Properties

Label 2-7400-1.1-c1-0-70
Degree $2$
Conductor $7400$
Sign $-1$
Analytic cond. $59.0892$
Root an. cond. $7.68695$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.95·3-s − 0.939·7-s + 5.74·9-s − 1.84·11-s − 6.00·13-s − 5.08·17-s + 3.73·19-s + 2.77·21-s + 4.23·23-s − 8.13·27-s + 0.310·29-s + 5.50·31-s + 5.45·33-s + 37-s + 17.7·39-s + 5.16·41-s + 8.26·43-s − 11.1·47-s − 6.11·49-s + 15.0·51-s + 12.5·53-s − 11.0·57-s − 10.1·59-s − 12.1·61-s − 5.40·63-s + 8.40·67-s − 12.5·69-s + ⋯
L(s)  = 1  − 1.70·3-s − 0.355·7-s + 1.91·9-s − 0.555·11-s − 1.66·13-s − 1.23·17-s + 0.856·19-s + 0.606·21-s + 0.882·23-s − 1.56·27-s + 0.0576·29-s + 0.988·31-s + 0.948·33-s + 0.164·37-s + 2.84·39-s + 0.806·41-s + 1.26·43-s − 1.63·47-s − 0.873·49-s + 2.10·51-s + 1.72·53-s − 1.46·57-s − 1.32·59-s − 1.55·61-s − 0.680·63-s + 1.02·67-s − 1.50·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7400\)    =    \(2^{3} \cdot 5^{2} \cdot 37\)
Sign: $-1$
Analytic conductor: \(59.0892\)
Root analytic conductor: \(7.68695\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 7400,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
37 \( 1 - T \)
good3 \( 1 + 2.95T + 3T^{2} \)
7 \( 1 + 0.939T + 7T^{2} \)
11 \( 1 + 1.84T + 11T^{2} \)
13 \( 1 + 6.00T + 13T^{2} \)
17 \( 1 + 5.08T + 17T^{2} \)
19 \( 1 - 3.73T + 19T^{2} \)
23 \( 1 - 4.23T + 23T^{2} \)
29 \( 1 - 0.310T + 29T^{2} \)
31 \( 1 - 5.50T + 31T^{2} \)
41 \( 1 - 5.16T + 41T^{2} \)
43 \( 1 - 8.26T + 43T^{2} \)
47 \( 1 + 11.1T + 47T^{2} \)
53 \( 1 - 12.5T + 53T^{2} \)
59 \( 1 + 10.1T + 59T^{2} \)
61 \( 1 + 12.1T + 61T^{2} \)
67 \( 1 - 8.40T + 67T^{2} \)
71 \( 1 - 13.3T + 71T^{2} \)
73 \( 1 + 5.06T + 73T^{2} \)
79 \( 1 - 10.3T + 79T^{2} \)
83 \( 1 + 6.69T + 83T^{2} \)
89 \( 1 - 11.2T + 89T^{2} \)
97 \( 1 - 2.46T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.32130639204632746425349171854, −6.75876325076643497393531436269, −6.17960602560708942219713889052, −5.36406284341542676887082043714, −4.83910852924631431464483752500, −4.38621686587478098031226099260, −3.06323099618941609541453997654, −2.20968707240768147442259439429, −0.879741498050797199283884864291, 0, 0.879741498050797199283884864291, 2.20968707240768147442259439429, 3.06323099618941609541453997654, 4.38621686587478098031226099260, 4.83910852924631431464483752500, 5.36406284341542676887082043714, 6.17960602560708942219713889052, 6.75876325076643497393531436269, 7.32130639204632746425349171854

Graph of the $Z$-function along the critical line