Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [7400,2,Mod(1,7400)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(7400, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("7400.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 7400.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Fricke sign: | |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
0 | −2.95803 | 0 | 0 | 0 | −0.939702 | 0 | 5.74994 | 0 | ||||||||||||||||||||||||||||||||||||||||||
1.2 | 0 | −2.07336 | 0 | 0 | 0 | −2.31363 | 0 | 1.29882 | 0 | |||||||||||||||||||||||||||||||||||||||||||
1.3 | 0 | −0.819833 | 0 | 0 | 0 | 3.46626 | 0 | −2.32787 | 0 | |||||||||||||||||||||||||||||||||||||||||||
1.4 | 0 | −0.800175 | 0 | 0 | 0 | −4.46764 | 0 | −2.35972 | 0 | |||||||||||||||||||||||||||||||||||||||||||
1.5 | 0 | 0.305014 | 0 | 0 | 0 | 0.258050 | 0 | −2.90697 | 0 | |||||||||||||||||||||||||||||||||||||||||||
1.6 | 0 | 1.31809 | 0 | 0 | 0 | 2.07329 | 0 | −1.26265 | 0 | |||||||||||||||||||||||||||||||||||||||||||
1.7 | 0 | 1.42472 | 0 | 0 | 0 | −0.242089 | 0 | −0.970174 | 0 | |||||||||||||||||||||||||||||||||||||||||||
1.8 | 0 | 2.60358 | 0 | 0 | 0 | −1.83454 | 0 | 3.77862 | 0 | |||||||||||||||||||||||||||||||||||||||||||
Atkin-Lehner signs
Sign | |
---|---|
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 7400.2.a.u | ✓ | 8 |
5.b | even | 2 | 1 | 7400.2.a.v | yes | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
7400.2.a.u | ✓ | 8 | 1.a | even | 1 | 1 | trivial |
7400.2.a.v | yes | 8 | 5.b | even | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|