Properties

Label 7400.2.a.u
Level $7400$
Weight $2$
Character orbit 7400.a
Self dual yes
Analytic conductor $59.089$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7400,2,Mod(1,7400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7400, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7400.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7400 = 2^{3} \cdot 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7400.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(59.0892974957\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} - 12x^{6} + 8x^{5} + 39x^{4} - 14x^{3} - 36x^{2} + 11x + 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{3} - \beta_{7} q^{7} + (\beta_{7} - \beta_{4} + \beta_{3} - 1) q^{9} + (\beta_{5} + \beta_{4} + \beta_1) q^{11} + ( - \beta_{6} + \beta_{5} - \beta_{3} - 1) q^{13} + ( - \beta_{7} + \beta_{6} - \beta_{5} + \cdots + 1) q^{17}+ \cdots + (\beta_{5} - \beta_{4} - 2 \beta_{3} + \cdots - 2) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - q^{3} - 4 q^{7} + q^{9} - 9 q^{13} - 4 q^{17} + 4 q^{19} + 6 q^{21} - 2 q^{23} - 7 q^{27} - 5 q^{29} + 11 q^{31} - 15 q^{33} + 8 q^{37} + 8 q^{39} - 4 q^{43} - 14 q^{47} - 10 q^{49} + 23 q^{51}+ \cdots - 19 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - x^{7} - 12x^{6} + 8x^{5} + 39x^{4} - 14x^{3} - 36x^{2} + 11x + 6 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( 2\nu^{7} - 2\nu^{6} - 22\nu^{5} + 13\nu^{4} + 58\nu^{3} - 5\nu^{2} - 30\nu - 4 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 3\nu^{7} + \nu^{6} - 39\nu^{5} - 21\nu^{4} + 132\nu^{3} + 81\nu^{2} - 90\nu - 30 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( -5\nu^{7} + 2\nu^{6} + 59\nu^{5} - \nu^{4} - 174\nu^{3} - 62\nu^{2} + 99\nu + 34 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( 4\nu^{7} - 50\nu^{5} - 15\nu^{4} + 161\nu^{3} + 82\nu^{2} - 104\nu - 34 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( -7\nu^{7} + 2\nu^{6} + 84\nu^{5} + 6\nu^{4} - 254\nu^{3} - 99\nu^{2} + 149\nu + 47 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( -8\nu^{7} + \nu^{6} + 98\nu^{5} + 20\nu^{4} - 306\nu^{3} - 142\nu^{2} + 189\nu + 62 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{7} - \beta_{4} + \beta_{3} + 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -\beta_{7} + 2\beta_{6} - \beta_{5} - \beta_{4} + \beta_{3} + \beta_{2} + 6\beta _1 + 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 7\beta_{7} - 2\beta_{5} - 7\beta_{4} + 9\beta_{3} + \beta_{2} + 2\beta _1 + 10 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -10\beta_{7} + 19\beta_{6} - 14\beta_{5} - 11\beta_{4} + 12\beta_{3} + 9\beta_{2} + 42\beta _1 + 21 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 45\beta_{7} + 6\beta_{6} - 30\beta_{5} - 54\beta_{4} + 76\beta_{3} + 12\beta_{2} + 27\beta _1 + 72 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( -79\beta_{7} + 157\beta_{6} - 142\beta_{5} - 103\beta_{4} + 123\beta_{3} + 76\beta_{2} + 317\beta _1 + 187 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.95803
2.07336
0.819833
0.800175
−0.305014
−1.31809
−1.42472
−2.60358
0 −2.95803 0 0 0 −0.939702 0 5.74994 0
1.2 0 −2.07336 0 0 0 −2.31363 0 1.29882 0
1.3 0 −0.819833 0 0 0 3.46626 0 −2.32787 0
1.4 0 −0.800175 0 0 0 −4.46764 0 −2.35972 0
1.5 0 0.305014 0 0 0 0.258050 0 −2.90697 0
1.6 0 1.31809 0 0 0 2.07329 0 −1.26265 0
1.7 0 1.42472 0 0 0 −0.242089 0 −0.970174 0
1.8 0 2.60358 0 0 0 −1.83454 0 3.77862 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.8
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( -1 \)
\(37\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7400.2.a.u 8
5.b even 2 1 7400.2.a.v yes 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
7400.2.a.u 8 1.a even 1 1 trivial
7400.2.a.v yes 8 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(7400))\):

\( T_{3}^{8} + T_{3}^{7} - 12T_{3}^{6} - 8T_{3}^{5} + 39T_{3}^{4} + 14T_{3}^{3} - 36T_{3}^{2} - 11T_{3} + 6 \) Copy content Toggle raw display
\( T_{7}^{8} + 4T_{7}^{7} - 15T_{7}^{6} - 62T_{7}^{5} + 18T_{7}^{4} + 195T_{7}^{3} + 124T_{7}^{2} - 14T_{7} - 8 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( T^{8} + T^{7} - 12 T^{6} + \cdots + 6 \) Copy content Toggle raw display
$5$ \( T^{8} \) Copy content Toggle raw display
$7$ \( T^{8} + 4 T^{7} + \cdots - 8 \) Copy content Toggle raw display
$11$ \( T^{8} - 48 T^{6} + \cdots - 288 \) Copy content Toggle raw display
$13$ \( T^{8} + 9 T^{7} + \cdots - 1068 \) Copy content Toggle raw display
$17$ \( T^{8} + 4 T^{7} + \cdots - 7528 \) Copy content Toggle raw display
$19$ \( T^{8} - 4 T^{7} + \cdots - 1641 \) Copy content Toggle raw display
$23$ \( T^{8} + 2 T^{7} + \cdots - 41788 \) Copy content Toggle raw display
$29$ \( T^{8} + 5 T^{7} + \cdots + 1264 \) Copy content Toggle raw display
$31$ \( T^{8} - 11 T^{7} + \cdots - 54888 \) Copy content Toggle raw display
$37$ \( (T - 1)^{8} \) Copy content Toggle raw display
$41$ \( T^{8} - 104 T^{6} + \cdots + 14499 \) Copy content Toggle raw display
$43$ \( T^{8} + 4 T^{7} + \cdots - 931052 \) Copy content Toggle raw display
$47$ \( T^{8} + 14 T^{7} + \cdots + 255168 \) Copy content Toggle raw display
$53$ \( T^{8} + 11 T^{7} + \cdots - 65412 \) Copy content Toggle raw display
$59$ \( T^{8} + 15 T^{7} + \cdots + 585268 \) Copy content Toggle raw display
$61$ \( T^{8} + 13 T^{7} + \cdots - 24587796 \) Copy content Toggle raw display
$67$ \( T^{8} + 19 T^{7} + \cdots + 13278 \) Copy content Toggle raw display
$71$ \( T^{8} - 40 T^{7} + \cdots - 22260148 \) Copy content Toggle raw display
$73$ \( T^{8} + 31 T^{7} + \cdots + 2429664 \) Copy content Toggle raw display
$79$ \( T^{8} - 2 T^{7} + \cdots + 298156 \) Copy content Toggle raw display
$83$ \( T^{8} + 4 T^{7} + \cdots + 35726136 \) Copy content Toggle raw display
$89$ \( T^{8} + 12 T^{7} + \cdots - 380742 \) Copy content Toggle raw display
$97$ \( T^{8} + 11 T^{7} + \cdots + 2651024 \) Copy content Toggle raw display
show more
show less