Properties

Label 2-760-5.4-c1-0-2
Degree $2$
Conductor $760$
Sign $-0.950 + 0.309i$
Analytic cond. $6.06863$
Root an. cond. $2.46345$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.84i·3-s + (0.691 + 2.12i)5-s − 0.145i·7-s − 5.10·9-s − 5.71·11-s − 5.24i·13-s + (−6.05 + 1.96i)15-s + 7.15i·17-s − 19-s + 0.412·21-s + 0.622i·23-s + (−4.04 + 2.94i)25-s − 6.00i·27-s + 5.46·29-s − 3.77·31-s + ⋯
L(s)  = 1  + 1.64i·3-s + (0.309 + 0.950i)5-s − 0.0548i·7-s − 1.70·9-s − 1.72·11-s − 1.45i·13-s + (−1.56 + 0.508i)15-s + 1.73i·17-s − 0.229·19-s + 0.0901·21-s + 0.129i·23-s + (−0.808 + 0.588i)25-s − 1.15i·27-s + 1.01·29-s − 0.678·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 760 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.950 + 0.309i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 760 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.950 + 0.309i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(760\)    =    \(2^{3} \cdot 5 \cdot 19\)
Sign: $-0.950 + 0.309i$
Analytic conductor: \(6.06863\)
Root analytic conductor: \(2.46345\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{760} (609, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 760,\ (\ :1/2),\ -0.950 + 0.309i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.151603 - 0.956297i\)
\(L(\frac12)\) \(\approx\) \(0.151603 - 0.956297i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + (-0.691 - 2.12i)T \)
19 \( 1 + T \)
good3 \( 1 - 2.84iT - 3T^{2} \)
7 \( 1 + 0.145iT - 7T^{2} \)
11 \( 1 + 5.71T + 11T^{2} \)
13 \( 1 + 5.24iT - 13T^{2} \)
17 \( 1 - 7.15iT - 17T^{2} \)
23 \( 1 - 0.622iT - 23T^{2} \)
29 \( 1 - 5.46T + 29T^{2} \)
31 \( 1 + 3.77T + 31T^{2} \)
37 \( 1 + 5.03iT - 37T^{2} \)
41 \( 1 - 5.77T + 41T^{2} \)
43 \( 1 - 3.32iT - 43T^{2} \)
47 \( 1 - 5.85iT - 47T^{2} \)
53 \( 1 - 6.97iT - 53T^{2} \)
59 \( 1 + 9.09T + 59T^{2} \)
61 \( 1 + 8.16T + 61T^{2} \)
67 \( 1 - 13.6iT - 67T^{2} \)
71 \( 1 - 2.41T + 71T^{2} \)
73 \( 1 + 7.44iT - 73T^{2} \)
79 \( 1 - 9.69T + 79T^{2} \)
83 \( 1 - 2.17iT - 83T^{2} \)
89 \( 1 + 3.90T + 89T^{2} \)
97 \( 1 - 4.98iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.67461728148270695704379857903, −10.30045173411237971477761480055, −9.372002458760344938961405143459, −8.259201495191166037945507385241, −7.59105270761020454155853895154, −5.98209622805055950594434696624, −5.53012861508510805039556109674, −4.39883544928620694971361244307, −3.34341541818690546905218718374, −2.59539537682821163918249438841, 0.46195769092392563376062838461, 1.87250313635537423160202761721, 2.70649220817531741865704564532, 4.66919489724046233047418091916, 5.44338573742752083447910001005, 6.50066745918766078389819877394, 7.30091413216339621862414989664, 8.029701919971746771911160665621, 8.835433214466052244505533613055, 9.664074768467531297959307941657

Graph of the $Z$-function along the critical line