L(s) = 1 | − 2.95·3-s − 0.939·7-s + 5.74·9-s − 1.84·11-s − 6.00·13-s − 5.08·17-s + 3.73·19-s + 2.77·21-s + 4.23·23-s − 8.13·27-s + 0.310·29-s + 5.50·31-s + 5.45·33-s + 37-s + 17.7·39-s + 5.16·41-s + 8.26·43-s − 11.1·47-s − 6.11·49-s + 15.0·51-s + 12.5·53-s − 11.0·57-s − 10.1·59-s − 12.1·61-s − 5.40·63-s + 8.40·67-s − 12.5·69-s + ⋯ |
L(s) = 1 | − 1.70·3-s − 0.355·7-s + 1.91·9-s − 0.555·11-s − 1.66·13-s − 1.23·17-s + 0.856·19-s + 0.606·21-s + 0.882·23-s − 1.56·27-s + 0.0576·29-s + 0.988·31-s + 0.948·33-s + 0.164·37-s + 2.84·39-s + 0.806·41-s + 1.26·43-s − 1.63·47-s − 0.873·49-s + 2.10·51-s + 1.72·53-s − 1.46·57-s − 1.32·59-s − 1.55·61-s − 0.680·63-s + 1.02·67-s − 1.50·69-s + ⋯ |
Λ(s)=(=(7400s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(7400s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 37 | 1−T |
good | 3 | 1+2.95T+3T2 |
| 7 | 1+0.939T+7T2 |
| 11 | 1+1.84T+11T2 |
| 13 | 1+6.00T+13T2 |
| 17 | 1+5.08T+17T2 |
| 19 | 1−3.73T+19T2 |
| 23 | 1−4.23T+23T2 |
| 29 | 1−0.310T+29T2 |
| 31 | 1−5.50T+31T2 |
| 41 | 1−5.16T+41T2 |
| 43 | 1−8.26T+43T2 |
| 47 | 1+11.1T+47T2 |
| 53 | 1−12.5T+53T2 |
| 59 | 1+10.1T+59T2 |
| 61 | 1+12.1T+61T2 |
| 67 | 1−8.40T+67T2 |
| 71 | 1−13.3T+71T2 |
| 73 | 1+5.06T+73T2 |
| 79 | 1−10.3T+79T2 |
| 83 | 1+6.69T+83T2 |
| 89 | 1−11.2T+89T2 |
| 97 | 1−2.46T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.32130639204632746425349171854, −6.75876325076643497393531436269, −6.17960602560708942219713889052, −5.36406284341542676887082043714, −4.83910852924631431464483752500, −4.38621686587478098031226099260, −3.06323099618941609541453997654, −2.20968707240768147442259439429, −0.879741498050797199283884864291, 0,
0.879741498050797199283884864291, 2.20968707240768147442259439429, 3.06323099618941609541453997654, 4.38621686587478098031226099260, 4.83910852924631431464483752500, 5.36406284341542676887082043714, 6.17960602560708942219713889052, 6.75876325076643497393531436269, 7.32130639204632746425349171854