Properties

Label 7400.2.a.u
Level 74007400
Weight 22
Character orbit 7400.a
Self dual yes
Analytic conductor 59.08959.089
Analytic rank 11
Dimension 88
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7400,2,Mod(1,7400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7400, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7400.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 7400=235237 7400 = 2^{3} \cdot 5^{2} \cdot 37
Weight: k k == 2 2
Character orbit: [χ][\chi] == 7400.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 59.089297495759.0892974957
Analytic rank: 11
Dimension: 88
Coefficient field: Q[x]/(x8)\mathbb{Q}[x]/(x^{8} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8x712x6+8x5+39x414x336x2+11x+6 x^{8} - x^{7} - 12x^{6} + 8x^{5} + 39x^{4} - 14x^{3} - 36x^{2} + 11x + 6 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β71,\beta_1,\ldots,\beta_{7} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ1q3β7q7+(β7β4+β31)q9+(β5+β4+β1)q11+(β6+β5β31)q13+(β7+β6β5++1)q17++(β5β42β3+2)q99+O(q100) q - \beta_1 q^{3} - \beta_{7} q^{7} + (\beta_{7} - \beta_{4} + \beta_{3} - 1) q^{9} + (\beta_{5} + \beta_{4} + \beta_1) q^{11} + ( - \beta_{6} + \beta_{5} - \beta_{3} - 1) q^{13} + ( - \beta_{7} + \beta_{6} - \beta_{5} + \cdots + 1) q^{17}+ \cdots + (\beta_{5} - \beta_{4} - 2 \beta_{3} + \cdots - 2) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8qq34q7+q99q134q17+4q19+6q212q237q275q29+11q3115q33+8q37+8q394q4314q4710q49+23q51+19q99+O(q100) 8 q - q^{3} - 4 q^{7} + q^{9} - 9 q^{13} - 4 q^{17} + 4 q^{19} + 6 q^{21} - 2 q^{23} - 7 q^{27} - 5 q^{29} + 11 q^{31} - 15 q^{33} + 8 q^{37} + 8 q^{39} - 4 q^{43} - 14 q^{47} - 10 q^{49} + 23 q^{51}+ \cdots - 19 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x8x712x6+8x5+39x414x336x2+11x+6 x^{8} - x^{7} - 12x^{6} + 8x^{5} + 39x^{4} - 14x^{3} - 36x^{2} + 11x + 6 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== 2ν72ν622ν5+13ν4+58ν35ν230ν4 2\nu^{7} - 2\nu^{6} - 22\nu^{5} + 13\nu^{4} + 58\nu^{3} - 5\nu^{2} - 30\nu - 4 Copy content Toggle raw display
β3\beta_{3}== 3ν7+ν639ν521ν4+132ν3+81ν290ν30 3\nu^{7} + \nu^{6} - 39\nu^{5} - 21\nu^{4} + 132\nu^{3} + 81\nu^{2} - 90\nu - 30 Copy content Toggle raw display
β4\beta_{4}== 5ν7+2ν6+59ν5ν4174ν362ν2+99ν+34 -5\nu^{7} + 2\nu^{6} + 59\nu^{5} - \nu^{4} - 174\nu^{3} - 62\nu^{2} + 99\nu + 34 Copy content Toggle raw display
β5\beta_{5}== 4ν750ν515ν4+161ν3+82ν2104ν34 4\nu^{7} - 50\nu^{5} - 15\nu^{4} + 161\nu^{3} + 82\nu^{2} - 104\nu - 34 Copy content Toggle raw display
β6\beta_{6}== 7ν7+2ν6+84ν5+6ν4254ν399ν2+149ν+47 -7\nu^{7} + 2\nu^{6} + 84\nu^{5} + 6\nu^{4} - 254\nu^{3} - 99\nu^{2} + 149\nu + 47 Copy content Toggle raw display
β7\beta_{7}== 8ν7+ν6+98ν5+20ν4306ν3142ν2+189ν+62 -8\nu^{7} + \nu^{6} + 98\nu^{5} + 20\nu^{4} - 306\nu^{3} - 142\nu^{2} + 189\nu + 62 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β7β4+β3+2 \beta_{7} - \beta_{4} + \beta_{3} + 2 Copy content Toggle raw display
ν3\nu^{3}== β7+2β6β5β4+β3+β2+6β1+2 -\beta_{7} + 2\beta_{6} - \beta_{5} - \beta_{4} + \beta_{3} + \beta_{2} + 6\beta _1 + 2 Copy content Toggle raw display
ν4\nu^{4}== 7β72β57β4+9β3+β2+2β1+10 7\beta_{7} - 2\beta_{5} - 7\beta_{4} + 9\beta_{3} + \beta_{2} + 2\beta _1 + 10 Copy content Toggle raw display
ν5\nu^{5}== 10β7+19β614β511β4+12β3+9β2+42β1+21 -10\beta_{7} + 19\beta_{6} - 14\beta_{5} - 11\beta_{4} + 12\beta_{3} + 9\beta_{2} + 42\beta _1 + 21 Copy content Toggle raw display
ν6\nu^{6}== 45β7+6β630β554β4+76β3+12β2+27β1+72 45\beta_{7} + 6\beta_{6} - 30\beta_{5} - 54\beta_{4} + 76\beta_{3} + 12\beta_{2} + 27\beta _1 + 72 Copy content Toggle raw display
ν7\nu^{7}== 79β7+157β6142β5103β4+123β3+76β2+317β1+187 -79\beta_{7} + 157\beta_{6} - 142\beta_{5} - 103\beta_{4} + 123\beta_{3} + 76\beta_{2} + 317\beta _1 + 187 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
2.95803
2.07336
0.819833
0.800175
−0.305014
−1.31809
−1.42472
−2.60358
0 −2.95803 0 0 0 −0.939702 0 5.74994 0
1.2 0 −2.07336 0 0 0 −2.31363 0 1.29882 0
1.3 0 −0.819833 0 0 0 3.46626 0 −2.32787 0
1.4 0 −0.800175 0 0 0 −4.46764 0 −2.35972 0
1.5 0 0.305014 0 0 0 0.258050 0 −2.90697 0
1.6 0 1.31809 0 0 0 2.07329 0 −1.26265 0
1.7 0 1.42472 0 0 0 −0.242089 0 −0.970174 0
1.8 0 2.60358 0 0 0 −1.83454 0 3.77862 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.8
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1
55 1 -1
3737 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7400.2.a.u 8
5.b even 2 1 7400.2.a.v yes 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
7400.2.a.u 8 1.a even 1 1 trivial
7400.2.a.v yes 8 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(7400))S_{2}^{\mathrm{new}}(\Gamma_0(7400)):

T38+T3712T368T35+39T34+14T3336T3211T3+6 T_{3}^{8} + T_{3}^{7} - 12T_{3}^{6} - 8T_{3}^{5} + 39T_{3}^{4} + 14T_{3}^{3} - 36T_{3}^{2} - 11T_{3} + 6 Copy content Toggle raw display
T78+4T7715T7662T75+18T74+195T73+124T7214T78 T_{7}^{8} + 4T_{7}^{7} - 15T_{7}^{6} - 62T_{7}^{5} + 18T_{7}^{4} + 195T_{7}^{3} + 124T_{7}^{2} - 14T_{7} - 8 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T8 T^{8} Copy content Toggle raw display
33 T8+T712T6++6 T^{8} + T^{7} - 12 T^{6} + \cdots + 6 Copy content Toggle raw display
55 T8 T^{8} Copy content Toggle raw display
77 T8+4T7+8 T^{8} + 4 T^{7} + \cdots - 8 Copy content Toggle raw display
1111 T848T6+288 T^{8} - 48 T^{6} + \cdots - 288 Copy content Toggle raw display
1313 T8+9T7+1068 T^{8} + 9 T^{7} + \cdots - 1068 Copy content Toggle raw display
1717 T8+4T7+7528 T^{8} + 4 T^{7} + \cdots - 7528 Copy content Toggle raw display
1919 T84T7+1641 T^{8} - 4 T^{7} + \cdots - 1641 Copy content Toggle raw display
2323 T8+2T7+41788 T^{8} + 2 T^{7} + \cdots - 41788 Copy content Toggle raw display
2929 T8+5T7++1264 T^{8} + 5 T^{7} + \cdots + 1264 Copy content Toggle raw display
3131 T811T7+54888 T^{8} - 11 T^{7} + \cdots - 54888 Copy content Toggle raw display
3737 (T1)8 (T - 1)^{8} Copy content Toggle raw display
4141 T8104T6++14499 T^{8} - 104 T^{6} + \cdots + 14499 Copy content Toggle raw display
4343 T8+4T7+931052 T^{8} + 4 T^{7} + \cdots - 931052 Copy content Toggle raw display
4747 T8+14T7++255168 T^{8} + 14 T^{7} + \cdots + 255168 Copy content Toggle raw display
5353 T8+11T7+65412 T^{8} + 11 T^{7} + \cdots - 65412 Copy content Toggle raw display
5959 T8+15T7++585268 T^{8} + 15 T^{7} + \cdots + 585268 Copy content Toggle raw display
6161 T8+13T7+24587796 T^{8} + 13 T^{7} + \cdots - 24587796 Copy content Toggle raw display
6767 T8+19T7++13278 T^{8} + 19 T^{7} + \cdots + 13278 Copy content Toggle raw display
7171 T840T7+22260148 T^{8} - 40 T^{7} + \cdots - 22260148 Copy content Toggle raw display
7373 T8+31T7++2429664 T^{8} + 31 T^{7} + \cdots + 2429664 Copy content Toggle raw display
7979 T82T7++298156 T^{8} - 2 T^{7} + \cdots + 298156 Copy content Toggle raw display
8383 T8+4T7++35726136 T^{8} + 4 T^{7} + \cdots + 35726136 Copy content Toggle raw display
8989 T8+12T7+380742 T^{8} + 12 T^{7} + \cdots - 380742 Copy content Toggle raw display
9797 T8+11T7++2651024 T^{8} + 11 T^{7} + \cdots + 2651024 Copy content Toggle raw display
show more
show less