Properties

Label 735.4.a.ba.1.1
Level $735$
Weight $4$
Character 735.1
Self dual yes
Analytic conductor $43.366$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [735,4,Mod(1,735)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(735, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("735.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 735 = 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 735.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(43.3664038542\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 30x^{3} + 22x^{2} + 153x - 84 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 105)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(5.80647\) of defining polynomial
Character \(\chi\) \(=\) 735.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.80647 q^{2} +3.00000 q^{3} +15.1022 q^{4} +5.00000 q^{5} -14.4194 q^{6} -34.1365 q^{8} +9.00000 q^{9} -24.0324 q^{10} +53.2563 q^{11} +45.3066 q^{12} +60.9548 q^{13} +15.0000 q^{15} +43.2586 q^{16} +31.1198 q^{17} -43.2583 q^{18} -17.9133 q^{19} +75.5109 q^{20} -255.975 q^{22} -34.8223 q^{23} -102.409 q^{24} +25.0000 q^{25} -292.978 q^{26} +27.0000 q^{27} +141.423 q^{29} -72.0971 q^{30} +117.739 q^{31} +65.1706 q^{32} +159.769 q^{33} -149.576 q^{34} +135.920 q^{36} +175.319 q^{37} +86.0996 q^{38} +182.864 q^{39} -170.682 q^{40} +411.157 q^{41} -498.509 q^{43} +804.286 q^{44} +45.0000 q^{45} +167.373 q^{46} -290.262 q^{47} +129.776 q^{48} -120.162 q^{50} +93.3594 q^{51} +920.551 q^{52} +582.633 q^{53} -129.775 q^{54} +266.281 q^{55} -53.7398 q^{57} -679.745 q^{58} -657.710 q^{59} +226.533 q^{60} -417.167 q^{61} -565.911 q^{62} -659.310 q^{64} +304.774 q^{65} -767.925 q^{66} -567.911 q^{67} +469.977 q^{68} -104.467 q^{69} +887.933 q^{71} -307.228 q^{72} -1092.51 q^{73} -842.666 q^{74} +75.0000 q^{75} -270.529 q^{76} -878.933 q^{78} +135.425 q^{79} +216.293 q^{80} +81.0000 q^{81} -1976.22 q^{82} -464.523 q^{83} +155.599 q^{85} +2396.07 q^{86} +424.269 q^{87} -1817.98 q^{88} +31.8799 q^{89} -216.291 q^{90} -525.894 q^{92} +353.218 q^{93} +1395.14 q^{94} -89.5663 q^{95} +195.512 q^{96} -254.781 q^{97} +479.306 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 3 q^{2} + 15 q^{3} + 25 q^{4} + 25 q^{5} + 9 q^{6} + 21 q^{8} + 45 q^{9} + 15 q^{10} + 43 q^{11} + 75 q^{12} + 123 q^{13} + 75 q^{15} + 161 q^{16} + 124 q^{17} + 27 q^{18} + 37 q^{19} + 125 q^{20}+ \cdots + 387 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.80647 −1.69935 −0.849673 0.527311i \(-0.823200\pi\)
−0.849673 + 0.527311i \(0.823200\pi\)
\(3\) 3.00000 0.577350
\(4\) 15.1022 1.88777
\(5\) 5.00000 0.447214
\(6\) −14.4194 −0.981117
\(7\) 0 0
\(8\) −34.1365 −1.50863
\(9\) 9.00000 0.333333
\(10\) −24.0324 −0.759970
\(11\) 53.2563 1.45976 0.729881 0.683575i \(-0.239576\pi\)
0.729881 + 0.683575i \(0.239576\pi\)
\(12\) 45.3066 1.08991
\(13\) 60.9548 1.30045 0.650224 0.759743i \(-0.274675\pi\)
0.650224 + 0.759743i \(0.274675\pi\)
\(14\) 0 0
\(15\) 15.0000 0.258199
\(16\) 43.2586 0.675915
\(17\) 31.1198 0.443980 0.221990 0.975049i \(-0.428745\pi\)
0.221990 + 0.975049i \(0.428745\pi\)
\(18\) −43.2583 −0.566448
\(19\) −17.9133 −0.216294 −0.108147 0.994135i \(-0.534492\pi\)
−0.108147 + 0.994135i \(0.534492\pi\)
\(20\) 75.5109 0.844238
\(21\) 0 0
\(22\) −255.975 −2.48064
\(23\) −34.8223 −0.315694 −0.157847 0.987464i \(-0.550455\pi\)
−0.157847 + 0.987464i \(0.550455\pi\)
\(24\) −102.409 −0.871010
\(25\) 25.0000 0.200000
\(26\) −292.978 −2.20991
\(27\) 27.0000 0.192450
\(28\) 0 0
\(29\) 141.423 0.905571 0.452786 0.891619i \(-0.350430\pi\)
0.452786 + 0.891619i \(0.350430\pi\)
\(30\) −72.0971 −0.438769
\(31\) 117.739 0.682149 0.341075 0.940036i \(-0.389209\pi\)
0.341075 + 0.940036i \(0.389209\pi\)
\(32\) 65.1706 0.360020
\(33\) 159.769 0.842793
\(34\) −149.576 −0.754475
\(35\) 0 0
\(36\) 135.920 0.629258
\(37\) 175.319 0.778980 0.389490 0.921031i \(-0.372651\pi\)
0.389490 + 0.921031i \(0.372651\pi\)
\(38\) 86.0996 0.367558
\(39\) 182.864 0.750814
\(40\) −170.682 −0.674681
\(41\) 411.157 1.56615 0.783073 0.621930i \(-0.213651\pi\)
0.783073 + 0.621930i \(0.213651\pi\)
\(42\) 0 0
\(43\) −498.509 −1.76795 −0.883976 0.467532i \(-0.845143\pi\)
−0.883976 + 0.467532i \(0.845143\pi\)
\(44\) 804.286 2.75570
\(45\) 45.0000 0.149071
\(46\) 167.373 0.536473
\(47\) −290.262 −0.900832 −0.450416 0.892819i \(-0.648724\pi\)
−0.450416 + 0.892819i \(0.648724\pi\)
\(48\) 129.776 0.390240
\(49\) 0 0
\(50\) −120.162 −0.339869
\(51\) 93.3594 0.256332
\(52\) 920.551 2.45495
\(53\) 582.633 1.51001 0.755007 0.655717i \(-0.227633\pi\)
0.755007 + 0.655717i \(0.227633\pi\)
\(54\) −129.775 −0.327039
\(55\) 266.281 0.652825
\(56\) 0 0
\(57\) −53.7398 −0.124877
\(58\) −679.745 −1.53888
\(59\) −657.710 −1.45130 −0.725649 0.688065i \(-0.758460\pi\)
−0.725649 + 0.688065i \(0.758460\pi\)
\(60\) 226.533 0.487421
\(61\) −417.167 −0.875618 −0.437809 0.899068i \(-0.644245\pi\)
−0.437809 + 0.899068i \(0.644245\pi\)
\(62\) −565.911 −1.15921
\(63\) 0 0
\(64\) −659.310 −1.28771
\(65\) 304.774 0.581578
\(66\) −767.925 −1.43220
\(67\) −567.911 −1.03554 −0.517771 0.855519i \(-0.673238\pi\)
−0.517771 + 0.855519i \(0.673238\pi\)
\(68\) 469.977 0.838134
\(69\) −104.467 −0.182266
\(70\) 0 0
\(71\) 887.933 1.48420 0.742100 0.670289i \(-0.233830\pi\)
0.742100 + 0.670289i \(0.233830\pi\)
\(72\) −307.228 −0.502878
\(73\) −1092.51 −1.75162 −0.875809 0.482657i \(-0.839672\pi\)
−0.875809 + 0.482657i \(0.839672\pi\)
\(74\) −842.666 −1.32376
\(75\) 75.0000 0.115470
\(76\) −270.529 −0.408314
\(77\) 0 0
\(78\) −878.933 −1.27589
\(79\) 135.425 0.192867 0.0964337 0.995339i \(-0.469256\pi\)
0.0964337 + 0.995339i \(0.469256\pi\)
\(80\) 216.293 0.302278
\(81\) 81.0000 0.111111
\(82\) −1976.22 −2.66142
\(83\) −464.523 −0.614313 −0.307157 0.951659i \(-0.599378\pi\)
−0.307157 + 0.951659i \(0.599378\pi\)
\(84\) 0 0
\(85\) 155.599 0.198554
\(86\) 2396.07 3.00436
\(87\) 424.269 0.522832
\(88\) −1817.98 −2.20224
\(89\) 31.8799 0.0379692 0.0189846 0.999820i \(-0.493957\pi\)
0.0189846 + 0.999820i \(0.493957\pi\)
\(90\) −216.291 −0.253323
\(91\) 0 0
\(92\) −525.894 −0.595959
\(93\) 353.218 0.393839
\(94\) 1395.14 1.53082
\(95\) −89.5663 −0.0967295
\(96\) 195.512 0.207858
\(97\) −254.781 −0.266691 −0.133346 0.991070i \(-0.542572\pi\)
−0.133346 + 0.991070i \(0.542572\pi\)
\(98\) 0 0
\(99\) 479.306 0.486587
\(100\) 377.555 0.377555
\(101\) 1359.53 1.33939 0.669694 0.742637i \(-0.266425\pi\)
0.669694 + 0.742637i \(0.266425\pi\)
\(102\) −448.729 −0.435596
\(103\) 1448.06 1.38526 0.692629 0.721294i \(-0.256453\pi\)
0.692629 + 0.721294i \(0.256453\pi\)
\(104\) −2080.78 −1.96190
\(105\) 0 0
\(106\) −2800.41 −2.56603
\(107\) −1666.45 −1.50563 −0.752814 0.658234i \(-0.771304\pi\)
−0.752814 + 0.658234i \(0.771304\pi\)
\(108\) 407.759 0.363302
\(109\) −1118.40 −0.982780 −0.491390 0.870940i \(-0.663511\pi\)
−0.491390 + 0.870940i \(0.663511\pi\)
\(110\) −1279.87 −1.10937
\(111\) 525.957 0.449745
\(112\) 0 0
\(113\) 806.732 0.671602 0.335801 0.941933i \(-0.390993\pi\)
0.335801 + 0.941933i \(0.390993\pi\)
\(114\) 258.299 0.212210
\(115\) −174.112 −0.141183
\(116\) 2135.80 1.70951
\(117\) 548.593 0.433483
\(118\) 3161.27 2.46625
\(119\) 0 0
\(120\) −512.047 −0.389527
\(121\) 1505.23 1.13090
\(122\) 2005.10 1.48798
\(123\) 1233.47 0.904214
\(124\) 1778.12 1.28774
\(125\) 125.000 0.0894427
\(126\) 0 0
\(127\) −1433.92 −1.00189 −0.500945 0.865479i \(-0.667014\pi\)
−0.500945 + 0.865479i \(0.667014\pi\)
\(128\) 2647.59 1.82825
\(129\) −1495.53 −1.02073
\(130\) −1464.89 −0.988301
\(131\) 650.933 0.434140 0.217070 0.976156i \(-0.430350\pi\)
0.217070 + 0.976156i \(0.430350\pi\)
\(132\) 2412.86 1.59100
\(133\) 0 0
\(134\) 2729.65 1.75974
\(135\) 135.000 0.0860663
\(136\) −1062.32 −0.669803
\(137\) −617.782 −0.385260 −0.192630 0.981271i \(-0.561702\pi\)
−0.192630 + 0.981271i \(0.561702\pi\)
\(138\) 502.118 0.309733
\(139\) 1525.08 0.930614 0.465307 0.885149i \(-0.345944\pi\)
0.465307 + 0.885149i \(0.345944\pi\)
\(140\) 0 0
\(141\) −870.787 −0.520096
\(142\) −4267.82 −2.52217
\(143\) 3246.23 1.89834
\(144\) 389.327 0.225305
\(145\) 707.114 0.404984
\(146\) 5251.10 2.97660
\(147\) 0 0
\(148\) 2647.70 1.47054
\(149\) −1387.82 −0.763051 −0.381525 0.924358i \(-0.624601\pi\)
−0.381525 + 0.924358i \(0.624601\pi\)
\(150\) −360.486 −0.196223
\(151\) 2284.34 1.23111 0.615554 0.788095i \(-0.288932\pi\)
0.615554 + 0.788095i \(0.288932\pi\)
\(152\) 611.495 0.326308
\(153\) 280.078 0.147993
\(154\) 0 0
\(155\) 588.697 0.305066
\(156\) 2761.65 1.41737
\(157\) 268.308 0.136391 0.0681953 0.997672i \(-0.478276\pi\)
0.0681953 + 0.997672i \(0.478276\pi\)
\(158\) −650.918 −0.327748
\(159\) 1747.90 0.871807
\(160\) 325.853 0.161006
\(161\) 0 0
\(162\) −389.324 −0.188816
\(163\) −2727.58 −1.31068 −0.655340 0.755334i \(-0.727475\pi\)
−0.655340 + 0.755334i \(0.727475\pi\)
\(164\) 6209.37 2.95653
\(165\) 798.844 0.376909
\(166\) 2232.72 1.04393
\(167\) 2234.41 1.03535 0.517675 0.855577i \(-0.326798\pi\)
0.517675 + 0.855577i \(0.326798\pi\)
\(168\) 0 0
\(169\) 1518.49 0.691164
\(170\) −747.882 −0.337412
\(171\) −161.219 −0.0720979
\(172\) −7528.58 −3.33749
\(173\) 2339.66 1.02822 0.514108 0.857725i \(-0.328123\pi\)
0.514108 + 0.857725i \(0.328123\pi\)
\(174\) −2039.24 −0.888472
\(175\) 0 0
\(176\) 2303.79 0.986675
\(177\) −1973.13 −0.837907
\(178\) −153.230 −0.0645228
\(179\) 2445.75 1.02125 0.510626 0.859803i \(-0.329414\pi\)
0.510626 + 0.859803i \(0.329414\pi\)
\(180\) 679.598 0.281413
\(181\) 1178.45 0.483944 0.241972 0.970283i \(-0.422206\pi\)
0.241972 + 0.970283i \(0.422206\pi\)
\(182\) 0 0
\(183\) −1251.50 −0.505539
\(184\) 1188.71 0.476266
\(185\) 876.595 0.348371
\(186\) −1697.73 −0.669268
\(187\) 1657.32 0.648105
\(188\) −4383.60 −1.70057
\(189\) 0 0
\(190\) 430.498 0.164377
\(191\) −2275.29 −0.861958 −0.430979 0.902362i \(-0.641832\pi\)
−0.430979 + 0.902362i \(0.641832\pi\)
\(192\) −1977.93 −0.743462
\(193\) 4411.04 1.64515 0.822574 0.568658i \(-0.192537\pi\)
0.822574 + 0.568658i \(0.192537\pi\)
\(194\) 1224.60 0.453200
\(195\) 914.322 0.335774
\(196\) 0 0
\(197\) −2011.41 −0.727447 −0.363723 0.931507i \(-0.618495\pi\)
−0.363723 + 0.931507i \(0.618495\pi\)
\(198\) −2303.77 −0.826879
\(199\) 1111.24 0.395846 0.197923 0.980218i \(-0.436580\pi\)
0.197923 + 0.980218i \(0.436580\pi\)
\(200\) −853.412 −0.301727
\(201\) −1703.73 −0.597871
\(202\) −6534.54 −2.27608
\(203\) 0 0
\(204\) 1409.93 0.483897
\(205\) 2055.79 0.700402
\(206\) −6960.06 −2.35403
\(207\) −313.401 −0.105231
\(208\) 2636.82 0.878992
\(209\) −953.993 −0.315737
\(210\) 0 0
\(211\) 3031.04 0.988936 0.494468 0.869196i \(-0.335363\pi\)
0.494468 + 0.869196i \(0.335363\pi\)
\(212\) 8799.03 2.85056
\(213\) 2663.80 0.856903
\(214\) 8009.77 2.55858
\(215\) −2492.55 −0.790652
\(216\) −921.685 −0.290337
\(217\) 0 0
\(218\) 5375.55 1.67008
\(219\) −3277.52 −1.01130
\(220\) 4021.43 1.23239
\(221\) 1896.90 0.577373
\(222\) −2528.00 −0.764271
\(223\) −3789.93 −1.13808 −0.569042 0.822309i \(-0.692686\pi\)
−0.569042 + 0.822309i \(0.692686\pi\)
\(224\) 0 0
\(225\) 225.000 0.0666667
\(226\) −3877.54 −1.14128
\(227\) 3876.31 1.13339 0.566696 0.823927i \(-0.308222\pi\)
0.566696 + 0.823927i \(0.308222\pi\)
\(228\) −811.588 −0.235740
\(229\) 5926.44 1.71018 0.855088 0.518483i \(-0.173503\pi\)
0.855088 + 0.518483i \(0.173503\pi\)
\(230\) 836.863 0.239918
\(231\) 0 0
\(232\) −4827.68 −1.36618
\(233\) 4643.03 1.30547 0.652737 0.757585i \(-0.273621\pi\)
0.652737 + 0.757585i \(0.273621\pi\)
\(234\) −2636.80 −0.736636
\(235\) −1451.31 −0.402864
\(236\) −9932.86 −2.73972
\(237\) 406.276 0.111352
\(238\) 0 0
\(239\) 944.025 0.255497 0.127749 0.991807i \(-0.459225\pi\)
0.127749 + 0.991807i \(0.459225\pi\)
\(240\) 648.879 0.174521
\(241\) 1515.01 0.404939 0.202470 0.979289i \(-0.435103\pi\)
0.202470 + 0.979289i \(0.435103\pi\)
\(242\) −7234.85 −1.92179
\(243\) 243.000 0.0641500
\(244\) −6300.13 −1.65297
\(245\) 0 0
\(246\) −5928.65 −1.53657
\(247\) −1091.90 −0.281279
\(248\) −4019.21 −1.02911
\(249\) −1393.57 −0.354674
\(250\) −600.809 −0.151994
\(251\) 3219.82 0.809695 0.404847 0.914384i \(-0.367325\pi\)
0.404847 + 0.914384i \(0.367325\pi\)
\(252\) 0 0
\(253\) −1854.51 −0.460838
\(254\) 6892.11 1.70256
\(255\) 466.797 0.114635
\(256\) −7451.09 −1.81911
\(257\) 2214.55 0.537509 0.268754 0.963209i \(-0.413388\pi\)
0.268754 + 0.963209i \(0.413388\pi\)
\(258\) 7188.21 1.73457
\(259\) 0 0
\(260\) 4602.75 1.09789
\(261\) 1272.81 0.301857
\(262\) −3128.69 −0.737753
\(263\) −5457.02 −1.27945 −0.639723 0.768605i \(-0.720951\pi\)
−0.639723 + 0.768605i \(0.720951\pi\)
\(264\) −5453.94 −1.27147
\(265\) 2913.16 0.675299
\(266\) 0 0
\(267\) 95.6396 0.0219215
\(268\) −8576.69 −1.95487
\(269\) −5820.76 −1.31932 −0.659661 0.751563i \(-0.729300\pi\)
−0.659661 + 0.751563i \(0.729300\pi\)
\(270\) −648.874 −0.146256
\(271\) 3300.74 0.739874 0.369937 0.929057i \(-0.379379\pi\)
0.369937 + 0.929057i \(0.379379\pi\)
\(272\) 1346.20 0.300093
\(273\) 0 0
\(274\) 2969.35 0.654690
\(275\) 1331.41 0.291952
\(276\) −1577.68 −0.344077
\(277\) −3871.25 −0.839714 −0.419857 0.907590i \(-0.637920\pi\)
−0.419857 + 0.907590i \(0.637920\pi\)
\(278\) −7330.24 −1.58143
\(279\) 1059.65 0.227383
\(280\) 0 0
\(281\) −1411.40 −0.299634 −0.149817 0.988714i \(-0.547869\pi\)
−0.149817 + 0.988714i \(0.547869\pi\)
\(282\) 4185.41 0.883822
\(283\) −4752.51 −0.998259 −0.499129 0.866528i \(-0.666347\pi\)
−0.499129 + 0.866528i \(0.666347\pi\)
\(284\) 13409.7 2.80183
\(285\) −268.699 −0.0558468
\(286\) −15602.9 −3.22594
\(287\) 0 0
\(288\) 586.536 0.120007
\(289\) −3944.56 −0.802882
\(290\) −3398.73 −0.688207
\(291\) −764.342 −0.153974
\(292\) −16499.2 −3.30666
\(293\) −1301.32 −0.259468 −0.129734 0.991549i \(-0.541412\pi\)
−0.129734 + 0.991549i \(0.541412\pi\)
\(294\) 0 0
\(295\) −3288.55 −0.649040
\(296\) −5984.77 −1.17520
\(297\) 1437.92 0.280931
\(298\) 6670.51 1.29669
\(299\) −2122.59 −0.410543
\(300\) 1132.66 0.217981
\(301\) 0 0
\(302\) −10979.6 −2.09208
\(303\) 4078.59 0.773296
\(304\) −774.902 −0.146196
\(305\) −2085.83 −0.391588
\(306\) −1346.19 −0.251492
\(307\) 6138.12 1.14111 0.570555 0.821259i \(-0.306728\pi\)
0.570555 + 0.821259i \(0.306728\pi\)
\(308\) 0 0
\(309\) 4344.18 0.799779
\(310\) −2829.56 −0.518413
\(311\) 4082.04 0.744281 0.372140 0.928176i \(-0.378624\pi\)
0.372140 + 0.928176i \(0.378624\pi\)
\(312\) −6242.35 −1.13270
\(313\) 7143.19 1.28996 0.644979 0.764200i \(-0.276866\pi\)
0.644979 + 0.764200i \(0.276866\pi\)
\(314\) −1289.62 −0.231775
\(315\) 0 0
\(316\) 2045.22 0.364090
\(317\) −7481.62 −1.32558 −0.662791 0.748804i \(-0.730628\pi\)
−0.662791 + 0.748804i \(0.730628\pi\)
\(318\) −8401.22 −1.48150
\(319\) 7531.66 1.32192
\(320\) −3296.55 −0.575883
\(321\) −4999.36 −0.869275
\(322\) 0 0
\(323\) −557.457 −0.0960301
\(324\) 1223.28 0.209753
\(325\) 1523.87 0.260090
\(326\) 13110.1 2.22730
\(327\) −3355.19 −0.567408
\(328\) −14035.5 −2.36274
\(329\) 0 0
\(330\) −3839.62 −0.640498
\(331\) −1944.12 −0.322835 −0.161417 0.986886i \(-0.551607\pi\)
−0.161417 + 0.986886i \(0.551607\pi\)
\(332\) −7015.31 −1.15968
\(333\) 1577.87 0.259660
\(334\) −10739.6 −1.75942
\(335\) −2839.55 −0.463109
\(336\) 0 0
\(337\) −1920.36 −0.310411 −0.155205 0.987882i \(-0.549604\pi\)
−0.155205 + 0.987882i \(0.549604\pi\)
\(338\) −7298.57 −1.17453
\(339\) 2420.20 0.387749
\(340\) 2349.89 0.374825
\(341\) 6270.36 0.995775
\(342\) 774.896 0.122519
\(343\) 0 0
\(344\) 17017.3 2.66719
\(345\) −522.335 −0.0815118
\(346\) −11245.5 −1.74729
\(347\) 2093.45 0.323868 0.161934 0.986802i \(-0.448227\pi\)
0.161934 + 0.986802i \(0.448227\pi\)
\(348\) 6407.39 0.986988
\(349\) 2199.00 0.337277 0.168638 0.985678i \(-0.446063\pi\)
0.168638 + 0.985678i \(0.446063\pi\)
\(350\) 0 0
\(351\) 1645.78 0.250271
\(352\) 3470.75 0.525544
\(353\) −5861.17 −0.883735 −0.441867 0.897080i \(-0.645684\pi\)
−0.441867 + 0.897080i \(0.645684\pi\)
\(354\) 9483.80 1.42389
\(355\) 4439.66 0.663755
\(356\) 481.456 0.0716772
\(357\) 0 0
\(358\) −11755.4 −1.73546
\(359\) 7271.44 1.06900 0.534502 0.845167i \(-0.320499\pi\)
0.534502 + 0.845167i \(0.320499\pi\)
\(360\) −1536.14 −0.224894
\(361\) −6538.12 −0.953217
\(362\) −5664.21 −0.822387
\(363\) 4515.69 0.652927
\(364\) 0 0
\(365\) −5462.53 −0.783348
\(366\) 6015.30 0.859084
\(367\) −12638.0 −1.79754 −0.898768 0.438425i \(-0.855537\pi\)
−0.898768 + 0.438425i \(0.855537\pi\)
\(368\) −1506.36 −0.213382
\(369\) 3700.41 0.522048
\(370\) −4213.33 −0.592002
\(371\) 0 0
\(372\) 5334.37 0.743479
\(373\) −6212.81 −0.862431 −0.431216 0.902249i \(-0.641915\pi\)
−0.431216 + 0.902249i \(0.641915\pi\)
\(374\) −7965.89 −1.10135
\(375\) 375.000 0.0516398
\(376\) 9908.53 1.35903
\(377\) 8620.40 1.17765
\(378\) 0 0
\(379\) 5075.53 0.687896 0.343948 0.938989i \(-0.388236\pi\)
0.343948 + 0.938989i \(0.388236\pi\)
\(380\) −1352.65 −0.182603
\(381\) −4301.76 −0.578441
\(382\) 10936.1 1.46476
\(383\) −8413.71 −1.12251 −0.561254 0.827644i \(-0.689681\pi\)
−0.561254 + 0.827644i \(0.689681\pi\)
\(384\) 7942.77 1.05554
\(385\) 0 0
\(386\) −21201.5 −2.79567
\(387\) −4486.58 −0.589317
\(388\) −3847.74 −0.503453
\(389\) 3708.69 0.483389 0.241694 0.970352i \(-0.422297\pi\)
0.241694 + 0.970352i \(0.422297\pi\)
\(390\) −4394.66 −0.570596
\(391\) −1083.66 −0.140162
\(392\) 0 0
\(393\) 1952.80 0.250651
\(394\) 9667.79 1.23618
\(395\) 677.126 0.0862529
\(396\) 7238.58 0.918566
\(397\) −4520.05 −0.571422 −0.285711 0.958316i \(-0.592230\pi\)
−0.285711 + 0.958316i \(0.592230\pi\)
\(398\) −5341.12 −0.672679
\(399\) 0 0
\(400\) 1081.46 0.135183
\(401\) −12591.8 −1.56809 −0.784043 0.620707i \(-0.786846\pi\)
−0.784043 + 0.620707i \(0.786846\pi\)
\(402\) 8188.94 1.01599
\(403\) 7176.78 0.887099
\(404\) 20531.9 2.52846
\(405\) 405.000 0.0496904
\(406\) 0 0
\(407\) 9336.84 1.13713
\(408\) −3186.96 −0.386711
\(409\) 9017.62 1.09020 0.545101 0.838370i \(-0.316491\pi\)
0.545101 + 0.838370i \(0.316491\pi\)
\(410\) −9881.08 −1.19022
\(411\) −1853.35 −0.222430
\(412\) 21868.9 2.61505
\(413\) 0 0
\(414\) 1506.35 0.178824
\(415\) −2322.61 −0.274729
\(416\) 3972.46 0.468188
\(417\) 4575.23 0.537290
\(418\) 4585.34 0.536547
\(419\) 3.80670 0.000443842 0 0.000221921 1.00000i \(-0.499929\pi\)
0.000221921 1.00000i \(0.499929\pi\)
\(420\) 0 0
\(421\) 12076.0 1.39798 0.698989 0.715132i \(-0.253633\pi\)
0.698989 + 0.715132i \(0.253633\pi\)
\(422\) −14568.6 −1.68054
\(423\) −2612.36 −0.300277
\(424\) −19889.0 −2.27806
\(425\) 777.995 0.0887960
\(426\) −12803.5 −1.45617
\(427\) 0 0
\(428\) −25167.1 −2.84228
\(429\) 9738.68 1.09601
\(430\) 11980.4 1.34359
\(431\) −10317.7 −1.15310 −0.576551 0.817061i \(-0.695602\pi\)
−0.576551 + 0.817061i \(0.695602\pi\)
\(432\) 1167.98 0.130080
\(433\) 12728.4 1.41267 0.706334 0.707878i \(-0.250347\pi\)
0.706334 + 0.707878i \(0.250347\pi\)
\(434\) 0 0
\(435\) 2121.34 0.233818
\(436\) −16890.2 −1.85527
\(437\) 623.781 0.0682826
\(438\) 15753.3 1.71854
\(439\) −9972.58 −1.08420 −0.542102 0.840313i \(-0.682371\pi\)
−0.542102 + 0.840313i \(0.682371\pi\)
\(440\) −9089.91 −0.984874
\(441\) 0 0
\(442\) −9117.40 −0.981155
\(443\) 10462.8 1.12213 0.561063 0.827773i \(-0.310393\pi\)
0.561063 + 0.827773i \(0.310393\pi\)
\(444\) 7943.10 0.849016
\(445\) 159.399 0.0169803
\(446\) 18216.2 1.93400
\(447\) −4163.46 −0.440547
\(448\) 0 0
\(449\) −11664.7 −1.22604 −0.613019 0.790068i \(-0.710045\pi\)
−0.613019 + 0.790068i \(0.710045\pi\)
\(450\) −1081.46 −0.113290
\(451\) 21896.7 2.28620
\(452\) 12183.4 1.26783
\(453\) 6853.03 0.710780
\(454\) −18631.4 −1.92602
\(455\) 0 0
\(456\) 1834.49 0.188394
\(457\) 4542.53 0.464968 0.232484 0.972600i \(-0.425315\pi\)
0.232484 + 0.972600i \(0.425315\pi\)
\(458\) −28485.3 −2.90618
\(459\) 840.235 0.0854440
\(460\) −2629.47 −0.266521
\(461\) 7887.54 0.796875 0.398437 0.917195i \(-0.369553\pi\)
0.398437 + 0.917195i \(0.369553\pi\)
\(462\) 0 0
\(463\) −5444.15 −0.546460 −0.273230 0.961949i \(-0.588092\pi\)
−0.273230 + 0.961949i \(0.588092\pi\)
\(464\) 6117.75 0.612089
\(465\) 1766.09 0.176130
\(466\) −22316.6 −2.21845
\(467\) −10578.0 −1.04816 −0.524082 0.851668i \(-0.675591\pi\)
−0.524082 + 0.851668i \(0.675591\pi\)
\(468\) 8284.96 0.818317
\(469\) 0 0
\(470\) 6975.69 0.684606
\(471\) 804.925 0.0787452
\(472\) 22451.9 2.18948
\(473\) −26548.7 −2.58079
\(474\) −1952.75 −0.189226
\(475\) −447.831 −0.0432588
\(476\) 0 0
\(477\) 5243.69 0.503338
\(478\) −4537.43 −0.434178
\(479\) 11644.7 1.11077 0.555386 0.831592i \(-0.312570\pi\)
0.555386 + 0.831592i \(0.312570\pi\)
\(480\) 977.560 0.0929568
\(481\) 10686.5 1.01302
\(482\) −7281.85 −0.688131
\(483\) 0 0
\(484\) 22732.3 2.13489
\(485\) −1273.90 −0.119268
\(486\) −1167.97 −0.109013
\(487\) −9237.23 −0.859504 −0.429752 0.902947i \(-0.641399\pi\)
−0.429752 + 0.902947i \(0.641399\pi\)
\(488\) 14240.6 1.32099
\(489\) −8182.75 −0.756722
\(490\) 0 0
\(491\) −2704.47 −0.248576 −0.124288 0.992246i \(-0.539665\pi\)
−0.124288 + 0.992246i \(0.539665\pi\)
\(492\) 18628.1 1.70695
\(493\) 4401.05 0.402056
\(494\) 5248.18 0.477990
\(495\) 2396.53 0.217608
\(496\) 5093.24 0.461075
\(497\) 0 0
\(498\) 6698.15 0.602713
\(499\) −763.351 −0.0684815 −0.0342408 0.999414i \(-0.510901\pi\)
−0.0342408 + 0.999414i \(0.510901\pi\)
\(500\) 1887.77 0.168848
\(501\) 6703.22 0.597760
\(502\) −15476.0 −1.37595
\(503\) 5902.36 0.523207 0.261604 0.965175i \(-0.415749\pi\)
0.261604 + 0.965175i \(0.415749\pi\)
\(504\) 0 0
\(505\) 6797.64 0.598993
\(506\) 8913.64 0.783122
\(507\) 4555.46 0.399044
\(508\) −21655.4 −1.89134
\(509\) 2200.30 0.191604 0.0958020 0.995400i \(-0.469458\pi\)
0.0958020 + 0.995400i \(0.469458\pi\)
\(510\) −2243.65 −0.194805
\(511\) 0 0
\(512\) 14632.8 1.26305
\(513\) −483.658 −0.0416258
\(514\) −10644.2 −0.913413
\(515\) 7240.29 0.619506
\(516\) −22585.7 −1.92690
\(517\) −15458.3 −1.31500
\(518\) 0 0
\(519\) 7018.99 0.593641
\(520\) −10403.9 −0.877388
\(521\) −1213.69 −0.102059 −0.0510296 0.998697i \(-0.516250\pi\)
−0.0510296 + 0.998697i \(0.516250\pi\)
\(522\) −6117.71 −0.512959
\(523\) −8864.18 −0.741116 −0.370558 0.928809i \(-0.620833\pi\)
−0.370558 + 0.928809i \(0.620833\pi\)
\(524\) 9830.52 0.819558
\(525\) 0 0
\(526\) 26229.0 2.17422
\(527\) 3664.03 0.302861
\(528\) 6911.37 0.569657
\(529\) −10954.4 −0.900337
\(530\) −14002.0 −1.14757
\(531\) −5919.39 −0.483766
\(532\) 0 0
\(533\) 25062.0 2.03669
\(534\) −459.689 −0.0372522
\(535\) −8332.27 −0.673337
\(536\) 19386.5 1.56225
\(537\) 7337.25 0.589620
\(538\) 27977.3 2.24198
\(539\) 0 0
\(540\) 2038.80 0.162474
\(541\) −11585.7 −0.920714 −0.460357 0.887734i \(-0.652279\pi\)
−0.460357 + 0.887734i \(0.652279\pi\)
\(542\) −15864.9 −1.25730
\(543\) 3535.36 0.279405
\(544\) 2028.10 0.159842
\(545\) −5591.98 −0.439513
\(546\) 0 0
\(547\) 4233.45 0.330913 0.165456 0.986217i \(-0.447090\pi\)
0.165456 + 0.986217i \(0.447090\pi\)
\(548\) −9329.86 −0.727284
\(549\) −3754.50 −0.291873
\(550\) −6399.37 −0.496128
\(551\) −2533.34 −0.195869
\(552\) 3566.14 0.274973
\(553\) 0 0
\(554\) 18607.1 1.42696
\(555\) 2629.79 0.201132
\(556\) 23032.0 1.75679
\(557\) 2198.23 0.167221 0.0836106 0.996499i \(-0.473355\pi\)
0.0836106 + 0.996499i \(0.473355\pi\)
\(558\) −5093.20 −0.386402
\(559\) −30386.5 −2.29913
\(560\) 0 0
\(561\) 4971.97 0.374183
\(562\) 6783.87 0.509182
\(563\) −5918.67 −0.443059 −0.221529 0.975154i \(-0.571105\pi\)
−0.221529 + 0.975154i \(0.571105\pi\)
\(564\) −13150.8 −0.981823
\(565\) 4033.66 0.300349
\(566\) 22842.8 1.69639
\(567\) 0 0
\(568\) −30310.9 −2.23911
\(569\) −2560.97 −0.188684 −0.0943422 0.995540i \(-0.530075\pi\)
−0.0943422 + 0.995540i \(0.530075\pi\)
\(570\) 1291.49 0.0949030
\(571\) −24683.8 −1.80908 −0.904540 0.426389i \(-0.859786\pi\)
−0.904540 + 0.426389i \(0.859786\pi\)
\(572\) 49025.1 3.58364
\(573\) −6825.86 −0.497652
\(574\) 0 0
\(575\) −870.559 −0.0631388
\(576\) −5933.79 −0.429238
\(577\) 10144.6 0.731932 0.365966 0.930628i \(-0.380739\pi\)
0.365966 + 0.930628i \(0.380739\pi\)
\(578\) 18959.4 1.36437
\(579\) 13233.1 0.949826
\(580\) 10679.0 0.764518
\(581\) 0 0
\(582\) 3673.79 0.261655
\(583\) 31028.8 2.20426
\(584\) 37294.3 2.64255
\(585\) 2742.97 0.193859
\(586\) 6254.78 0.440926
\(587\) 12204.6 0.858158 0.429079 0.903267i \(-0.358838\pi\)
0.429079 + 0.903267i \(0.358838\pi\)
\(588\) 0 0
\(589\) −2109.10 −0.147545
\(590\) 15806.3 1.10294
\(591\) −6034.23 −0.419992
\(592\) 7584.05 0.526525
\(593\) 10372.0 0.718255 0.359128 0.933288i \(-0.383074\pi\)
0.359128 + 0.933288i \(0.383074\pi\)
\(594\) −6911.32 −0.477399
\(595\) 0 0
\(596\) −20959.1 −1.44047
\(597\) 3333.71 0.228542
\(598\) 10202.2 0.697655
\(599\) −20908.1 −1.42618 −0.713091 0.701072i \(-0.752705\pi\)
−0.713091 + 0.701072i \(0.752705\pi\)
\(600\) −2560.24 −0.174202
\(601\) −758.785 −0.0515000 −0.0257500 0.999668i \(-0.508197\pi\)
−0.0257500 + 0.999668i \(0.508197\pi\)
\(602\) 0 0
\(603\) −5111.20 −0.345181
\(604\) 34498.6 2.32405
\(605\) 7526.15 0.505755
\(606\) −19603.6 −1.31410
\(607\) 18780.8 1.25583 0.627917 0.778281i \(-0.283908\pi\)
0.627917 + 0.778281i \(0.283908\pi\)
\(608\) −1167.42 −0.0778702
\(609\) 0 0
\(610\) 10025.5 0.665444
\(611\) −17692.9 −1.17149
\(612\) 4229.79 0.279378
\(613\) 27346.0 1.80179 0.900893 0.434040i \(-0.142912\pi\)
0.900893 + 0.434040i \(0.142912\pi\)
\(614\) −29502.7 −1.93914
\(615\) 6167.36 0.404377
\(616\) 0 0
\(617\) −16384.9 −1.06910 −0.534548 0.845138i \(-0.679518\pi\)
−0.534548 + 0.845138i \(0.679518\pi\)
\(618\) −20880.2 −1.35910
\(619\) −9536.46 −0.619229 −0.309614 0.950862i \(-0.600200\pi\)
−0.309614 + 0.950862i \(0.600200\pi\)
\(620\) 8890.62 0.575896
\(621\) −940.203 −0.0607553
\(622\) −19620.2 −1.26479
\(623\) 0 0
\(624\) 7910.45 0.507486
\(625\) 625.000 0.0400000
\(626\) −34333.6 −2.19209
\(627\) −2861.98 −0.182291
\(628\) 4052.04 0.257475
\(629\) 5455.89 0.345852
\(630\) 0 0
\(631\) −20656.2 −1.30318 −0.651592 0.758570i \(-0.725899\pi\)
−0.651592 + 0.758570i \(0.725899\pi\)
\(632\) −4622.94 −0.290966
\(633\) 9093.12 0.570962
\(634\) 35960.2 2.25262
\(635\) −7169.61 −0.448059
\(636\) 26397.1 1.64577
\(637\) 0 0
\(638\) −36200.7 −2.24639
\(639\) 7991.39 0.494733
\(640\) 13237.9 0.817618
\(641\) −17904.5 −1.10326 −0.551628 0.834091i \(-0.685993\pi\)
−0.551628 + 0.834091i \(0.685993\pi\)
\(642\) 24029.3 1.47720
\(643\) −4497.56 −0.275842 −0.137921 0.990443i \(-0.544042\pi\)
−0.137921 + 0.990443i \(0.544042\pi\)
\(644\) 0 0
\(645\) −7477.64 −0.456483
\(646\) 2679.40 0.163188
\(647\) 261.315 0.0158784 0.00793922 0.999968i \(-0.497473\pi\)
0.00793922 + 0.999968i \(0.497473\pi\)
\(648\) −2765.05 −0.167626
\(649\) −35027.2 −2.11855
\(650\) −7324.44 −0.441982
\(651\) 0 0
\(652\) −41192.5 −2.47427
\(653\) 3791.14 0.227196 0.113598 0.993527i \(-0.463762\pi\)
0.113598 + 0.993527i \(0.463762\pi\)
\(654\) 16126.6 0.964222
\(655\) 3254.67 0.194153
\(656\) 17786.1 1.05858
\(657\) −9832.55 −0.583873
\(658\) 0 0
\(659\) 1149.18 0.0679298 0.0339649 0.999423i \(-0.489187\pi\)
0.0339649 + 0.999423i \(0.489187\pi\)
\(660\) 12064.3 0.711518
\(661\) 1943.10 0.114338 0.0571692 0.998365i \(-0.481793\pi\)
0.0571692 + 0.998365i \(0.481793\pi\)
\(662\) 9344.35 0.548608
\(663\) 5690.70 0.333346
\(664\) 15857.2 0.926773
\(665\) 0 0
\(666\) −7584.00 −0.441252
\(667\) −4924.68 −0.285883
\(668\) 33744.4 1.95451
\(669\) −11369.8 −0.657073
\(670\) 13648.2 0.786981
\(671\) −22216.7 −1.27819
\(672\) 0 0
\(673\) 31546.2 1.80686 0.903431 0.428734i \(-0.141040\pi\)
0.903431 + 0.428734i \(0.141040\pi\)
\(674\) 9230.14 0.527495
\(675\) 675.000 0.0384900
\(676\) 22932.5 1.30476
\(677\) −3409.55 −0.193560 −0.0967798 0.995306i \(-0.530854\pi\)
−0.0967798 + 0.995306i \(0.530854\pi\)
\(678\) −11632.6 −0.658920
\(679\) 0 0
\(680\) −5311.60 −0.299545
\(681\) 11628.9 0.654364
\(682\) −30138.3 −1.69217
\(683\) 2632.86 0.147502 0.0737508 0.997277i \(-0.476503\pi\)
0.0737508 + 0.997277i \(0.476503\pi\)
\(684\) −2434.76 −0.136105
\(685\) −3088.91 −0.172294
\(686\) 0 0
\(687\) 17779.3 0.987370
\(688\) −21564.8 −1.19499
\(689\) 35514.2 1.96369
\(690\) 2510.59 0.138517
\(691\) 25251.1 1.39015 0.695076 0.718936i \(-0.255371\pi\)
0.695076 + 0.718936i \(0.255371\pi\)
\(692\) 35334.1 1.94104
\(693\) 0 0
\(694\) −10062.1 −0.550363
\(695\) 7625.39 0.416183
\(696\) −14483.0 −0.788762
\(697\) 12795.1 0.695337
\(698\) −10569.4 −0.573149
\(699\) 13929.1 0.753715
\(700\) 0 0
\(701\) −18046.3 −0.972325 −0.486162 0.873869i \(-0.661604\pi\)
−0.486162 + 0.873869i \(0.661604\pi\)
\(702\) −7910.40 −0.425297
\(703\) −3140.53 −0.168489
\(704\) −35112.4 −1.87975
\(705\) −4353.94 −0.232594
\(706\) 28171.5 1.50177
\(707\) 0 0
\(708\) −29798.6 −1.58178
\(709\) −21736.6 −1.15139 −0.575693 0.817666i \(-0.695268\pi\)
−0.575693 + 0.817666i \(0.695268\pi\)
\(710\) −21339.1 −1.12795
\(711\) 1218.83 0.0642891
\(712\) −1088.27 −0.0572816
\(713\) −4099.96 −0.215350
\(714\) 0 0
\(715\) 16231.1 0.848965
\(716\) 36936.2 1.92789
\(717\) 2832.07 0.147511
\(718\) −34950.0 −1.81661
\(719\) 10921.1 0.566467 0.283233 0.959051i \(-0.408593\pi\)
0.283233 + 0.959051i \(0.408593\pi\)
\(720\) 1946.64 0.100759
\(721\) 0 0
\(722\) 31425.3 1.61984
\(723\) 4545.03 0.233792
\(724\) 17797.2 0.913576
\(725\) 3535.57 0.181114
\(726\) −21704.6 −1.10955
\(727\) −15670.3 −0.799420 −0.399710 0.916642i \(-0.630889\pi\)
−0.399710 + 0.916642i \(0.630889\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 26255.5 1.33118
\(731\) −15513.5 −0.784935
\(732\) −18900.4 −0.954342
\(733\) −8032.15 −0.404740 −0.202370 0.979309i \(-0.564864\pi\)
−0.202370 + 0.979309i \(0.564864\pi\)
\(734\) 60744.0 3.05463
\(735\) 0 0
\(736\) −2269.39 −0.113656
\(737\) −30244.8 −1.51164
\(738\) −17785.9 −0.887140
\(739\) 9602.50 0.477989 0.238994 0.971021i \(-0.423182\pi\)
0.238994 + 0.971021i \(0.423182\pi\)
\(740\) 13238.5 0.657645
\(741\) −3275.70 −0.162396
\(742\) 0 0
\(743\) −17641.7 −0.871078 −0.435539 0.900170i \(-0.643442\pi\)
−0.435539 + 0.900170i \(0.643442\pi\)
\(744\) −12057.6 −0.594159
\(745\) −6939.09 −0.341247
\(746\) 29861.7 1.46557
\(747\) −4180.70 −0.204771
\(748\) 25029.2 1.22347
\(749\) 0 0
\(750\) −1802.43 −0.0877538
\(751\) 5688.94 0.276421 0.138211 0.990403i \(-0.455865\pi\)
0.138211 + 0.990403i \(0.455865\pi\)
\(752\) −12556.3 −0.608886
\(753\) 9659.47 0.467478
\(754\) −41433.7 −2.00123
\(755\) 11421.7 0.550568
\(756\) 0 0
\(757\) −18939.2 −0.909324 −0.454662 0.890664i \(-0.650240\pi\)
−0.454662 + 0.890664i \(0.650240\pi\)
\(758\) −24395.4 −1.16897
\(759\) −5563.52 −0.266065
\(760\) 3057.48 0.145929
\(761\) −16101.6 −0.766992 −0.383496 0.923542i \(-0.625280\pi\)
−0.383496 + 0.923542i \(0.625280\pi\)
\(762\) 20676.3 0.982971
\(763\) 0 0
\(764\) −34361.8 −1.62718
\(765\) 1400.39 0.0661846
\(766\) 40440.3 1.90753
\(767\) −40090.6 −1.88734
\(768\) −22353.3 −1.05027
\(769\) 10781.2 0.505568 0.252784 0.967523i \(-0.418654\pi\)
0.252784 + 0.967523i \(0.418654\pi\)
\(770\) 0 0
\(771\) 6643.64 0.310331
\(772\) 66616.3 3.10567
\(773\) −10224.8 −0.475755 −0.237878 0.971295i \(-0.576452\pi\)
−0.237878 + 0.971295i \(0.576452\pi\)
\(774\) 21564.6 1.00145
\(775\) 2943.49 0.136430
\(776\) 8697.31 0.402339
\(777\) 0 0
\(778\) −17825.7 −0.821444
\(779\) −7365.16 −0.338748
\(780\) 13808.3 0.633865
\(781\) 47288.0 2.16658
\(782\) 5208.60 0.238183
\(783\) 3818.42 0.174277
\(784\) 0 0
\(785\) 1341.54 0.0609958
\(786\) −9386.08 −0.425942
\(787\) −12823.4 −0.580817 −0.290409 0.956903i \(-0.593791\pi\)
−0.290409 + 0.956903i \(0.593791\pi\)
\(788\) −30376.7 −1.37326
\(789\) −16371.1 −0.738689
\(790\) −3254.59 −0.146573
\(791\) 0 0
\(792\) −16361.8 −0.734081
\(793\) −25428.3 −1.13870
\(794\) 21725.5 0.971044
\(795\) 8739.49 0.389884
\(796\) 16782.1 0.747268
\(797\) −28745.8 −1.27758 −0.638789 0.769382i \(-0.720564\pi\)
−0.638789 + 0.769382i \(0.720564\pi\)
\(798\) 0 0
\(799\) −9032.91 −0.399951
\(800\) 1629.27 0.0720041
\(801\) 286.919 0.0126564
\(802\) 60522.0 2.66472
\(803\) −58182.8 −2.55694
\(804\) −25730.1 −1.12864
\(805\) 0 0
\(806\) −34495.0 −1.50749
\(807\) −17462.3 −0.761711
\(808\) −46409.5 −2.02065
\(809\) −31758.8 −1.38020 −0.690099 0.723715i \(-0.742433\pi\)
−0.690099 + 0.723715i \(0.742433\pi\)
\(810\) −1946.62 −0.0844411
\(811\) −3269.28 −0.141554 −0.0707769 0.997492i \(-0.522548\pi\)
−0.0707769 + 0.997492i \(0.522548\pi\)
\(812\) 0 0
\(813\) 9902.23 0.427167
\(814\) −44877.3 −1.93237
\(815\) −13637.9 −0.586154
\(816\) 4038.59 0.173259
\(817\) 8929.92 0.382397
\(818\) −43343.0 −1.85263
\(819\) 0 0
\(820\) 31046.9 1.32220
\(821\) 17959.3 0.763441 0.381720 0.924278i \(-0.375332\pi\)
0.381720 + 0.924278i \(0.375332\pi\)
\(822\) 8908.06 0.377986
\(823\) −22816.3 −0.966373 −0.483187 0.875517i \(-0.660521\pi\)
−0.483187 + 0.875517i \(0.660521\pi\)
\(824\) −49431.6 −2.08985
\(825\) 3994.22 0.168559
\(826\) 0 0
\(827\) 38776.6 1.63047 0.815233 0.579133i \(-0.196609\pi\)
0.815233 + 0.579133i \(0.196609\pi\)
\(828\) −4733.04 −0.198653
\(829\) −43239.0 −1.81152 −0.905761 0.423789i \(-0.860700\pi\)
−0.905761 + 0.423789i \(0.860700\pi\)
\(830\) 11163.6 0.466860
\(831\) −11613.8 −0.484809
\(832\) −40188.1 −1.67460
\(833\) 0 0
\(834\) −21990.7 −0.913042
\(835\) 11172.0 0.463023
\(836\) −14407.4 −0.596040
\(837\) 3178.96 0.131280
\(838\) −18.2968 −0.000754240 0
\(839\) −38639.2 −1.58996 −0.794978 0.606638i \(-0.792518\pi\)
−0.794978 + 0.606638i \(0.792518\pi\)
\(840\) 0 0
\(841\) −4388.57 −0.179940
\(842\) −58043.1 −2.37565
\(843\) −4234.21 −0.172994
\(844\) 45775.3 1.86689
\(845\) 7592.44 0.309098
\(846\) 12556.2 0.510275
\(847\) 0 0
\(848\) 25203.9 1.02064
\(849\) −14257.5 −0.576345
\(850\) −3739.41 −0.150895
\(851\) −6105.02 −0.245919
\(852\) 40229.2 1.61764
\(853\) 21024.3 0.843914 0.421957 0.906616i \(-0.361343\pi\)
0.421957 + 0.906616i \(0.361343\pi\)
\(854\) 0 0
\(855\) −806.096 −0.0322432
\(856\) 56886.9 2.27144
\(857\) 40140.9 1.59998 0.799991 0.600011i \(-0.204837\pi\)
0.799991 + 0.600011i \(0.204837\pi\)
\(858\) −46808.7 −1.86250
\(859\) 16970.0 0.674050 0.337025 0.941496i \(-0.390579\pi\)
0.337025 + 0.941496i \(0.390579\pi\)
\(860\) −37642.9 −1.49257
\(861\) 0 0
\(862\) 49591.8 1.95952
\(863\) 28638.9 1.12964 0.564819 0.825215i \(-0.308946\pi\)
0.564819 + 0.825215i \(0.308946\pi\)
\(864\) 1759.61 0.0692859
\(865\) 11698.3 0.459832
\(866\) −61178.5 −2.40061
\(867\) −11833.7 −0.463544
\(868\) 0 0
\(869\) 7212.24 0.281540
\(870\) −10196.2 −0.397337
\(871\) −34616.9 −1.34667
\(872\) 38178.1 1.48265
\(873\) −2293.03 −0.0888971
\(874\) −2998.19 −0.116036
\(875\) 0 0
\(876\) −49497.7 −1.90910
\(877\) 1459.67 0.0562026 0.0281013 0.999605i \(-0.491054\pi\)
0.0281013 + 0.999605i \(0.491054\pi\)
\(878\) 47933.0 1.84244
\(879\) −3903.97 −0.149804
\(880\) 11519.0 0.441254
\(881\) −34268.7 −1.31049 −0.655246 0.755416i \(-0.727435\pi\)
−0.655246 + 0.755416i \(0.727435\pi\)
\(882\) 0 0
\(883\) −23106.9 −0.880645 −0.440322 0.897840i \(-0.645136\pi\)
−0.440322 + 0.897840i \(0.645136\pi\)
\(884\) 28647.4 1.08995
\(885\) −9865.65 −0.374723
\(886\) −50289.1 −1.90688
\(887\) 22858.2 0.865280 0.432640 0.901567i \(-0.357582\pi\)
0.432640 + 0.901567i \(0.357582\pi\)
\(888\) −17954.3 −0.678500
\(889\) 0 0
\(890\) −766.148 −0.0288555
\(891\) 4313.76 0.162196
\(892\) −57236.3 −2.14844
\(893\) 5199.54 0.194844
\(894\) 20011.5 0.748642
\(895\) 12228.8 0.456718
\(896\) 0 0
\(897\) −6367.77 −0.237027
\(898\) 56066.0 2.08346
\(899\) 16651.1 0.617735
\(900\) 3397.99 0.125852
\(901\) 18131.4 0.670416
\(902\) −105246. −3.88504
\(903\) 0 0
\(904\) −27539.0 −1.01320
\(905\) 5892.27 0.216426
\(906\) −32938.9 −1.20786
\(907\) −4420.76 −0.161840 −0.0809199 0.996721i \(-0.525786\pi\)
−0.0809199 + 0.996721i \(0.525786\pi\)
\(908\) 58540.8 2.13959
\(909\) 12235.8 0.446463
\(910\) 0 0
\(911\) 31813.3 1.15699 0.578496 0.815685i \(-0.303640\pi\)
0.578496 + 0.815685i \(0.303640\pi\)
\(912\) −2324.71 −0.0844065
\(913\) −24738.7 −0.896750
\(914\) −21833.5 −0.790142
\(915\) −6257.50 −0.226084
\(916\) 89502.2 3.22842
\(917\) 0 0
\(918\) −4038.57 −0.145199
\(919\) 22036.5 0.790988 0.395494 0.918469i \(-0.370573\pi\)
0.395494 + 0.918469i \(0.370573\pi\)
\(920\) 5943.56 0.212993
\(921\) 18414.3 0.658820
\(922\) −37911.3 −1.35417
\(923\) 54123.8 1.93012
\(924\) 0 0
\(925\) 4382.98 0.155796
\(926\) 26167.1 0.928624
\(927\) 13032.5 0.461752
\(928\) 9216.62 0.326024
\(929\) −27015.4 −0.954086 −0.477043 0.878880i \(-0.658291\pi\)
−0.477043 + 0.878880i \(0.658291\pi\)
\(930\) −8488.67 −0.299306
\(931\) 0 0
\(932\) 70120.0 2.46444
\(933\) 12246.1 0.429711
\(934\) 50843.0 1.78119
\(935\) 8286.62 0.289841
\(936\) −18727.0 −0.653966
\(937\) 33711.1 1.17534 0.587670 0.809101i \(-0.300046\pi\)
0.587670 + 0.809101i \(0.300046\pi\)
\(938\) 0 0
\(939\) 21429.6 0.744758
\(940\) −21918.0 −0.760517
\(941\) 23168.8 0.802638 0.401319 0.915938i \(-0.368552\pi\)
0.401319 + 0.915938i \(0.368552\pi\)
\(942\) −3868.85 −0.133815
\(943\) −14317.5 −0.494423
\(944\) −28451.6 −0.980954
\(945\) 0 0
\(946\) 127606. 4.38565
\(947\) 39932.2 1.37024 0.685122 0.728428i \(-0.259749\pi\)
0.685122 + 0.728428i \(0.259749\pi\)
\(948\) 6135.65 0.210207
\(949\) −66593.5 −2.27789
\(950\) 2152.49 0.0735116
\(951\) −22444.9 −0.765325
\(952\) 0 0
\(953\) −31125.8 −1.05799 −0.528995 0.848625i \(-0.677431\pi\)
−0.528995 + 0.848625i \(0.677431\pi\)
\(954\) −25203.7 −0.855345
\(955\) −11376.4 −0.385479
\(956\) 14256.8 0.482321
\(957\) 22595.0 0.763210
\(958\) −55970.0 −1.88759
\(959\) 0 0
\(960\) −9889.64 −0.332486
\(961\) −15928.4 −0.534672
\(962\) −51364.6 −1.72148
\(963\) −14998.1 −0.501876
\(964\) 22880.0 0.764433
\(965\) 22055.2 0.735732
\(966\) 0 0
\(967\) −35679.1 −1.18652 −0.593259 0.805011i \(-0.702159\pi\)
−0.593259 + 0.805011i \(0.702159\pi\)
\(968\) −51383.3 −1.70612
\(969\) −1672.37 −0.0554430
\(970\) 6122.98 0.202677
\(971\) −4137.64 −0.136749 −0.0683744 0.997660i \(-0.521781\pi\)
−0.0683744 + 0.997660i \(0.521781\pi\)
\(972\) 3669.83 0.121101
\(973\) 0 0
\(974\) 44398.5 1.46059
\(975\) 4571.61 0.150163
\(976\) −18046.0 −0.591844
\(977\) 30405.7 0.995664 0.497832 0.867273i \(-0.334130\pi\)
0.497832 + 0.867273i \(0.334130\pi\)
\(978\) 39330.2 1.28593
\(979\) 1697.80 0.0554259
\(980\) 0 0
\(981\) −10065.6 −0.327593
\(982\) 12998.9 0.422416
\(983\) 10011.3 0.324832 0.162416 0.986722i \(-0.448071\pi\)
0.162416 + 0.986722i \(0.448071\pi\)
\(984\) −42106.4 −1.36413
\(985\) −10057.1 −0.325324
\(986\) −21153.5 −0.683231
\(987\) 0 0
\(988\) −16490.1 −0.530991
\(989\) 17359.3 0.558132
\(990\) −11518.9 −0.369792
\(991\) −2889.51 −0.0926219 −0.0463110 0.998927i \(-0.514747\pi\)
−0.0463110 + 0.998927i \(0.514747\pi\)
\(992\) 7673.15 0.245588
\(993\) −5832.35 −0.186389
\(994\) 0 0
\(995\) 5556.18 0.177028
\(996\) −21045.9 −0.669544
\(997\) −6005.63 −0.190772 −0.0953862 0.995440i \(-0.530409\pi\)
−0.0953862 + 0.995440i \(0.530409\pi\)
\(998\) 3669.03 0.116374
\(999\) 4733.61 0.149915
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 735.4.a.ba.1.1 5
3.2 odd 2 2205.4.a.br.1.5 5
7.2 even 3 105.4.i.d.46.5 yes 10
7.4 even 3 105.4.i.d.16.5 10
7.6 odd 2 735.4.a.z.1.1 5
21.2 odd 6 315.4.j.h.46.1 10
21.11 odd 6 315.4.j.h.226.1 10
21.20 even 2 2205.4.a.bs.1.5 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.4.i.d.16.5 10 7.4 even 3
105.4.i.d.46.5 yes 10 7.2 even 3
315.4.j.h.46.1 10 21.2 odd 6
315.4.j.h.226.1 10 21.11 odd 6
735.4.a.z.1.1 5 7.6 odd 2
735.4.a.ba.1.1 5 1.1 even 1 trivial
2205.4.a.br.1.5 5 3.2 odd 2
2205.4.a.bs.1.5 5 21.20 even 2