L(s) = 1 | + 5.35i·2-s + 3i·3-s − 20.7·4-s − 16.0·6-s + 4.43i·7-s − 68.1i·8-s − 9·9-s − 3.43·11-s − 62.1i·12-s + 78.7i·13-s − 23.7·14-s + 199.·16-s − 53.1i·17-s − 48.2i·18-s − 20.4·19-s + ⋯ |
L(s) = 1 | + 1.89i·2-s + 0.577i·3-s − 2.58·4-s − 1.09·6-s + 0.239i·7-s − 3.01i·8-s − 0.333·9-s − 0.0941·11-s − 1.49i·12-s + 1.67i·13-s − 0.453·14-s + 3.11·16-s − 0.758i·17-s − 0.631i·18-s − 0.246·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 75 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.447 + 0.894i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 75 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.488234 - 0.789980i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.488234 - 0.789980i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 - 3iT \) |
| 5 | \( 1 \) |
good | 2 | \( 1 - 5.35iT - 8T^{2} \) |
| 7 | \( 1 - 4.43iT - 343T^{2} \) |
| 11 | \( 1 + 3.43T + 1.33e3T^{2} \) |
| 13 | \( 1 - 78.7iT - 2.19e3T^{2} \) |
| 17 | \( 1 + 53.1iT - 4.91e3T^{2} \) |
| 19 | \( 1 + 20.4T + 6.85e3T^{2} \) |
| 23 | \( 1 - 118. iT - 1.21e4T^{2} \) |
| 29 | \( 1 + 168.T + 2.43e4T^{2} \) |
| 31 | \( 1 + 61.0T + 2.97e4T^{2} \) |
| 37 | \( 1 - 246. iT - 5.06e4T^{2} \) |
| 41 | \( 1 - 422.T + 6.89e4T^{2} \) |
| 43 | \( 1 - 362. iT - 7.95e4T^{2} \) |
| 47 | \( 1 - 170. iT - 1.03e5T^{2} \) |
| 53 | \( 1 + 546. iT - 1.48e5T^{2} \) |
| 59 | \( 1 - 216.T + 2.05e5T^{2} \) |
| 61 | \( 1 - 130.T + 2.26e5T^{2} \) |
| 67 | \( 1 - 614. iT - 3.00e5T^{2} \) |
| 71 | \( 1 - 324.T + 3.57e5T^{2} \) |
| 73 | \( 1 + 88.8iT - 3.89e5T^{2} \) |
| 79 | \( 1 - 1.13e3T + 4.93e5T^{2} \) |
| 83 | \( 1 + 758. iT - 5.71e5T^{2} \) |
| 89 | \( 1 + 195.T + 7.04e5T^{2} \) |
| 97 | \( 1 + 521iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.88664515975937012920470267195, −14.16694804937160182653144285002, −13.17779420937502335592996015560, −11.50763584985851991600889436103, −9.605634191848528638240664511418, −9.016409255420323535786135507499, −7.66458197256976229522059133330, −6.52146348711616726289397076246, −5.28289586804641091121899599646, −4.11145855561427279280682371903,
0.61540808657969934405038730369, 2.36588921557641618776462538371, 3.82677162278797454927420308674, 5.54960574764708893946258587933, 7.85261574968612288806807483214, 9.004487738229617867230255078958, 10.41762158446238611407580305180, 10.95399872720864694846374271157, 12.44186265810578522469350543097, 12.78760111934190969300523945252