Properties

Label 2205.4.a.bs.1.5
Level $2205$
Weight $4$
Character 2205.1
Self dual yes
Analytic conductor $130.099$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2205,4,Mod(1,2205)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2205, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2205.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2205 = 3^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2205.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(130.099211563\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 30x^{3} + 22x^{2} + 153x - 84 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 105)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(5.80647\) of defining polynomial
Character \(\chi\) \(=\) 2205.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.80647 q^{2} +15.1022 q^{4} +5.00000 q^{5} +34.1365 q^{8} +24.0324 q^{10} -53.2563 q^{11} -60.9548 q^{13} +43.2586 q^{16} +31.1198 q^{17} +17.9133 q^{19} +75.5109 q^{20} -255.975 q^{22} +34.8223 q^{23} +25.0000 q^{25} -292.978 q^{26} -141.423 q^{29} -117.739 q^{31} -65.1706 q^{32} +149.576 q^{34} +175.319 q^{37} +86.0996 q^{38} +170.682 q^{40} +411.157 q^{41} -498.509 q^{43} -804.286 q^{44} +167.373 q^{46} -290.262 q^{47} +120.162 q^{50} -920.551 q^{52} -582.633 q^{53} -266.281 q^{55} -679.745 q^{58} -657.710 q^{59} +417.167 q^{61} -565.911 q^{62} -659.310 q^{64} -304.774 q^{65} -567.911 q^{67} +469.977 q^{68} -887.933 q^{71} +1092.51 q^{73} +842.666 q^{74} +270.529 q^{76} +135.425 q^{79} +216.293 q^{80} +1976.22 q^{82} -464.523 q^{83} +155.599 q^{85} -2396.07 q^{86} -1817.98 q^{88} +31.8799 q^{89} +525.894 q^{92} -1395.14 q^{94} +89.5663 q^{95} +254.781 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 3 q^{2} + 25 q^{4} + 25 q^{5} - 21 q^{8} - 15 q^{10} - 43 q^{11} - 123 q^{13} + 161 q^{16} + 124 q^{17} - 37 q^{19} + 125 q^{20} - 221 q^{22} - 77 q^{23} + 125 q^{25} - 79 q^{26} - 360 q^{29} - 314 q^{31}+ \cdots + 576 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.80647 1.69935 0.849673 0.527311i \(-0.176800\pi\)
0.849673 + 0.527311i \(0.176800\pi\)
\(3\) 0 0
\(4\) 15.1022 1.88777
\(5\) 5.00000 0.447214
\(6\) 0 0
\(7\) 0 0
\(8\) 34.1365 1.50863
\(9\) 0 0
\(10\) 24.0324 0.759970
\(11\) −53.2563 −1.45976 −0.729881 0.683575i \(-0.760424\pi\)
−0.729881 + 0.683575i \(0.760424\pi\)
\(12\) 0 0
\(13\) −60.9548 −1.30045 −0.650224 0.759743i \(-0.725325\pi\)
−0.650224 + 0.759743i \(0.725325\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 43.2586 0.675915
\(17\) 31.1198 0.443980 0.221990 0.975049i \(-0.428745\pi\)
0.221990 + 0.975049i \(0.428745\pi\)
\(18\) 0 0
\(19\) 17.9133 0.216294 0.108147 0.994135i \(-0.465508\pi\)
0.108147 + 0.994135i \(0.465508\pi\)
\(20\) 75.5109 0.844238
\(21\) 0 0
\(22\) −255.975 −2.48064
\(23\) 34.8223 0.315694 0.157847 0.987464i \(-0.449545\pi\)
0.157847 + 0.987464i \(0.449545\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) −292.978 −2.20991
\(27\) 0 0
\(28\) 0 0
\(29\) −141.423 −0.905571 −0.452786 0.891619i \(-0.649570\pi\)
−0.452786 + 0.891619i \(0.649570\pi\)
\(30\) 0 0
\(31\) −117.739 −0.682149 −0.341075 0.940036i \(-0.610791\pi\)
−0.341075 + 0.940036i \(0.610791\pi\)
\(32\) −65.1706 −0.360020
\(33\) 0 0
\(34\) 149.576 0.754475
\(35\) 0 0
\(36\) 0 0
\(37\) 175.319 0.778980 0.389490 0.921031i \(-0.372651\pi\)
0.389490 + 0.921031i \(0.372651\pi\)
\(38\) 86.0996 0.367558
\(39\) 0 0
\(40\) 170.682 0.674681
\(41\) 411.157 1.56615 0.783073 0.621930i \(-0.213651\pi\)
0.783073 + 0.621930i \(0.213651\pi\)
\(42\) 0 0
\(43\) −498.509 −1.76795 −0.883976 0.467532i \(-0.845143\pi\)
−0.883976 + 0.467532i \(0.845143\pi\)
\(44\) −804.286 −2.75570
\(45\) 0 0
\(46\) 167.373 0.536473
\(47\) −290.262 −0.900832 −0.450416 0.892819i \(-0.648724\pi\)
−0.450416 + 0.892819i \(0.648724\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 120.162 0.339869
\(51\) 0 0
\(52\) −920.551 −2.45495
\(53\) −582.633 −1.51001 −0.755007 0.655717i \(-0.772367\pi\)
−0.755007 + 0.655717i \(0.772367\pi\)
\(54\) 0 0
\(55\) −266.281 −0.652825
\(56\) 0 0
\(57\) 0 0
\(58\) −679.745 −1.53888
\(59\) −657.710 −1.45130 −0.725649 0.688065i \(-0.758460\pi\)
−0.725649 + 0.688065i \(0.758460\pi\)
\(60\) 0 0
\(61\) 417.167 0.875618 0.437809 0.899068i \(-0.355755\pi\)
0.437809 + 0.899068i \(0.355755\pi\)
\(62\) −565.911 −1.15921
\(63\) 0 0
\(64\) −659.310 −1.28771
\(65\) −304.774 −0.581578
\(66\) 0 0
\(67\) −567.911 −1.03554 −0.517771 0.855519i \(-0.673238\pi\)
−0.517771 + 0.855519i \(0.673238\pi\)
\(68\) 469.977 0.838134
\(69\) 0 0
\(70\) 0 0
\(71\) −887.933 −1.48420 −0.742100 0.670289i \(-0.766170\pi\)
−0.742100 + 0.670289i \(0.766170\pi\)
\(72\) 0 0
\(73\) 1092.51 1.75162 0.875809 0.482657i \(-0.160328\pi\)
0.875809 + 0.482657i \(0.160328\pi\)
\(74\) 842.666 1.32376
\(75\) 0 0
\(76\) 270.529 0.408314
\(77\) 0 0
\(78\) 0 0
\(79\) 135.425 0.192867 0.0964337 0.995339i \(-0.469256\pi\)
0.0964337 + 0.995339i \(0.469256\pi\)
\(80\) 216.293 0.302278
\(81\) 0 0
\(82\) 1976.22 2.66142
\(83\) −464.523 −0.614313 −0.307157 0.951659i \(-0.599378\pi\)
−0.307157 + 0.951659i \(0.599378\pi\)
\(84\) 0 0
\(85\) 155.599 0.198554
\(86\) −2396.07 −3.00436
\(87\) 0 0
\(88\) −1817.98 −2.20224
\(89\) 31.8799 0.0379692 0.0189846 0.999820i \(-0.493957\pi\)
0.0189846 + 0.999820i \(0.493957\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 525.894 0.595959
\(93\) 0 0
\(94\) −1395.14 −1.53082
\(95\) 89.5663 0.0967295
\(96\) 0 0
\(97\) 254.781 0.266691 0.133346 0.991070i \(-0.457428\pi\)
0.133346 + 0.991070i \(0.457428\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 377.555 0.377555
\(101\) 1359.53 1.33939 0.669694 0.742637i \(-0.266425\pi\)
0.669694 + 0.742637i \(0.266425\pi\)
\(102\) 0 0
\(103\) −1448.06 −1.38526 −0.692629 0.721294i \(-0.743547\pi\)
−0.692629 + 0.721294i \(0.743547\pi\)
\(104\) −2080.78 −1.96190
\(105\) 0 0
\(106\) −2800.41 −2.56603
\(107\) 1666.45 1.50563 0.752814 0.658234i \(-0.228696\pi\)
0.752814 + 0.658234i \(0.228696\pi\)
\(108\) 0 0
\(109\) −1118.40 −0.982780 −0.491390 0.870940i \(-0.663511\pi\)
−0.491390 + 0.870940i \(0.663511\pi\)
\(110\) −1279.87 −1.10937
\(111\) 0 0
\(112\) 0 0
\(113\) −806.732 −0.671602 −0.335801 0.941933i \(-0.609007\pi\)
−0.335801 + 0.941933i \(0.609007\pi\)
\(114\) 0 0
\(115\) 174.112 0.141183
\(116\) −2135.80 −1.70951
\(117\) 0 0
\(118\) −3161.27 −2.46625
\(119\) 0 0
\(120\) 0 0
\(121\) 1505.23 1.13090
\(122\) 2005.10 1.48798
\(123\) 0 0
\(124\) −1778.12 −1.28774
\(125\) 125.000 0.0894427
\(126\) 0 0
\(127\) −1433.92 −1.00189 −0.500945 0.865479i \(-0.667014\pi\)
−0.500945 + 0.865479i \(0.667014\pi\)
\(128\) −2647.59 −1.82825
\(129\) 0 0
\(130\) −1464.89 −0.988301
\(131\) 650.933 0.434140 0.217070 0.976156i \(-0.430350\pi\)
0.217070 + 0.976156i \(0.430350\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −2729.65 −1.75974
\(135\) 0 0
\(136\) 1062.32 0.669803
\(137\) 617.782 0.385260 0.192630 0.981271i \(-0.438298\pi\)
0.192630 + 0.981271i \(0.438298\pi\)
\(138\) 0 0
\(139\) −1525.08 −0.930614 −0.465307 0.885149i \(-0.654056\pi\)
−0.465307 + 0.885149i \(0.654056\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −4267.82 −2.52217
\(143\) 3246.23 1.89834
\(144\) 0 0
\(145\) −707.114 −0.404984
\(146\) 5251.10 2.97660
\(147\) 0 0
\(148\) 2647.70 1.47054
\(149\) 1387.82 0.763051 0.381525 0.924358i \(-0.375399\pi\)
0.381525 + 0.924358i \(0.375399\pi\)
\(150\) 0 0
\(151\) 2284.34 1.23111 0.615554 0.788095i \(-0.288932\pi\)
0.615554 + 0.788095i \(0.288932\pi\)
\(152\) 611.495 0.326308
\(153\) 0 0
\(154\) 0 0
\(155\) −588.697 −0.305066
\(156\) 0 0
\(157\) −268.308 −0.136391 −0.0681953 0.997672i \(-0.521724\pi\)
−0.0681953 + 0.997672i \(0.521724\pi\)
\(158\) 650.918 0.327748
\(159\) 0 0
\(160\) −325.853 −0.161006
\(161\) 0 0
\(162\) 0 0
\(163\) −2727.58 −1.31068 −0.655340 0.755334i \(-0.727475\pi\)
−0.655340 + 0.755334i \(0.727475\pi\)
\(164\) 6209.37 2.95653
\(165\) 0 0
\(166\) −2232.72 −1.04393
\(167\) 2234.41 1.03535 0.517675 0.855577i \(-0.326798\pi\)
0.517675 + 0.855577i \(0.326798\pi\)
\(168\) 0 0
\(169\) 1518.49 0.691164
\(170\) 747.882 0.337412
\(171\) 0 0
\(172\) −7528.58 −3.33749
\(173\) 2339.66 1.02822 0.514108 0.857725i \(-0.328123\pi\)
0.514108 + 0.857725i \(0.328123\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −2303.79 −0.986675
\(177\) 0 0
\(178\) 153.230 0.0645228
\(179\) −2445.75 −1.02125 −0.510626 0.859803i \(-0.670586\pi\)
−0.510626 + 0.859803i \(0.670586\pi\)
\(180\) 0 0
\(181\) −1178.45 −0.483944 −0.241972 0.970283i \(-0.577794\pi\)
−0.241972 + 0.970283i \(0.577794\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 1188.71 0.476266
\(185\) 876.595 0.348371
\(186\) 0 0
\(187\) −1657.32 −0.648105
\(188\) −4383.60 −1.70057
\(189\) 0 0
\(190\) 430.498 0.164377
\(191\) 2275.29 0.861958 0.430979 0.902362i \(-0.358168\pi\)
0.430979 + 0.902362i \(0.358168\pi\)
\(192\) 0 0
\(193\) 4411.04 1.64515 0.822574 0.568658i \(-0.192537\pi\)
0.822574 + 0.568658i \(0.192537\pi\)
\(194\) 1224.60 0.453200
\(195\) 0 0
\(196\) 0 0
\(197\) 2011.41 0.727447 0.363723 0.931507i \(-0.381505\pi\)
0.363723 + 0.931507i \(0.381505\pi\)
\(198\) 0 0
\(199\) −1111.24 −0.395846 −0.197923 0.980218i \(-0.563420\pi\)
−0.197923 + 0.980218i \(0.563420\pi\)
\(200\) 853.412 0.301727
\(201\) 0 0
\(202\) 6534.54 2.27608
\(203\) 0 0
\(204\) 0 0
\(205\) 2055.79 0.700402
\(206\) −6960.06 −2.35403
\(207\) 0 0
\(208\) −2636.82 −0.878992
\(209\) −953.993 −0.315737
\(210\) 0 0
\(211\) 3031.04 0.988936 0.494468 0.869196i \(-0.335363\pi\)
0.494468 + 0.869196i \(0.335363\pi\)
\(212\) −8799.03 −2.85056
\(213\) 0 0
\(214\) 8009.77 2.55858
\(215\) −2492.55 −0.790652
\(216\) 0 0
\(217\) 0 0
\(218\) −5375.55 −1.67008
\(219\) 0 0
\(220\) −4021.43 −1.23239
\(221\) −1896.90 −0.577373
\(222\) 0 0
\(223\) 3789.93 1.13808 0.569042 0.822309i \(-0.307314\pi\)
0.569042 + 0.822309i \(0.307314\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −3877.54 −1.14128
\(227\) 3876.31 1.13339 0.566696 0.823927i \(-0.308222\pi\)
0.566696 + 0.823927i \(0.308222\pi\)
\(228\) 0 0
\(229\) −5926.44 −1.71018 −0.855088 0.518483i \(-0.826497\pi\)
−0.855088 + 0.518483i \(0.826497\pi\)
\(230\) 836.863 0.239918
\(231\) 0 0
\(232\) −4827.68 −1.36618
\(233\) −4643.03 −1.30547 −0.652737 0.757585i \(-0.726379\pi\)
−0.652737 + 0.757585i \(0.726379\pi\)
\(234\) 0 0
\(235\) −1451.31 −0.402864
\(236\) −9932.86 −2.73972
\(237\) 0 0
\(238\) 0 0
\(239\) −944.025 −0.255497 −0.127749 0.991807i \(-0.540775\pi\)
−0.127749 + 0.991807i \(0.540775\pi\)
\(240\) 0 0
\(241\) −1515.01 −0.404939 −0.202470 0.979289i \(-0.564897\pi\)
−0.202470 + 0.979289i \(0.564897\pi\)
\(242\) 7234.85 1.92179
\(243\) 0 0
\(244\) 6300.13 1.65297
\(245\) 0 0
\(246\) 0 0
\(247\) −1091.90 −0.281279
\(248\) −4019.21 −1.02911
\(249\) 0 0
\(250\) 600.809 0.151994
\(251\) 3219.82 0.809695 0.404847 0.914384i \(-0.367325\pi\)
0.404847 + 0.914384i \(0.367325\pi\)
\(252\) 0 0
\(253\) −1854.51 −0.460838
\(254\) −6892.11 −1.70256
\(255\) 0 0
\(256\) −7451.09 −1.81911
\(257\) 2214.55 0.537509 0.268754 0.963209i \(-0.413388\pi\)
0.268754 + 0.963209i \(0.413388\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −4602.75 −1.09789
\(261\) 0 0
\(262\) 3128.69 0.737753
\(263\) 5457.02 1.27945 0.639723 0.768605i \(-0.279049\pi\)
0.639723 + 0.768605i \(0.279049\pi\)
\(264\) 0 0
\(265\) −2913.16 −0.675299
\(266\) 0 0
\(267\) 0 0
\(268\) −8576.69 −1.95487
\(269\) −5820.76 −1.31932 −0.659661 0.751563i \(-0.729300\pi\)
−0.659661 + 0.751563i \(0.729300\pi\)
\(270\) 0 0
\(271\) −3300.74 −0.739874 −0.369937 0.929057i \(-0.620621\pi\)
−0.369937 + 0.929057i \(0.620621\pi\)
\(272\) 1346.20 0.300093
\(273\) 0 0
\(274\) 2969.35 0.654690
\(275\) −1331.41 −0.291952
\(276\) 0 0
\(277\) −3871.25 −0.839714 −0.419857 0.907590i \(-0.637920\pi\)
−0.419857 + 0.907590i \(0.637920\pi\)
\(278\) −7330.24 −1.58143
\(279\) 0 0
\(280\) 0 0
\(281\) 1411.40 0.299634 0.149817 0.988714i \(-0.452131\pi\)
0.149817 + 0.988714i \(0.452131\pi\)
\(282\) 0 0
\(283\) 4752.51 0.998259 0.499129 0.866528i \(-0.333653\pi\)
0.499129 + 0.866528i \(0.333653\pi\)
\(284\) −13409.7 −2.80183
\(285\) 0 0
\(286\) 15602.9 3.22594
\(287\) 0 0
\(288\) 0 0
\(289\) −3944.56 −0.802882
\(290\) −3398.73 −0.688207
\(291\) 0 0
\(292\) 16499.2 3.30666
\(293\) −1301.32 −0.259468 −0.129734 0.991549i \(-0.541412\pi\)
−0.129734 + 0.991549i \(0.541412\pi\)
\(294\) 0 0
\(295\) −3288.55 −0.649040
\(296\) 5984.77 1.17520
\(297\) 0 0
\(298\) 6670.51 1.29669
\(299\) −2122.59 −0.410543
\(300\) 0 0
\(301\) 0 0
\(302\) 10979.6 2.09208
\(303\) 0 0
\(304\) 774.902 0.146196
\(305\) 2085.83 0.391588
\(306\) 0 0
\(307\) −6138.12 −1.14111 −0.570555 0.821259i \(-0.693272\pi\)
−0.570555 + 0.821259i \(0.693272\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −2829.56 −0.518413
\(311\) 4082.04 0.744281 0.372140 0.928176i \(-0.378624\pi\)
0.372140 + 0.928176i \(0.378624\pi\)
\(312\) 0 0
\(313\) −7143.19 −1.28996 −0.644979 0.764200i \(-0.723134\pi\)
−0.644979 + 0.764200i \(0.723134\pi\)
\(314\) −1289.62 −0.231775
\(315\) 0 0
\(316\) 2045.22 0.364090
\(317\) 7481.62 1.32558 0.662791 0.748804i \(-0.269372\pi\)
0.662791 + 0.748804i \(0.269372\pi\)
\(318\) 0 0
\(319\) 7531.66 1.32192
\(320\) −3296.55 −0.575883
\(321\) 0 0
\(322\) 0 0
\(323\) 557.457 0.0960301
\(324\) 0 0
\(325\) −1523.87 −0.260090
\(326\) −13110.1 −2.22730
\(327\) 0 0
\(328\) 14035.5 2.36274
\(329\) 0 0
\(330\) 0 0
\(331\) −1944.12 −0.322835 −0.161417 0.986886i \(-0.551607\pi\)
−0.161417 + 0.986886i \(0.551607\pi\)
\(332\) −7015.31 −1.15968
\(333\) 0 0
\(334\) 10739.6 1.75942
\(335\) −2839.55 −0.463109
\(336\) 0 0
\(337\) −1920.36 −0.310411 −0.155205 0.987882i \(-0.549604\pi\)
−0.155205 + 0.987882i \(0.549604\pi\)
\(338\) 7298.57 1.17453
\(339\) 0 0
\(340\) 2349.89 0.374825
\(341\) 6270.36 0.995775
\(342\) 0 0
\(343\) 0 0
\(344\) −17017.3 −2.66719
\(345\) 0 0
\(346\) 11245.5 1.74729
\(347\) −2093.45 −0.323868 −0.161934 0.986802i \(-0.551773\pi\)
−0.161934 + 0.986802i \(0.551773\pi\)
\(348\) 0 0
\(349\) −2199.00 −0.337277 −0.168638 0.985678i \(-0.553937\pi\)
−0.168638 + 0.985678i \(0.553937\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 3470.75 0.525544
\(353\) −5861.17 −0.883735 −0.441867 0.897080i \(-0.645684\pi\)
−0.441867 + 0.897080i \(0.645684\pi\)
\(354\) 0 0
\(355\) −4439.66 −0.663755
\(356\) 481.456 0.0716772
\(357\) 0 0
\(358\) −11755.4 −1.73546
\(359\) −7271.44 −1.06900 −0.534502 0.845167i \(-0.679501\pi\)
−0.534502 + 0.845167i \(0.679501\pi\)
\(360\) 0 0
\(361\) −6538.12 −0.953217
\(362\) −5664.21 −0.822387
\(363\) 0 0
\(364\) 0 0
\(365\) 5462.53 0.783348
\(366\) 0 0
\(367\) 12638.0 1.79754 0.898768 0.438425i \(-0.144463\pi\)
0.898768 + 0.438425i \(0.144463\pi\)
\(368\) 1506.36 0.213382
\(369\) 0 0
\(370\) 4213.33 0.592002
\(371\) 0 0
\(372\) 0 0
\(373\) −6212.81 −0.862431 −0.431216 0.902249i \(-0.641915\pi\)
−0.431216 + 0.902249i \(0.641915\pi\)
\(374\) −7965.89 −1.10135
\(375\) 0 0
\(376\) −9908.53 −1.35903
\(377\) 8620.40 1.17765
\(378\) 0 0
\(379\) 5075.53 0.687896 0.343948 0.938989i \(-0.388236\pi\)
0.343948 + 0.938989i \(0.388236\pi\)
\(380\) 1352.65 0.182603
\(381\) 0 0
\(382\) 10936.1 1.46476
\(383\) −8413.71 −1.12251 −0.561254 0.827644i \(-0.689681\pi\)
−0.561254 + 0.827644i \(0.689681\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 21201.5 2.79567
\(387\) 0 0
\(388\) 3847.74 0.503453
\(389\) −3708.69 −0.483389 −0.241694 0.970352i \(-0.577703\pi\)
−0.241694 + 0.970352i \(0.577703\pi\)
\(390\) 0 0
\(391\) 1083.66 0.140162
\(392\) 0 0
\(393\) 0 0
\(394\) 9667.79 1.23618
\(395\) 677.126 0.0862529
\(396\) 0 0
\(397\) 4520.05 0.571422 0.285711 0.958316i \(-0.407770\pi\)
0.285711 + 0.958316i \(0.407770\pi\)
\(398\) −5341.12 −0.672679
\(399\) 0 0
\(400\) 1081.46 0.135183
\(401\) 12591.8 1.56809 0.784043 0.620707i \(-0.213154\pi\)
0.784043 + 0.620707i \(0.213154\pi\)
\(402\) 0 0
\(403\) 7176.78 0.887099
\(404\) 20531.9 2.52846
\(405\) 0 0
\(406\) 0 0
\(407\) −9336.84 −1.13713
\(408\) 0 0
\(409\) −9017.62 −1.09020 −0.545101 0.838370i \(-0.683509\pi\)
−0.545101 + 0.838370i \(0.683509\pi\)
\(410\) 9881.08 1.19022
\(411\) 0 0
\(412\) −21868.9 −2.61505
\(413\) 0 0
\(414\) 0 0
\(415\) −2322.61 −0.274729
\(416\) 3972.46 0.468188
\(417\) 0 0
\(418\) −4585.34 −0.536547
\(419\) 3.80670 0.000443842 0 0.000221921 1.00000i \(-0.499929\pi\)
0.000221921 1.00000i \(0.499929\pi\)
\(420\) 0 0
\(421\) 12076.0 1.39798 0.698989 0.715132i \(-0.253633\pi\)
0.698989 + 0.715132i \(0.253633\pi\)
\(422\) 14568.6 1.68054
\(423\) 0 0
\(424\) −19889.0 −2.27806
\(425\) 777.995 0.0887960
\(426\) 0 0
\(427\) 0 0
\(428\) 25167.1 2.84228
\(429\) 0 0
\(430\) −11980.4 −1.34359
\(431\) 10317.7 1.15310 0.576551 0.817061i \(-0.304398\pi\)
0.576551 + 0.817061i \(0.304398\pi\)
\(432\) 0 0
\(433\) −12728.4 −1.41267 −0.706334 0.707878i \(-0.749653\pi\)
−0.706334 + 0.707878i \(0.749653\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −16890.2 −1.85527
\(437\) 623.781 0.0682826
\(438\) 0 0
\(439\) 9972.58 1.08420 0.542102 0.840313i \(-0.317629\pi\)
0.542102 + 0.840313i \(0.317629\pi\)
\(440\) −9089.91 −0.984874
\(441\) 0 0
\(442\) −9117.40 −0.981155
\(443\) −10462.8 −1.12213 −0.561063 0.827773i \(-0.689607\pi\)
−0.561063 + 0.827773i \(0.689607\pi\)
\(444\) 0 0
\(445\) 159.399 0.0169803
\(446\) 18216.2 1.93400
\(447\) 0 0
\(448\) 0 0
\(449\) 11664.7 1.22604 0.613019 0.790068i \(-0.289955\pi\)
0.613019 + 0.790068i \(0.289955\pi\)
\(450\) 0 0
\(451\) −21896.7 −2.28620
\(452\) −12183.4 −1.26783
\(453\) 0 0
\(454\) 18631.4 1.92602
\(455\) 0 0
\(456\) 0 0
\(457\) 4542.53 0.464968 0.232484 0.972600i \(-0.425315\pi\)
0.232484 + 0.972600i \(0.425315\pi\)
\(458\) −28485.3 −2.90618
\(459\) 0 0
\(460\) 2629.47 0.266521
\(461\) 7887.54 0.796875 0.398437 0.917195i \(-0.369553\pi\)
0.398437 + 0.917195i \(0.369553\pi\)
\(462\) 0 0
\(463\) −5444.15 −0.546460 −0.273230 0.961949i \(-0.588092\pi\)
−0.273230 + 0.961949i \(0.588092\pi\)
\(464\) −6117.75 −0.612089
\(465\) 0 0
\(466\) −22316.6 −2.21845
\(467\) −10578.0 −1.04816 −0.524082 0.851668i \(-0.675591\pi\)
−0.524082 + 0.851668i \(0.675591\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −6975.69 −0.684606
\(471\) 0 0
\(472\) −22451.9 −2.18948
\(473\) 26548.7 2.58079
\(474\) 0 0
\(475\) 447.831 0.0432588
\(476\) 0 0
\(477\) 0 0
\(478\) −4537.43 −0.434178
\(479\) 11644.7 1.11077 0.555386 0.831592i \(-0.312570\pi\)
0.555386 + 0.831592i \(0.312570\pi\)
\(480\) 0 0
\(481\) −10686.5 −1.01302
\(482\) −7281.85 −0.688131
\(483\) 0 0
\(484\) 22732.3 2.13489
\(485\) 1273.90 0.119268
\(486\) 0 0
\(487\) −9237.23 −0.859504 −0.429752 0.902947i \(-0.641399\pi\)
−0.429752 + 0.902947i \(0.641399\pi\)
\(488\) 14240.6 1.32099
\(489\) 0 0
\(490\) 0 0
\(491\) 2704.47 0.248576 0.124288 0.992246i \(-0.460335\pi\)
0.124288 + 0.992246i \(0.460335\pi\)
\(492\) 0 0
\(493\) −4401.05 −0.402056
\(494\) −5248.18 −0.477990
\(495\) 0 0
\(496\) −5093.24 −0.461075
\(497\) 0 0
\(498\) 0 0
\(499\) −763.351 −0.0684815 −0.0342408 0.999414i \(-0.510901\pi\)
−0.0342408 + 0.999414i \(0.510901\pi\)
\(500\) 1887.77 0.168848
\(501\) 0 0
\(502\) 15476.0 1.37595
\(503\) 5902.36 0.523207 0.261604 0.965175i \(-0.415749\pi\)
0.261604 + 0.965175i \(0.415749\pi\)
\(504\) 0 0
\(505\) 6797.64 0.598993
\(506\) −8913.64 −0.783122
\(507\) 0 0
\(508\) −21655.4 −1.89134
\(509\) 2200.30 0.191604 0.0958020 0.995400i \(-0.469458\pi\)
0.0958020 + 0.995400i \(0.469458\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −14632.8 −1.26305
\(513\) 0 0
\(514\) 10644.2 0.913413
\(515\) −7240.29 −0.619506
\(516\) 0 0
\(517\) 15458.3 1.31500
\(518\) 0 0
\(519\) 0 0
\(520\) −10403.9 −0.877388
\(521\) −1213.69 −0.102059 −0.0510296 0.998697i \(-0.516250\pi\)
−0.0510296 + 0.998697i \(0.516250\pi\)
\(522\) 0 0
\(523\) 8864.18 0.741116 0.370558 0.928809i \(-0.379167\pi\)
0.370558 + 0.928809i \(0.379167\pi\)
\(524\) 9830.52 0.819558
\(525\) 0 0
\(526\) 26229.0 2.17422
\(527\) −3664.03 −0.302861
\(528\) 0 0
\(529\) −10954.4 −0.900337
\(530\) −14002.0 −1.14757
\(531\) 0 0
\(532\) 0 0
\(533\) −25062.0 −2.03669
\(534\) 0 0
\(535\) 8332.27 0.673337
\(536\) −19386.5 −1.56225
\(537\) 0 0
\(538\) −27977.3 −2.24198
\(539\) 0 0
\(540\) 0 0
\(541\) −11585.7 −0.920714 −0.460357 0.887734i \(-0.652279\pi\)
−0.460357 + 0.887734i \(0.652279\pi\)
\(542\) −15864.9 −1.25730
\(543\) 0 0
\(544\) −2028.10 −0.159842
\(545\) −5591.98 −0.439513
\(546\) 0 0
\(547\) 4233.45 0.330913 0.165456 0.986217i \(-0.447090\pi\)
0.165456 + 0.986217i \(0.447090\pi\)
\(548\) 9329.86 0.727284
\(549\) 0 0
\(550\) −6399.37 −0.496128
\(551\) −2533.34 −0.195869
\(552\) 0 0
\(553\) 0 0
\(554\) −18607.1 −1.42696
\(555\) 0 0
\(556\) −23032.0 −1.75679
\(557\) −2198.23 −0.167221 −0.0836106 0.996499i \(-0.526645\pi\)
−0.0836106 + 0.996499i \(0.526645\pi\)
\(558\) 0 0
\(559\) 30386.5 2.29913
\(560\) 0 0
\(561\) 0 0
\(562\) 6783.87 0.509182
\(563\) −5918.67 −0.443059 −0.221529 0.975154i \(-0.571105\pi\)
−0.221529 + 0.975154i \(0.571105\pi\)
\(564\) 0 0
\(565\) −4033.66 −0.300349
\(566\) 22842.8 1.69639
\(567\) 0 0
\(568\) −30310.9 −2.23911
\(569\) 2560.97 0.188684 0.0943422 0.995540i \(-0.469925\pi\)
0.0943422 + 0.995540i \(0.469925\pi\)
\(570\) 0 0
\(571\) −24683.8 −1.80908 −0.904540 0.426389i \(-0.859786\pi\)
−0.904540 + 0.426389i \(0.859786\pi\)
\(572\) 49025.1 3.58364
\(573\) 0 0
\(574\) 0 0
\(575\) 870.559 0.0631388
\(576\) 0 0
\(577\) −10144.6 −0.731932 −0.365966 0.930628i \(-0.619261\pi\)
−0.365966 + 0.930628i \(0.619261\pi\)
\(578\) −18959.4 −1.36437
\(579\) 0 0
\(580\) −10679.0 −0.764518
\(581\) 0 0
\(582\) 0 0
\(583\) 31028.8 2.20426
\(584\) 37294.3 2.64255
\(585\) 0 0
\(586\) −6254.78 −0.440926
\(587\) 12204.6 0.858158 0.429079 0.903267i \(-0.358838\pi\)
0.429079 + 0.903267i \(0.358838\pi\)
\(588\) 0 0
\(589\) −2109.10 −0.147545
\(590\) −15806.3 −1.10294
\(591\) 0 0
\(592\) 7584.05 0.526525
\(593\) 10372.0 0.718255 0.359128 0.933288i \(-0.383074\pi\)
0.359128 + 0.933288i \(0.383074\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 20959.1 1.44047
\(597\) 0 0
\(598\) −10202.2 −0.697655
\(599\) 20908.1 1.42618 0.713091 0.701072i \(-0.247295\pi\)
0.713091 + 0.701072i \(0.247295\pi\)
\(600\) 0 0
\(601\) 758.785 0.0515000 0.0257500 0.999668i \(-0.491803\pi\)
0.0257500 + 0.999668i \(0.491803\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 34498.6 2.32405
\(605\) 7526.15 0.505755
\(606\) 0 0
\(607\) −18780.8 −1.25583 −0.627917 0.778281i \(-0.716092\pi\)
−0.627917 + 0.778281i \(0.716092\pi\)
\(608\) −1167.42 −0.0778702
\(609\) 0 0
\(610\) 10025.5 0.665444
\(611\) 17692.9 1.17149
\(612\) 0 0
\(613\) 27346.0 1.80179 0.900893 0.434040i \(-0.142912\pi\)
0.900893 + 0.434040i \(0.142912\pi\)
\(614\) −29502.7 −1.93914
\(615\) 0 0
\(616\) 0 0
\(617\) 16384.9 1.06910 0.534548 0.845138i \(-0.320482\pi\)
0.534548 + 0.845138i \(0.320482\pi\)
\(618\) 0 0
\(619\) 9536.46 0.619229 0.309614 0.950862i \(-0.399800\pi\)
0.309614 + 0.950862i \(0.399800\pi\)
\(620\) −8890.62 −0.575896
\(621\) 0 0
\(622\) 19620.2 1.26479
\(623\) 0 0
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) −34333.6 −2.19209
\(627\) 0 0
\(628\) −4052.04 −0.257475
\(629\) 5455.89 0.345852
\(630\) 0 0
\(631\) −20656.2 −1.30318 −0.651592 0.758570i \(-0.725899\pi\)
−0.651592 + 0.758570i \(0.725899\pi\)
\(632\) 4622.94 0.290966
\(633\) 0 0
\(634\) 35960.2 2.25262
\(635\) −7169.61 −0.448059
\(636\) 0 0
\(637\) 0 0
\(638\) 36200.7 2.24639
\(639\) 0 0
\(640\) −13237.9 −0.817618
\(641\) 17904.5 1.10326 0.551628 0.834091i \(-0.314007\pi\)
0.551628 + 0.834091i \(0.314007\pi\)
\(642\) 0 0
\(643\) 4497.56 0.275842 0.137921 0.990443i \(-0.455958\pi\)
0.137921 + 0.990443i \(0.455958\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 2679.40 0.163188
\(647\) 261.315 0.0158784 0.00793922 0.999968i \(-0.497473\pi\)
0.00793922 + 0.999968i \(0.497473\pi\)
\(648\) 0 0
\(649\) 35027.2 2.11855
\(650\) −7324.44 −0.441982
\(651\) 0 0
\(652\) −41192.5 −2.47427
\(653\) −3791.14 −0.227196 −0.113598 0.993527i \(-0.536238\pi\)
−0.113598 + 0.993527i \(0.536238\pi\)
\(654\) 0 0
\(655\) 3254.67 0.194153
\(656\) 17786.1 1.05858
\(657\) 0 0
\(658\) 0 0
\(659\) −1149.18 −0.0679298 −0.0339649 0.999423i \(-0.510813\pi\)
−0.0339649 + 0.999423i \(0.510813\pi\)
\(660\) 0 0
\(661\) −1943.10 −0.114338 −0.0571692 0.998365i \(-0.518207\pi\)
−0.0571692 + 0.998365i \(0.518207\pi\)
\(662\) −9344.35 −0.548608
\(663\) 0 0
\(664\) −15857.2 −0.926773
\(665\) 0 0
\(666\) 0 0
\(667\) −4924.68 −0.285883
\(668\) 33744.4 1.95451
\(669\) 0 0
\(670\) −13648.2 −0.786981
\(671\) −22216.7 −1.27819
\(672\) 0 0
\(673\) 31546.2 1.80686 0.903431 0.428734i \(-0.141040\pi\)
0.903431 + 0.428734i \(0.141040\pi\)
\(674\) −9230.14 −0.527495
\(675\) 0 0
\(676\) 22932.5 1.30476
\(677\) −3409.55 −0.193560 −0.0967798 0.995306i \(-0.530854\pi\)
−0.0967798 + 0.995306i \(0.530854\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 5311.60 0.299545
\(681\) 0 0
\(682\) 30138.3 1.69217
\(683\) −2632.86 −0.147502 −0.0737508 0.997277i \(-0.523497\pi\)
−0.0737508 + 0.997277i \(0.523497\pi\)
\(684\) 0 0
\(685\) 3088.91 0.172294
\(686\) 0 0
\(687\) 0 0
\(688\) −21564.8 −1.19499
\(689\) 35514.2 1.96369
\(690\) 0 0
\(691\) −25251.1 −1.39015 −0.695076 0.718936i \(-0.744629\pi\)
−0.695076 + 0.718936i \(0.744629\pi\)
\(692\) 35334.1 1.94104
\(693\) 0 0
\(694\) −10062.1 −0.550363
\(695\) −7625.39 −0.416183
\(696\) 0 0
\(697\) 12795.1 0.695337
\(698\) −10569.4 −0.573149
\(699\) 0 0
\(700\) 0 0
\(701\) 18046.3 0.972325 0.486162 0.873869i \(-0.338396\pi\)
0.486162 + 0.873869i \(0.338396\pi\)
\(702\) 0 0
\(703\) 3140.53 0.168489
\(704\) 35112.4 1.87975
\(705\) 0 0
\(706\) −28171.5 −1.50177
\(707\) 0 0
\(708\) 0 0
\(709\) −21736.6 −1.15139 −0.575693 0.817666i \(-0.695268\pi\)
−0.575693 + 0.817666i \(0.695268\pi\)
\(710\) −21339.1 −1.12795
\(711\) 0 0
\(712\) 1088.27 0.0572816
\(713\) −4099.96 −0.215350
\(714\) 0 0
\(715\) 16231.1 0.848965
\(716\) −36936.2 −1.92789
\(717\) 0 0
\(718\) −34950.0 −1.81661
\(719\) 10921.1 0.566467 0.283233 0.959051i \(-0.408593\pi\)
0.283233 + 0.959051i \(0.408593\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −31425.3 −1.61984
\(723\) 0 0
\(724\) −17797.2 −0.913576
\(725\) −3535.57 −0.181114
\(726\) 0 0
\(727\) 15670.3 0.799420 0.399710 0.916642i \(-0.369111\pi\)
0.399710 + 0.916642i \(0.369111\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 26255.5 1.33118
\(731\) −15513.5 −0.784935
\(732\) 0 0
\(733\) 8032.15 0.404740 0.202370 0.979309i \(-0.435136\pi\)
0.202370 + 0.979309i \(0.435136\pi\)
\(734\) 60744.0 3.05463
\(735\) 0 0
\(736\) −2269.39 −0.113656
\(737\) 30244.8 1.51164
\(738\) 0 0
\(739\) 9602.50 0.477989 0.238994 0.971021i \(-0.423182\pi\)
0.238994 + 0.971021i \(0.423182\pi\)
\(740\) 13238.5 0.657645
\(741\) 0 0
\(742\) 0 0
\(743\) 17641.7 0.871078 0.435539 0.900170i \(-0.356558\pi\)
0.435539 + 0.900170i \(0.356558\pi\)
\(744\) 0 0
\(745\) 6939.09 0.341247
\(746\) −29861.7 −1.46557
\(747\) 0 0
\(748\) −25029.2 −1.22347
\(749\) 0 0
\(750\) 0 0
\(751\) 5688.94 0.276421 0.138211 0.990403i \(-0.455865\pi\)
0.138211 + 0.990403i \(0.455865\pi\)
\(752\) −12556.3 −0.608886
\(753\) 0 0
\(754\) 41433.7 2.00123
\(755\) 11421.7 0.550568
\(756\) 0 0
\(757\) −18939.2 −0.909324 −0.454662 0.890664i \(-0.650240\pi\)
−0.454662 + 0.890664i \(0.650240\pi\)
\(758\) 24395.4 1.16897
\(759\) 0 0
\(760\) 3057.48 0.145929
\(761\) −16101.6 −0.766992 −0.383496 0.923542i \(-0.625280\pi\)
−0.383496 + 0.923542i \(0.625280\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 34361.8 1.62718
\(765\) 0 0
\(766\) −40440.3 −1.90753
\(767\) 40090.6 1.88734
\(768\) 0 0
\(769\) −10781.2 −0.505568 −0.252784 0.967523i \(-0.581346\pi\)
−0.252784 + 0.967523i \(0.581346\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 66616.3 3.10567
\(773\) −10224.8 −0.475755 −0.237878 0.971295i \(-0.576452\pi\)
−0.237878 + 0.971295i \(0.576452\pi\)
\(774\) 0 0
\(775\) −2943.49 −0.136430
\(776\) 8697.31 0.402339
\(777\) 0 0
\(778\) −17825.7 −0.821444
\(779\) 7365.16 0.338748
\(780\) 0 0
\(781\) 47288.0 2.16658
\(782\) 5208.60 0.238183
\(783\) 0 0
\(784\) 0 0
\(785\) −1341.54 −0.0609958
\(786\) 0 0
\(787\) 12823.4 0.580817 0.290409 0.956903i \(-0.406209\pi\)
0.290409 + 0.956903i \(0.406209\pi\)
\(788\) 30376.7 1.37326
\(789\) 0 0
\(790\) 3254.59 0.146573
\(791\) 0 0
\(792\) 0 0
\(793\) −25428.3 −1.13870
\(794\) 21725.5 0.971044
\(795\) 0 0
\(796\) −16782.1 −0.747268
\(797\) −28745.8 −1.27758 −0.638789 0.769382i \(-0.720564\pi\)
−0.638789 + 0.769382i \(0.720564\pi\)
\(798\) 0 0
\(799\) −9032.91 −0.399951
\(800\) −1629.27 −0.0720041
\(801\) 0 0
\(802\) 60522.0 2.66472
\(803\) −58182.8 −2.55694
\(804\) 0 0
\(805\) 0 0
\(806\) 34495.0 1.50749
\(807\) 0 0
\(808\) 46409.5 2.02065
\(809\) 31758.8 1.38020 0.690099 0.723715i \(-0.257567\pi\)
0.690099 + 0.723715i \(0.257567\pi\)
\(810\) 0 0
\(811\) 3269.28 0.141554 0.0707769 0.997492i \(-0.477452\pi\)
0.0707769 + 0.997492i \(0.477452\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −44877.3 −1.93237
\(815\) −13637.9 −0.586154
\(816\) 0 0
\(817\) −8929.92 −0.382397
\(818\) −43343.0 −1.85263
\(819\) 0 0
\(820\) 31046.9 1.32220
\(821\) −17959.3 −0.763441 −0.381720 0.924278i \(-0.624668\pi\)
−0.381720 + 0.924278i \(0.624668\pi\)
\(822\) 0 0
\(823\) −22816.3 −0.966373 −0.483187 0.875517i \(-0.660521\pi\)
−0.483187 + 0.875517i \(0.660521\pi\)
\(824\) −49431.6 −2.08985
\(825\) 0 0
\(826\) 0 0
\(827\) −38776.6 −1.63047 −0.815233 0.579133i \(-0.803391\pi\)
−0.815233 + 0.579133i \(0.803391\pi\)
\(828\) 0 0
\(829\) 43239.0 1.81152 0.905761 0.423789i \(-0.139300\pi\)
0.905761 + 0.423789i \(0.139300\pi\)
\(830\) −11163.6 −0.466860
\(831\) 0 0
\(832\) 40188.1 1.67460
\(833\) 0 0
\(834\) 0 0
\(835\) 11172.0 0.463023
\(836\) −14407.4 −0.596040
\(837\) 0 0
\(838\) 18.2968 0.000754240 0
\(839\) −38639.2 −1.58996 −0.794978 0.606638i \(-0.792518\pi\)
−0.794978 + 0.606638i \(0.792518\pi\)
\(840\) 0 0
\(841\) −4388.57 −0.179940
\(842\) 58043.1 2.37565
\(843\) 0 0
\(844\) 45775.3 1.86689
\(845\) 7592.44 0.309098
\(846\) 0 0
\(847\) 0 0
\(848\) −25203.9 −1.02064
\(849\) 0 0
\(850\) 3739.41 0.150895
\(851\) 6105.02 0.245919
\(852\) 0 0
\(853\) −21024.3 −0.843914 −0.421957 0.906616i \(-0.638657\pi\)
−0.421957 + 0.906616i \(0.638657\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 56886.9 2.27144
\(857\) 40140.9 1.59998 0.799991 0.600011i \(-0.204837\pi\)
0.799991 + 0.600011i \(0.204837\pi\)
\(858\) 0 0
\(859\) −16970.0 −0.674050 −0.337025 0.941496i \(-0.609421\pi\)
−0.337025 + 0.941496i \(0.609421\pi\)
\(860\) −37642.9 −1.49257
\(861\) 0 0
\(862\) 49591.8 1.95952
\(863\) −28638.9 −1.12964 −0.564819 0.825215i \(-0.691054\pi\)
−0.564819 + 0.825215i \(0.691054\pi\)
\(864\) 0 0
\(865\) 11698.3 0.459832
\(866\) −61178.5 −2.40061
\(867\) 0 0
\(868\) 0 0
\(869\) −7212.24 −0.281540
\(870\) 0 0
\(871\) 34616.9 1.34667
\(872\) −38178.1 −1.48265
\(873\) 0 0
\(874\) 2998.19 0.116036
\(875\) 0 0
\(876\) 0 0
\(877\) 1459.67 0.0562026 0.0281013 0.999605i \(-0.491054\pi\)
0.0281013 + 0.999605i \(0.491054\pi\)
\(878\) 47933.0 1.84244
\(879\) 0 0
\(880\) −11519.0 −0.441254
\(881\) −34268.7 −1.31049 −0.655246 0.755416i \(-0.727435\pi\)
−0.655246 + 0.755416i \(0.727435\pi\)
\(882\) 0 0
\(883\) −23106.9 −0.880645 −0.440322 0.897840i \(-0.645136\pi\)
−0.440322 + 0.897840i \(0.645136\pi\)
\(884\) −28647.4 −1.08995
\(885\) 0 0
\(886\) −50289.1 −1.90688
\(887\) 22858.2 0.865280 0.432640 0.901567i \(-0.357582\pi\)
0.432640 + 0.901567i \(0.357582\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 766.148 0.0288555
\(891\) 0 0
\(892\) 57236.3 2.14844
\(893\) −5199.54 −0.194844
\(894\) 0 0
\(895\) −12228.8 −0.456718
\(896\) 0 0
\(897\) 0 0
\(898\) 56066.0 2.08346
\(899\) 16651.1 0.617735
\(900\) 0 0
\(901\) −18131.4 −0.670416
\(902\) −105246. −3.88504
\(903\) 0 0
\(904\) −27539.0 −1.01320
\(905\) −5892.27 −0.216426
\(906\) 0 0
\(907\) −4420.76 −0.161840 −0.0809199 0.996721i \(-0.525786\pi\)
−0.0809199 + 0.996721i \(0.525786\pi\)
\(908\) 58540.8 2.13959
\(909\) 0 0
\(910\) 0 0
\(911\) −31813.3 −1.15699 −0.578496 0.815685i \(-0.696360\pi\)
−0.578496 + 0.815685i \(0.696360\pi\)
\(912\) 0 0
\(913\) 24738.7 0.896750
\(914\) 21833.5 0.790142
\(915\) 0 0
\(916\) −89502.2 −3.22842
\(917\) 0 0
\(918\) 0 0
\(919\) 22036.5 0.790988 0.395494 0.918469i \(-0.370573\pi\)
0.395494 + 0.918469i \(0.370573\pi\)
\(920\) 5943.56 0.212993
\(921\) 0 0
\(922\) 37911.3 1.35417
\(923\) 54123.8 1.93012
\(924\) 0 0
\(925\) 4382.98 0.155796
\(926\) −26167.1 −0.928624
\(927\) 0 0
\(928\) 9216.62 0.326024
\(929\) −27015.4 −0.954086 −0.477043 0.878880i \(-0.658291\pi\)
−0.477043 + 0.878880i \(0.658291\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −70120.0 −2.46444
\(933\) 0 0
\(934\) −50843.0 −1.78119
\(935\) −8286.62 −0.289841
\(936\) 0 0
\(937\) −33711.1 −1.17534 −0.587670 0.809101i \(-0.699954\pi\)
−0.587670 + 0.809101i \(0.699954\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −21918.0 −0.760517
\(941\) 23168.8 0.802638 0.401319 0.915938i \(-0.368552\pi\)
0.401319 + 0.915938i \(0.368552\pi\)
\(942\) 0 0
\(943\) 14317.5 0.494423
\(944\) −28451.6 −0.980954
\(945\) 0 0
\(946\) 127606. 4.38565
\(947\) −39932.2 −1.37024 −0.685122 0.728428i \(-0.740251\pi\)
−0.685122 + 0.728428i \(0.740251\pi\)
\(948\) 0 0
\(949\) −66593.5 −2.27789
\(950\) 2152.49 0.0735116
\(951\) 0 0
\(952\) 0 0
\(953\) 31125.8 1.05799 0.528995 0.848625i \(-0.322569\pi\)
0.528995 + 0.848625i \(0.322569\pi\)
\(954\) 0 0
\(955\) 11376.4 0.385479
\(956\) −14256.8 −0.482321
\(957\) 0 0
\(958\) 55970.0 1.88759
\(959\) 0 0
\(960\) 0 0
\(961\) −15928.4 −0.534672
\(962\) −51364.6 −1.72148
\(963\) 0 0
\(964\) −22880.0 −0.764433
\(965\) 22055.2 0.735732
\(966\) 0 0
\(967\) −35679.1 −1.18652 −0.593259 0.805011i \(-0.702159\pi\)
−0.593259 + 0.805011i \(0.702159\pi\)
\(968\) 51383.3 1.70612
\(969\) 0 0
\(970\) 6122.98 0.202677
\(971\) −4137.64 −0.136749 −0.0683744 0.997660i \(-0.521781\pi\)
−0.0683744 + 0.997660i \(0.521781\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −44398.5 −1.46059
\(975\) 0 0
\(976\) 18046.0 0.591844
\(977\) −30405.7 −0.995664 −0.497832 0.867273i \(-0.665870\pi\)
−0.497832 + 0.867273i \(0.665870\pi\)
\(978\) 0 0
\(979\) −1697.80 −0.0554259
\(980\) 0 0
\(981\) 0 0
\(982\) 12998.9 0.422416
\(983\) 10011.3 0.324832 0.162416 0.986722i \(-0.448071\pi\)
0.162416 + 0.986722i \(0.448071\pi\)
\(984\) 0 0
\(985\) 10057.1 0.325324
\(986\) −21153.5 −0.683231
\(987\) 0 0
\(988\) −16490.1 −0.530991
\(989\) −17359.3 −0.558132
\(990\) 0 0
\(991\) −2889.51 −0.0926219 −0.0463110 0.998927i \(-0.514747\pi\)
−0.0463110 + 0.998927i \(0.514747\pi\)
\(992\) 7673.15 0.245588
\(993\) 0 0
\(994\) 0 0
\(995\) −5556.18 −0.177028
\(996\) 0 0
\(997\) 6005.63 0.190772 0.0953862 0.995440i \(-0.469591\pi\)
0.0953862 + 0.995440i \(0.469591\pi\)
\(998\) −3669.03 −0.116374
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2205.4.a.bs.1.5 5
3.2 odd 2 735.4.a.z.1.1 5
7.3 odd 6 315.4.j.h.226.1 10
7.5 odd 6 315.4.j.h.46.1 10
7.6 odd 2 2205.4.a.br.1.5 5
21.5 even 6 105.4.i.d.46.5 yes 10
21.17 even 6 105.4.i.d.16.5 10
21.20 even 2 735.4.a.ba.1.1 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.4.i.d.16.5 10 21.17 even 6
105.4.i.d.46.5 yes 10 21.5 even 6
315.4.j.h.46.1 10 7.5 odd 6
315.4.j.h.226.1 10 7.3 odd 6
735.4.a.z.1.1 5 3.2 odd 2
735.4.a.ba.1.1 5 21.20 even 2
2205.4.a.br.1.5 5 7.6 odd 2
2205.4.a.bs.1.5 5 1.1 even 1 trivial