Properties

Label 75.4.b.c
Level $75$
Weight $4$
Character orbit 75.b
Analytic conductor $4.425$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [75,4,Mod(49,75)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(75, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("75.49");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 75 = 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 75.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.42514325043\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{19})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 9x^{2} + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{3} - \beta_1) q^{2} - 3 \beta_1 q^{3} + (2 \beta_{2} - 12) q^{4} + (3 \beta_{2} - 3) q^{6} + (4 \beta_{3} + 13 \beta_1) q^{7} + ( - 6 \beta_{3} + 42 \beta_1) q^{8} - 9 q^{9} + (4 \beta_{2} + 14) q^{11}+ \cdots + ( - 36 \beta_{2} - 126) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 48 q^{4} - 12 q^{6} - 36 q^{9} + 56 q^{11} - 252 q^{14} + 240 q^{16} - 12 q^{19} + 156 q^{21} + 504 q^{24} - 1252 q^{26} - 184 q^{29} + 244 q^{31} + 1384 q^{34} + 432 q^{36} - 108 q^{39} + 784 q^{41}+ \cdots - 504 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 9x^{2} + 25 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} - 4\nu ) / 5 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{3} + 14\nu ) / 5 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 2\nu^{2} - 9 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} + 9 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{2} + 7\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/75\mathbb{Z}\right)^\times\).

\(n\) \(26\) \(52\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
49.1
−2.17945 + 0.500000i
2.17945 0.500000i
2.17945 + 0.500000i
−2.17945 0.500000i
5.35890i 3.00000i −20.7178 0 −16.0767 4.43560i 68.1534i −9.00000 0
49.2 3.35890i 3.00000i −3.28220 0 10.0767 30.4356i 15.8466i −9.00000 0
49.3 3.35890i 3.00000i −3.28220 0 10.0767 30.4356i 15.8466i −9.00000 0
49.4 5.35890i 3.00000i −20.7178 0 −16.0767 4.43560i 68.1534i −9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 75.4.b.c 4
3.b odd 2 1 225.4.b.h 4
4.b odd 2 1 1200.4.f.v 4
5.b even 2 1 inner 75.4.b.c 4
5.c odd 4 1 75.4.a.d 2
5.c odd 4 1 75.4.a.e yes 2
15.d odd 2 1 225.4.b.h 4
15.e even 4 1 225.4.a.j 2
15.e even 4 1 225.4.a.n 2
20.d odd 2 1 1200.4.f.v 4
20.e even 4 1 1200.4.a.bl 2
20.e even 4 1 1200.4.a.bu 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
75.4.a.d 2 5.c odd 4 1
75.4.a.e yes 2 5.c odd 4 1
75.4.b.c 4 1.a even 1 1 trivial
75.4.b.c 4 5.b even 2 1 inner
225.4.a.j 2 15.e even 4 1
225.4.a.n 2 15.e even 4 1
225.4.b.h 4 3.b odd 2 1
225.4.b.h 4 15.d odd 2 1
1200.4.a.bl 2 20.e even 4 1
1200.4.a.bu 2 20.e even 4 1
1200.4.f.v 4 4.b odd 2 1
1200.4.f.v 4 20.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} + 40T_{2}^{2} + 324 \) acting on \(S_{4}^{\mathrm{new}}(75, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + 40T^{2} + 324 \) Copy content Toggle raw display
$3$ \( (T^{2} + 9)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} + 946 T^{2} + 18225 \) Copy content Toggle raw display
$11$ \( (T^{2} - 28 T - 108)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} + 9890 T^{2} + 22877089 \) Copy content Toggle raw display
$17$ \( T^{4} + 17512 T^{2} + 41525136 \) Copy content Toggle raw display
$19$ \( (T^{2} + 6 T - 295)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + 14184 T^{2} + 2624400 \) Copy content Toggle raw display
$29$ \( (T^{2} + 92 T - 12780)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} - 122 T - 11175)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} + 62216 T^{2} + 85008400 \) Copy content Toggle raw display
$41$ \( (T^{2} - 392 T - 12960)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 14094675841 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 5874302736 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 27185414400 \) Copy content Toggle raw display
$59$ \( (T^{2} + 124 T - 73980)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} - 750 T + 81041)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 24951045681 \) Copy content Toggle raw display
$71$ \( (T^{2} - 824 T + 162144)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + 8264 T^{2} + 2890000 \) Copy content Toggle raw display
$79$ \( (T^{2} - 880 T - 292800)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 482096926224 \) Copy content Toggle raw display
$89$ \( (T^{2} - 864 T - 207360)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} + 271441)^{2} \) Copy content Toggle raw display
show more
show less