L(s) = 1 | − 4.80·2-s + 3·3-s + 15.1·4-s + 5·5-s − 14.4·6-s − 34.1·8-s + 9·9-s − 24.0·10-s + 53.2·11-s + 45.3·12-s + 60.9·13-s + 15·15-s + 43.2·16-s + 31.1·17-s − 43.2·18-s − 17.9·19-s + 75.5·20-s − 255.·22-s − 34.8·23-s − 102.·24-s + 25·25-s − 292.·26-s + 27·27-s + 141.·29-s − 72.0·30-s + 117.·31-s + 65.1·32-s + ⋯ |
L(s) = 1 | − 1.69·2-s + 0.577·3-s + 1.88·4-s + 0.447·5-s − 0.981·6-s − 1.50·8-s + 0.333·9-s − 0.759·10-s + 1.45·11-s + 1.08·12-s + 1.30·13-s + 0.258·15-s + 0.675·16-s + 0.443·17-s − 0.566·18-s − 0.216·19-s + 0.844·20-s − 2.48·22-s − 0.315·23-s − 0.871·24-s + 0.200·25-s − 2.20·26-s + 0.192·27-s + 0.905·29-s − 0.438·30-s + 0.682·31-s + 0.360·32-s + ⋯ |
Λ(s)=(=(735s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(735s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
1.536950443 |
L(21) |
≈ |
1.536950443 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1−3T |
| 5 | 1−5T |
| 7 | 1 |
good | 2 | 1+4.80T+8T2 |
| 11 | 1−53.2T+1.33e3T2 |
| 13 | 1−60.9T+2.19e3T2 |
| 17 | 1−31.1T+4.91e3T2 |
| 19 | 1+17.9T+6.85e3T2 |
| 23 | 1+34.8T+1.21e4T2 |
| 29 | 1−141.T+2.43e4T2 |
| 31 | 1−117.T+2.97e4T2 |
| 37 | 1−175.T+5.06e4T2 |
| 41 | 1−411.T+6.89e4T2 |
| 43 | 1+498.T+7.95e4T2 |
| 47 | 1+290.T+1.03e5T2 |
| 53 | 1−582.T+1.48e5T2 |
| 59 | 1+657.T+2.05e5T2 |
| 61 | 1+417.T+2.26e5T2 |
| 67 | 1+567.T+3.00e5T2 |
| 71 | 1−887.T+3.57e5T2 |
| 73 | 1+1.09e3T+3.89e5T2 |
| 79 | 1−135.T+4.93e5T2 |
| 83 | 1+464.T+5.71e5T2 |
| 89 | 1−31.8T+7.04e5T2 |
| 97 | 1+254.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.780433935760052100696124456133, −9.049578756549598300935307921827, −8.529018963271609250773449045931, −7.73440268675887245164458385735, −6.63557797302969230360466167108, −6.12141400302357032994485880994, −4.27530223112602512493758069265, −3.02662306448184205829162452995, −1.70016164869208188515200772240, −0.981736770778698454641450064248,
0.981736770778698454641450064248, 1.70016164869208188515200772240, 3.02662306448184205829162452995, 4.27530223112602512493758069265, 6.12141400302357032994485880994, 6.63557797302969230360466167108, 7.73440268675887245164458385735, 8.529018963271609250773449045931, 9.049578756549598300935307921827, 9.780433935760052100696124456133