Properties

Label 2-735-1.1-c3-0-34
Degree $2$
Conductor $735$
Sign $1$
Analytic cond. $43.3664$
Root an. cond. $6.58531$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.80·2-s + 3·3-s + 15.1·4-s + 5·5-s − 14.4·6-s − 34.1·8-s + 9·9-s − 24.0·10-s + 53.2·11-s + 45.3·12-s + 60.9·13-s + 15·15-s + 43.2·16-s + 31.1·17-s − 43.2·18-s − 17.9·19-s + 75.5·20-s − 255.·22-s − 34.8·23-s − 102.·24-s + 25·25-s − 292.·26-s + 27·27-s + 141.·29-s − 72.0·30-s + 117.·31-s + 65.1·32-s + ⋯
L(s)  = 1  − 1.69·2-s + 0.577·3-s + 1.88·4-s + 0.447·5-s − 0.981·6-s − 1.50·8-s + 0.333·9-s − 0.759·10-s + 1.45·11-s + 1.08·12-s + 1.30·13-s + 0.258·15-s + 0.675·16-s + 0.443·17-s − 0.566·18-s − 0.216·19-s + 0.844·20-s − 2.48·22-s − 0.315·23-s − 0.871·24-s + 0.200·25-s − 2.20·26-s + 0.192·27-s + 0.905·29-s − 0.438·30-s + 0.682·31-s + 0.360·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 735 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 735 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(735\)    =    \(3 \cdot 5 \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(43.3664\)
Root analytic conductor: \(6.58531\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 735,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.536950443\)
\(L(\frac12)\) \(\approx\) \(1.536950443\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 3T \)
5 \( 1 - 5T \)
7 \( 1 \)
good2 \( 1 + 4.80T + 8T^{2} \)
11 \( 1 - 53.2T + 1.33e3T^{2} \)
13 \( 1 - 60.9T + 2.19e3T^{2} \)
17 \( 1 - 31.1T + 4.91e3T^{2} \)
19 \( 1 + 17.9T + 6.85e3T^{2} \)
23 \( 1 + 34.8T + 1.21e4T^{2} \)
29 \( 1 - 141.T + 2.43e4T^{2} \)
31 \( 1 - 117.T + 2.97e4T^{2} \)
37 \( 1 - 175.T + 5.06e4T^{2} \)
41 \( 1 - 411.T + 6.89e4T^{2} \)
43 \( 1 + 498.T + 7.95e4T^{2} \)
47 \( 1 + 290.T + 1.03e5T^{2} \)
53 \( 1 - 582.T + 1.48e5T^{2} \)
59 \( 1 + 657.T + 2.05e5T^{2} \)
61 \( 1 + 417.T + 2.26e5T^{2} \)
67 \( 1 + 567.T + 3.00e5T^{2} \)
71 \( 1 - 887.T + 3.57e5T^{2} \)
73 \( 1 + 1.09e3T + 3.89e5T^{2} \)
79 \( 1 - 135.T + 4.93e5T^{2} \)
83 \( 1 + 464.T + 5.71e5T^{2} \)
89 \( 1 - 31.8T + 7.04e5T^{2} \)
97 \( 1 + 254.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.780433935760052100696124456133, −9.049578756549598300935307921827, −8.529018963271609250773449045931, −7.73440268675887245164458385735, −6.63557797302969230360466167108, −6.12141400302357032994485880994, −4.27530223112602512493758069265, −3.02662306448184205829162452995, −1.70016164869208188515200772240, −0.981736770778698454641450064248, 0.981736770778698454641450064248, 1.70016164869208188515200772240, 3.02662306448184205829162452995, 4.27530223112602512493758069265, 6.12141400302357032994485880994, 6.63557797302969230360466167108, 7.73440268675887245164458385735, 8.529018963271609250773449045931, 9.049578756549598300935307921827, 9.780433935760052100696124456133

Graph of the $Z$-function along the critical line