Properties

Label 735.4.a.u
Level $735$
Weight $4$
Character orbit 735.a
Self dual yes
Analytic conductor $43.366$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [735,4,Mod(1,735)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(735, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("735.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 735 = 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 735.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(43.3664038542\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.51264.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 15x^{2} + 16x + 46 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{2} + \beta_1 - 2) q^{2} + 3 q^{3} + (2 \beta_{3} - \beta_{2} - \beta_1 + 6) q^{4} - 5 q^{5} + (3 \beta_{2} + 3 \beta_1 - 6) q^{6} + ( - 6 \beta_{3} + 7 \beta_{2} + \cdots - 10) q^{8} + 9 q^{9}+ \cdots + (27 \beta_{3} - 18 \beta_{2} + \cdots - 36) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 6 q^{2} + 12 q^{3} + 18 q^{4} - 20 q^{5} - 18 q^{6} - 30 q^{8} + 36 q^{9} + 30 q^{10} - 24 q^{11} + 54 q^{12} - 60 q^{15} - 46 q^{16} - 88 q^{17} - 54 q^{18} + 72 q^{19} - 90 q^{20} - 28 q^{22} - 90 q^{24}+ \cdots - 216 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 2x^{3} - 15x^{2} + 16x + 46 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} - \nu - 8 ) / 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} - \nu^{2} - 11\nu ) / 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 3\beta_{2} + \beta _1 + 8 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 3\beta_{3} + 3\beta_{2} + 12\beta _1 + 8 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.50184
−3.03449
2.50184
4.03449
−4.91605 3.00000 16.1676 −5.00000 −14.7482 0 −40.1522 9.00000 24.5803
1.2 −3.62028 3.00000 5.10642 −5.00000 −10.8608 0 10.4756 9.00000 18.1014
1.3 −0.912375 3.00000 −7.16757 −5.00000 −2.73712 0 13.8385 9.00000 4.56187
1.4 3.44871 3.00000 3.89358 −5.00000 10.3461 0 −14.1618 9.00000 −17.2435
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(5\) \( +1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 735.4.a.u yes 4
3.b odd 2 1 2205.4.a.bq 4
7.b odd 2 1 735.4.a.t 4
21.c even 2 1 2205.4.a.bp 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
735.4.a.t 4 7.b odd 2 1
735.4.a.u yes 4 1.a even 1 1 trivial
2205.4.a.bp 4 21.c even 2 1
2205.4.a.bq 4 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(735))\):

\( T_{2}^{4} + 6T_{2}^{3} - 7T_{2}^{2} - 72T_{2} - 56 \) Copy content Toggle raw display
\( T_{11}^{4} + 24T_{11}^{3} - 58T_{11}^{2} - 2808T_{11} - 10808 \) Copy content Toggle raw display
\( T_{13}^{4} - 1096T_{13}^{2} - 3072T_{13} + 1024 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + 6 T^{3} + \cdots - 56 \) Copy content Toggle raw display
$3$ \( (T - 3)^{4} \) Copy content Toggle raw display
$5$ \( (T + 5)^{4} \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( T^{4} + 24 T^{3} + \cdots - 10808 \) Copy content Toggle raw display
$13$ \( T^{4} - 1096 T^{2} + \cdots + 1024 \) Copy content Toggle raw display
$17$ \( T^{4} + 88 T^{3} + \cdots - 1153424 \) Copy content Toggle raw display
$19$ \( T^{4} - 72 T^{3} + \cdots + 5456016 \) Copy content Toggle raw display
$23$ \( T^{4} - 11698 T^{2} + \cdots + 9614584 \) Copy content Toggle raw display
$29$ \( T^{4} + 636 T^{3} + \cdots + 349146808 \) Copy content Toggle raw display
$31$ \( T^{4} - 228 T^{3} + \cdots - 24242148 \) Copy content Toggle raw display
$37$ \( T^{4} + 68 T^{3} + \cdots + 170898952 \) Copy content Toggle raw display
$41$ \( T^{4} + 56 T^{3} + \cdots + 126356848 \) Copy content Toggle raw display
$43$ \( T^{4} - 20 T^{3} + \cdots + 454079200 \) Copy content Toggle raw display
$47$ \( T^{4} + 744 T^{3} + \cdots + 276948792 \) Copy content Toggle raw display
$53$ \( T^{4} + 360 T^{3} + \cdots + 111504456 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots - 32798657504 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots - 37509812744 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots - 149047690736 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots + 56245124128 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots - 4390308576 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 4846395904 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots - 201571856352 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots - 9397074032 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 72223884864 \) Copy content Toggle raw display
show more
show less