L(s) = 1 | + 2.60·3-s − 1.83·7-s + 3.77·9-s − 2.57·11-s − 1.16·13-s − 4.37·17-s + 8.21·19-s − 4.77·21-s − 5.87·23-s + 2.02·27-s + 2.45·29-s + 1.96·31-s − 6.70·33-s + 37-s − 3.04·39-s − 4.40·41-s − 10.9·43-s − 2.19·47-s − 3.63·49-s − 11.3·51-s + 6.44·53-s + 21.3·57-s − 5.31·59-s − 1.92·61-s − 6.93·63-s − 9.58·67-s − 15.2·69-s + ⋯ |
L(s) = 1 | + 1.50·3-s − 0.693·7-s + 1.25·9-s − 0.776·11-s − 0.324·13-s − 1.06·17-s + 1.88·19-s − 1.04·21-s − 1.22·23-s + 0.390·27-s + 0.455·29-s + 0.353·31-s − 1.16·33-s + 0.164·37-s − 0.487·39-s − 0.688·41-s − 1.66·43-s − 0.319·47-s − 0.519·49-s − 1.59·51-s + 0.884·53-s + 2.83·57-s − 0.691·59-s − 0.245·61-s − 0.873·63-s − 1.17·67-s − 1.84·69-s + ⋯ |
Λ(s)=(=(7400s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(7400s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 37 | 1−T |
good | 3 | 1−2.60T+3T2 |
| 7 | 1+1.83T+7T2 |
| 11 | 1+2.57T+11T2 |
| 13 | 1+1.16T+13T2 |
| 17 | 1+4.37T+17T2 |
| 19 | 1−8.21T+19T2 |
| 23 | 1+5.87T+23T2 |
| 29 | 1−2.45T+29T2 |
| 31 | 1−1.96T+31T2 |
| 41 | 1+4.40T+41T2 |
| 43 | 1+10.9T+43T2 |
| 47 | 1+2.19T+47T2 |
| 53 | 1−6.44T+53T2 |
| 59 | 1+5.31T+59T2 |
| 61 | 1+1.92T+61T2 |
| 67 | 1+9.58T+67T2 |
| 71 | 1−3.34T+71T2 |
| 73 | 1+12.2T+73T2 |
| 79 | 1−7.84T+79T2 |
| 83 | 1−5.94T+83T2 |
| 89 | 1+4.71T+89T2 |
| 97 | 1−4.14T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.77380438221412235634322403413, −7.02392613848248657859546204110, −6.32968153020519332969779350118, −5.35354250813643235740755872156, −4.59087320496417846686539323993, −3.66248235735476381116198262435, −3.06085589887160388742016133900, −2.49253999766850301263740328006, −1.57425735451752144925734281963, 0,
1.57425735451752144925734281963, 2.49253999766850301263740328006, 3.06085589887160388742016133900, 3.66248235735476381116198262435, 4.59087320496417846686539323993, 5.35354250813643235740755872156, 6.32968153020519332969779350118, 7.02392613848248657859546204110, 7.77380438221412235634322403413