L(s) = 1 | + 3.44·2-s + 3·3-s + 3.89·4-s − 5·5-s + 10.3·6-s − 14.1·8-s + 9·9-s − 17.2·10-s − 5.84·11-s + 11.6·12-s − 3.12·13-s − 15·15-s − 79.9·16-s − 62.1·17-s + 31.0·18-s + 17.6·19-s − 19.4·20-s − 20.1·22-s − 112.·23-s − 42.4·24-s + 25·25-s − 10.7·26-s + 27·27-s − 164.·29-s − 51.7·30-s + 20.2·31-s − 162.·32-s + ⋯ |
L(s) = 1 | + 1.21·2-s + 0.577·3-s + 0.486·4-s − 0.447·5-s + 0.703·6-s − 0.625·8-s + 0.333·9-s − 0.545·10-s − 0.160·11-s + 0.280·12-s − 0.0667·13-s − 0.258·15-s − 1.24·16-s − 0.886·17-s + 0.406·18-s + 0.212·19-s − 0.217·20-s − 0.195·22-s − 1.01·23-s − 0.361·24-s + 0.200·25-s − 0.0814·26-s + 0.192·27-s − 1.05·29-s − 0.314·30-s + 0.117·31-s − 0.898·32-s + ⋯ |
Λ(s)=(=(735s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(735s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1−3T |
| 5 | 1+5T |
| 7 | 1 |
good | 2 | 1−3.44T+8T2 |
| 11 | 1+5.84T+1.33e3T2 |
| 13 | 1+3.12T+2.19e3T2 |
| 17 | 1+62.1T+4.91e3T2 |
| 19 | 1−17.6T+6.85e3T2 |
| 23 | 1+112.T+1.21e4T2 |
| 29 | 1+164.T+2.43e4T2 |
| 31 | 1−20.2T+2.97e4T2 |
| 37 | 1+300.T+5.06e4T2 |
| 41 | 1−83.8T+6.89e4T2 |
| 43 | 1+44.5T+7.95e4T2 |
| 47 | 1−88.6T+1.03e5T2 |
| 53 | 1+363.T+1.48e5T2 |
| 59 | 1+660.T+2.05e5T2 |
| 61 | 1−805.T+2.26e5T2 |
| 67 | 1+510.T+3.00e5T2 |
| 71 | 1+615.T+3.57e5T2 |
| 73 | 1−30.6T+3.89e5T2 |
| 79 | 1−235.T+4.93e5T2 |
| 83 | 1+229.T+5.71e5T2 |
| 89 | 1−1.46e3T+7.04e5T2 |
| 97 | 1+490.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.433452754860636125538637852185, −8.706367676524001665999933296999, −7.74457059182801060959936831783, −6.79133305509100288127586120452, −5.81035291381217053551635350786, −4.78731193275618642709179724220, −3.99015148140149828481422327872, −3.17506575025664656211138791098, −2.03418902156462835054619168296, 0,
2.03418902156462835054619168296, 3.17506575025664656211138791098, 3.99015148140149828481422327872, 4.78731193275618642709179724220, 5.81035291381217053551635350786, 6.79133305509100288127586120452, 7.74457059182801060959936831783, 8.706367676524001665999933296999, 9.433452754860636125538637852185