8588i 0.906843 0.954779i
\(979\) 14.7501i 0.471415i
\(980\) 0 0
\(981\) 10.4797 + 16.1681i 0.334590 + 0.516209i
\(982\) 0.741751 + 0.198752i 0.0236702 + 0.00634242i
\(983\) 4.24741 + 15.8515i 0.135471 + 0.505585i 0.999996 + 0.00299438i \(0.000953143\pi\)
−0.864524 + 0.502591i \(0.832380\pi\)
\(984\) −60.0079 + 36.7369i −1.91298 + 1.17113i
\(985\) −43.9142 + 39.8448i −1.39922 + 1.26956i
\(986\) 115.806i 3.68802i
\(987\) 0 0
\(988\) −16.6937 16.6937i −0.531097 0.531097i
\(989\) 5.45461 + 9.44766i 0.173446 + 0.300418i
\(990\) 7.00779 + 25.8490i 0.222722 + 0.821536i
\(991\) 3.17062 5.49168i 0.100718 0.174449i −0.811263 0.584682i \(-0.801219\pi\)
0.911981 + 0.410233i \(0.134553\pi\)
\(992\) 3.86909 14.4396i 0.122844 0.458459i
\(993\) −55.2432 + 16.3376i −1.75309 + 0.518457i
\(994\) 0 0
\(995\) −5.09371 + 7.90951i −0.161481 + 0.250748i
\(996\) 0.907077 + 35.2272i 0.0287418 + 1.11622i
\(997\) 0.694156 + 2.59062i 0.0219841 + 0.0820459i 0.976046 0.217563i \(-0.0698106\pi\)
−0.954062 + 0.299608i \(0.903144\pi\)
\(998\) −13.3196 49.7093i −0.421624 1.57352i
\(999\) 2.66925 1.82938i 0.0844512 0.0578791i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 735.2.y.j.263.1 48
3.2 odd 2 inner 735.2.y.j.263.12 48
5.2 odd 4 inner 735.2.y.j.557.1 48
7.2 even 3 inner 735.2.y.j.128.12 48
7.3 odd 6 735.2.j.h.638.1 24
7.4 even 3 105.2.j.a.8.1 24
7.5 odd 6 735.2.y.g.128.12 48
7.6 odd 2 735.2.y.g.263.1 48
15.2 even 4 inner 735.2.y.j.557.12 48
21.2 odd 6 inner 735.2.y.j.128.1 48
21.5 even 6 735.2.y.g.128.1 48
21.11 odd 6 105.2.j.a.8.12 yes 24
21.17 even 6 735.2.j.h.638.12 24
21.20 even 2 735.2.y.g.263.12 48
35.2 odd 12 inner 735.2.y.j.422.12 48
35.4 even 6 525.2.j.b.218.12 24
35.12 even 12 735.2.y.g.422.12 48
35.17 even 12 735.2.j.h.197.12 24
35.18 odd 12 525.2.j.b.407.1 24
35.27 even 4 735.2.y.g.557.1 48
35.32 odd 12 105.2.j.a.92.12 yes 24
105.2 even 12 inner 735.2.y.j.422.1 48
105.17 odd 12 735.2.j.h.197.1 24
105.32 even 12 105.2.j.a.92.1 yes 24
105.47 odd 12 735.2.y.g.422.1 48
105.53 even 12 525.2.j.b.407.12 24
105.62 odd 4 735.2.y.g.557.12 48
105.74 odd 6 525.2.j.b.218.1 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.2.j.a.8.1 24 7.4 even 3
105.2.j.a.8.12 yes 24 21.11 odd 6
105.2.j.a.92.1 yes 24 105.32 even 12
105.2.j.a.92.12 yes 24 35.32 odd 12
525.2.j.b.218.1 24 105.74 odd 6
525.2.j.b.218.12 24 35.4 even 6
525.2.j.b.407.1 24 35.18 odd 12
525.2.j.b.407.12 24 105.53 even 12
735.2.j.h.197.1 24 105.17 odd 12
735.2.j.h.197.12 24 35.17 even 12
735.2.j.h.638.1 24 7.3 odd 6
735.2.j.h.638.12 24 21.17 even 6
735.2.y.g.128.1 48 21.5 even 6
735.2.y.g.128.12 48 7.5 odd 6
735.2.y.g.263.1 48 7.6 odd 2
735.2.y.g.263.12 48 21.20 even 2
735.2.y.g.422.1 48 105.47 odd 12
735.2.y.g.422.12 48 35.12 even 12
735.2.y.g.557.1 48 35.27 even 4
735.2.y.g.557.12 48 105.62 odd 4
735.2.y.j.128.1 48 21.2 odd 6 inner
735.2.y.j.128.12 48 7.2 even 3 inner
735.2.y.j.263.1 48 1.1 even 1 trivial
735.2.y.j.263.12 48 3.2 odd 2 inner
735.2.y.j.422.1 48 105.2 even 12 inner
735.2.y.j.422.12 48 35.2 odd 12 inner
735.2.y.j.557.1 48 5.2 odd 4 inner
735.2.y.j.557.12 48 15.2 even 4 inner