L(s) = 1 | + 2.84i·3-s + (0.691 + 2.12i)5-s − 0.145i·7-s − 5.10·9-s − 5.71·11-s − 5.24i·13-s + (−6.05 + 1.96i)15-s + 7.15i·17-s − 19-s + 0.412·21-s + 0.622i·23-s + (−4.04 + 2.94i)25-s − 6.00i·27-s + 5.46·29-s − 3.77·31-s + ⋯ |
L(s) = 1 | + 1.64i·3-s + (0.309 + 0.950i)5-s − 0.0548i·7-s − 1.70·9-s − 1.72·11-s − 1.45i·13-s + (−1.56 + 0.508i)15-s + 1.73i·17-s − 0.229·19-s + 0.0901·21-s + 0.129i·23-s + (−0.808 + 0.588i)25-s − 1.15i·27-s + 1.01·29-s − 0.678·31-s + ⋯ |
Λ(s)=(=(760s/2ΓC(s)L(s)(−0.950+0.309i)Λ(2−s)
Λ(s)=(=(760s/2ΓC(s+1/2)L(s)(−0.950+0.309i)Λ(1−s)
Degree: |
2 |
Conductor: |
760
= 23⋅5⋅19
|
Sign: |
−0.950+0.309i
|
Analytic conductor: |
6.06863 |
Root analytic conductor: |
2.46345 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ760(609,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 760, ( :1/2), −0.950+0.309i)
|
Particular Values
L(1) |
≈ |
0.151603−0.956297i |
L(21) |
≈ |
0.151603−0.956297i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(−0.691−2.12i)T |
| 19 | 1+T |
good | 3 | 1−2.84iT−3T2 |
| 7 | 1+0.145iT−7T2 |
| 11 | 1+5.71T+11T2 |
| 13 | 1+5.24iT−13T2 |
| 17 | 1−7.15iT−17T2 |
| 23 | 1−0.622iT−23T2 |
| 29 | 1−5.46T+29T2 |
| 31 | 1+3.77T+31T2 |
| 37 | 1+5.03iT−37T2 |
| 41 | 1−5.77T+41T2 |
| 43 | 1−3.32iT−43T2 |
| 47 | 1−5.85iT−47T2 |
| 53 | 1−6.97iT−53T2 |
| 59 | 1+9.09T+59T2 |
| 61 | 1+8.16T+61T2 |
| 67 | 1−13.6iT−67T2 |
| 71 | 1−2.41T+71T2 |
| 73 | 1+7.44iT−73T2 |
| 79 | 1−9.69T+79T2 |
| 83 | 1−2.17iT−83T2 |
| 89 | 1+3.90T+89T2 |
| 97 | 1−4.98iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.67461728148270695704379857903, −10.30045173411237971477761480055, −9.372002458760344938961405143459, −8.259201495191166037945507385241, −7.59105270761020454155853895154, −5.98209622805055950594434696624, −5.53012861508510805039556109674, −4.39883544928620694971361244307, −3.34341541818690546905218718374, −2.59539537682821163918249438841,
0.46195769092392563376062838461, 1.87250313635537423160202761721, 2.70649220817531741865704564532, 4.66919489724046233047418091916, 5.44338573742752083447910001005, 6.50066745918766078389819877394, 7.30091413216339621862414989664, 8.029701919971746771911160665621, 8.835433214466052244505533613055, 9.664074768467531297959307941657