L(s) = 1 | − 3-s − 4·7-s − 11·9-s − 9·13-s − 4·17-s + 4·19-s + 4·21-s − 2·23-s + 10·27-s − 5·29-s + 11·31-s + 8·37-s + 9·39-s − 4·43-s − 14·47-s − 25·49-s + 4·51-s − 11·53-s − 4·57-s − 15·59-s − 13·61-s + 44·63-s − 19·67-s + 2·69-s + 40·71-s − 31·73-s + 2·79-s + ⋯ |
L(s) = 1 | − 0.577·3-s − 1.51·7-s − 3.66·9-s − 2.49·13-s − 0.970·17-s + 0.917·19-s + 0.872·21-s − 0.417·23-s + 1.92·27-s − 0.928·29-s + 1.97·31-s + 1.31·37-s + 1.44·39-s − 0.609·43-s − 2.04·47-s − 3.57·49-s + 0.560·51-s − 1.51·53-s − 0.529·57-s − 1.95·59-s − 1.66·61-s + 5.54·63-s − 2.32·67-s + 0.240·69-s + 4.74·71-s − 3.62·73-s + 0.225·79-s + ⋯ |
Λ(s)=(=((224⋅516⋅378)s/2ΓC(s)8L(s)Λ(2−s)
Λ(s)=(=((224⋅516⋅378)s/2ΓC(s+1/2)8L(s)Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 37 | (1−T)8 |
good | 3 | 1+T+4pT2+13T3+25pT4+83T5+4p4T6+340T7+362pT8+340pT9+4p6T10+83p3T11+25p5T12+13p5T13+4p7T14+p7T15+p8T16 |
| 7 | 1+4T+41T2+134T3+760T4+2141T5+8811T6+3103pT7+72190T8+3103p2T9+8811p2T10+2141p3T11+760p4T12+134p5T13+41p6T14+4p7T15+p8T16 |
| 11 | 1+40T2+21T3+756T4+1183T5+9179T6+24891T7+95896T8+24891pT9+9179p2T10+1183p3T11+756p4T12+21p5T13+40p6T14+p8T16 |
| 13 | 1+9T+99T2+634T3+4216T4+20993T5+104419T6+419854T7+1666702T8+419854pT9+104419p2T10+20993p3T11+4216p4T12+634p5T13+99p6T14+9p7T15+p8T16 |
| 17 | 1+4T+71T2+145T3+2168T4+1557T5+2687pT6−217T7+823058T8−217pT9+2687p3T10+1557p3T11+2168p4T12+145p5T13+71p6T14+4p7T15+p8T16 |
| 19 | 1−4T+89T2−356T3+3589T4−15109T5+92127T6−407004T7+1868187T8−407004pT9+92127p2T10−15109p3T11+3589p4T12−356p5T13+89p6T14−4p7T15+p8T16 |
| 23 | 1+2T+94T2+301T3+4971T4+16391T5+182755T6+565688T7+4833338T8+565688pT9+182755p2T10+16391p3T11+4971p4T12+301p5T13+94p6T14+2p7T15+p8T16 |
| 29 | 1+5T+187T2+800T3+16086T4+58905T5+839763T6+2610422T7+29357790T8+2610422pT9+839763p2T10+58905p3T11+16086p4T12+800p5T13+187p6T14+5p7T15+p8T16 |
| 31 | 1−11T+231T2−1905T3+23233T4−153870T5+1371031T6−7421606T7+52211608T8−7421606pT9+1371031p2T10−153870p3T11+23233p4T12−1905p5T13+231p6T14−11p7T15+p8T16 |
| 41 | 1+224T2−141T3+24629T4−22712T5+1723583T6−1673307T7+83770693T8−1673307pT9+1723583p2T10−22712p3T11+24629p4T12−141p5T13+224p6T14+p8T16 |
| 43 | 1+4T+76T2+193T3+5489T4+24195T5+355439T6+947630T7+14585842T8+947630pT9+355439p2T10+24195p3T11+5489p4T12+193p5T13+76p6T14+4p7T15+p8T16 |
| 47 | 1+14T+203T2+2202T3+22790T4+190523T5+1638719T6+11878747T7+86001310T8+11878747pT9+1638719p2T10+190523p3T11+22790p4T12+2202p5T13+203p6T14+14p7T15+p8T16 |
| 53 | 1+11T+229T2+1735T3+22744T4+123313T5+1409954T6+6077569T7+74018624T8+6077569pT9+1409954p2T10+123313p3T11+22744p4T12+1735p5T13+229p6T14+11p7T15+p8T16 |
| 59 | 1+15T+407T2+4664T3+74618T4+688341T5+8132690T6+61792736T7+583695956T8+61792736pT9+8132690p2T10+688341p3T11+74618p4T12+4664p5T13+407p6T14+15p7T15+p8T16 |
| 61 | 1+13T+163T2+1165T3+16487T4+142792T5+1563853T6+9653588T7+89810140T8+9653588pT9+1563853p2T10+142792p3T11+16487p4T12+1165p5T13+163p6T14+13p7T15+p8T16 |
| 67 | 1+19T+559T2+7561T3+127663T4+1338243T5+16489908T6+139349862T7+1359453328T8+139349862pT9+16489908p2T10+1338243p3T11+127663p4T12+7561p5T13+559p6T14+19p7T15+p8T16 |
| 71 | 1−40T+899T2−14968T3+209296T4−2532989T5+27167623T6−262647011T7+2318120662T8−262647011pT9+27167623p2T10−2532989p3T11+209296p4T12−14968p5T13+899p6T14−40p7T15+p8T16 |
| 73 | 1+31T+859T2+15266T3+247690T4+3153920T5+37367805T6+369631911T7+3429783898T8+369631911pT9+37367805p2T10+3153920p3T11+247690p4T12+15266p5T13+859p6T14+31p7T15+p8T16 |
| 79 | 1−2T+241T2+317T3+25518T4+160045T5+1915546T6+21066986T7+144183384T8+21066986pT9+1915546p2T10+160045p3T11+25518p4T12+317p5T13+241p6T14−2p7T15+p8T16 |
| 83 | 1+4T+301T2+857T3+54134T4+95849T5+6417081T6+7294227T7+604402462T8+7294227pT9+6417081p2T10+95849p3T11+54134p4T12+857p5T13+301p6T14+4p7T15+p8T16 |
| 89 | 1+12T+459T2+4425T3+102144T4+851303T5+14968945T6+109132431T7+17613520pT8+109132431pT9+14968945p2T10+851303p3T11+102144p4T12+4425p5T13+459p6T14+12p7T15+p8T16 |
| 97 | 1+11T+341T2+3139T3+37601T4+191096T5−201829T6−22517198T7−298694996T8−22517198pT9−201829p2T10+191096p3T11+37601p4T12+3139p5T13+341p6T14+11p7T15+p8T16 |
show more | |
show less | |
L(s)=p∏ j=1∏16(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−3.63781537093458223077848955815, −3.35358602094162403631116762944, −3.16866834861953392050049366688, −3.11060510655001701741078058305, −3.09263506739564643488899512771, −3.06323099618941609541453997654, −3.06085589887160388742016133900, −2.99852503550551270884118000171, −2.99734256247562265776340215907, −2.61434727497127814684422254156, −2.49599059664715106792597623423, −2.49253999766850301263740328006, −2.37758830003560983719967997036, −2.20968707240768147442259439429, −2.17833575734121189749515951834, −2.13389746703319454506044827658, −2.11093992332776658930164184034, −1.57990519623249631007725704567, −1.57425735451752144925734281963, −1.39545628431842754335440431609, −1.30669521302015643659372614173, −1.30388085362307466487649111931, −1.03752905638199006409131040907, −0.964386981791585366381639066511, −0.879741498050797199283884864291, 0, 0, 0, 0, 0, 0, 0, 0,
0.879741498050797199283884864291, 0.964386981791585366381639066511, 1.03752905638199006409131040907, 1.30388085362307466487649111931, 1.30669521302015643659372614173, 1.39545628431842754335440431609, 1.57425735451752144925734281963, 1.57990519623249631007725704567, 2.11093992332776658930164184034, 2.13389746703319454506044827658, 2.17833575734121189749515951834, 2.20968707240768147442259439429, 2.37758830003560983719967997036, 2.49253999766850301263740328006, 2.49599059664715106792597623423, 2.61434727497127814684422254156, 2.99734256247562265776340215907, 2.99852503550551270884118000171, 3.06085589887160388742016133900, 3.06323099618941609541453997654, 3.09263506739564643488899512771, 3.11060510655001701741078058305, 3.16866834861953392050049366688, 3.35358602094162403631116762944, 3.63781537093458223077848955815
Plot not available for L-functions of degree greater than 10.