Properties

Label 760.2.d.e.609.11
Level $760$
Weight $2$
Character 760.609
Analytic conductor $6.069$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [760,2,Mod(609,760)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(760, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("760.609");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 760 = 2^{3} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 760.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.06863055362\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4 x^{11} + 9 x^{10} - 8 x^{9} - 11 x^{8} + 60 x^{7} - 126 x^{6} + 180 x^{5} - 99 x^{4} + \cdots + 729 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{7} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 609.11
Root \(1.35119 - 1.08364i\) of defining polynomial
Character \(\chi\) \(=\) 760.609
Dual form 760.2.d.e.609.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.84742i q^{3} +(0.691595 + 2.12643i) q^{5} -0.145034i q^{7} -5.10782 q^{9} -5.71774 q^{11} -5.24345i q^{13} +(-6.05484 + 1.96926i) q^{15} +7.15378i q^{17} -1.00000 q^{19} +0.412974 q^{21} +0.622762i q^{23} +(-4.04339 + 2.94125i) q^{25} -6.00186i q^{27} +5.46811 q^{29} -3.77513 q^{31} -16.2808i q^{33} +(0.308405 - 0.100305i) q^{35} -5.03553i q^{37} +14.9303 q^{39} +5.77513 q^{41} +3.32308i q^{43} +(-3.53254 - 10.8614i) q^{45} +5.85683i q^{47} +6.97897 q^{49} -20.3699 q^{51} +6.97219i q^{53} +(-3.95436 - 12.1584i) q^{55} -2.84742i q^{57} -9.09089 q^{59} -8.16707 q^{61} +0.740810i q^{63} +(11.1498 - 3.62634i) q^{65} +13.6583i q^{67} -1.77327 q^{69} +2.41484 q^{71} -7.44385i q^{73} +(-8.37499 - 11.5133i) q^{75} +0.829270i q^{77} +9.69485 q^{79} +1.76638 q^{81} +2.17116i q^{83} +(-15.2120 + 4.94752i) q^{85} +15.5700i q^{87} -3.90782 q^{89} -0.760481 q^{91} -10.7494i q^{93} +(-0.691595 - 2.12643i) q^{95} +4.98328i q^{97} +29.2052 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 6 q^{5} - 16 q^{9} - 4 q^{11} - 12 q^{15} - 12 q^{19} + 36 q^{21} + 18 q^{25} + 4 q^{29} + 16 q^{31} + 6 q^{35} + 36 q^{39} + 8 q^{41} - 2 q^{45} - 4 q^{49} - 68 q^{51} - 18 q^{55} + 4 q^{59} + 20 q^{61}+ \cdots + 44 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/760\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(381\) \(401\) \(457\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.84742i 1.64396i 0.569516 + 0.821980i \(0.307131\pi\)
−0.569516 + 0.821980i \(0.692869\pi\)
\(4\) 0 0
\(5\) 0.691595 + 2.12643i 0.309291 + 0.950968i
\(6\) 0 0
\(7\) 0.145034i 0.0548179i −0.999624 0.0274089i \(-0.991274\pi\)
0.999624 0.0274089i \(-0.00872563\pi\)
\(8\) 0 0
\(9\) −5.10782 −1.70261
\(10\) 0 0
\(11\) −5.71774 −1.72396 −0.861982 0.506938i \(-0.830777\pi\)
−0.861982 + 0.506938i \(0.830777\pi\)
\(12\) 0 0
\(13\) 5.24345i 1.45427i −0.686493 0.727136i \(-0.740851\pi\)
0.686493 0.727136i \(-0.259149\pi\)
\(14\) 0 0
\(15\) −6.05484 + 1.96926i −1.56335 + 0.508462i
\(16\) 0 0
\(17\) 7.15378i 1.73505i 0.497396 + 0.867524i \(0.334290\pi\)
−0.497396 + 0.867524i \(0.665710\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 0.412974 0.0901184
\(22\) 0 0
\(23\) 0.622762i 0.129855i 0.997890 + 0.0649274i \(0.0206816\pi\)
−0.997890 + 0.0649274i \(0.979318\pi\)
\(24\) 0 0
\(25\) −4.04339 + 2.94125i −0.808679 + 0.588251i
\(26\) 0 0
\(27\) 6.00186i 1.15506i
\(28\) 0 0
\(29\) 5.46811 1.01540 0.507702 0.861533i \(-0.330495\pi\)
0.507702 + 0.861533i \(0.330495\pi\)
\(30\) 0 0
\(31\) −3.77513 −0.678033 −0.339017 0.940780i \(-0.610094\pi\)
−0.339017 + 0.940780i \(0.610094\pi\)
\(32\) 0 0
\(33\) 16.2808i 2.83413i
\(34\) 0 0
\(35\) 0.308405 0.100305i 0.0521300 0.0169546i
\(36\) 0 0
\(37\) 5.03553i 0.827836i −0.910314 0.413918i \(-0.864160\pi\)
0.910314 0.413918i \(-0.135840\pi\)
\(38\) 0 0
\(39\) 14.9303 2.39077
\(40\) 0 0
\(41\) 5.77513 0.901924 0.450962 0.892543i \(-0.351081\pi\)
0.450962 + 0.892543i \(0.351081\pi\)
\(42\) 0 0
\(43\) 3.32308i 0.506765i 0.967366 + 0.253382i \(0.0815431\pi\)
−0.967366 + 0.253382i \(0.918457\pi\)
\(44\) 0 0
\(45\) −3.53254 10.8614i −0.526600 1.61912i
\(46\) 0 0
\(47\) 5.85683i 0.854306i 0.904179 + 0.427153i \(0.140483\pi\)
−0.904179 + 0.427153i \(0.859517\pi\)
\(48\) 0 0
\(49\) 6.97897 0.996995
\(50\) 0 0
\(51\) −20.3699 −2.85235
\(52\) 0 0
\(53\) 6.97219i 0.957704i 0.877896 + 0.478852i \(0.158947\pi\)
−0.877896 + 0.478852i \(0.841053\pi\)
\(54\) 0 0
\(55\) −3.95436 12.1584i −0.533206 1.63943i
\(56\) 0 0
\(57\) 2.84742i 0.377150i
\(58\) 0 0
\(59\) −9.09089 −1.18353 −0.591767 0.806109i \(-0.701569\pi\)
−0.591767 + 0.806109i \(0.701569\pi\)
\(60\) 0 0
\(61\) −8.16707 −1.04569 −0.522843 0.852429i \(-0.675129\pi\)
−0.522843 + 0.852429i \(0.675129\pi\)
\(62\) 0 0
\(63\) 0.740810i 0.0933333i
\(64\) 0 0
\(65\) 11.1498 3.62634i 1.38297 0.449793i
\(66\) 0 0
\(67\) 13.6583i 1.66863i 0.551291 + 0.834313i \(0.314135\pi\)
−0.551291 + 0.834313i \(0.685865\pi\)
\(68\) 0 0
\(69\) −1.77327 −0.213476
\(70\) 0 0
\(71\) 2.41484 0.286588 0.143294 0.989680i \(-0.454230\pi\)
0.143294 + 0.989680i \(0.454230\pi\)
\(72\) 0 0
\(73\) 7.44385i 0.871237i −0.900131 0.435619i \(-0.856530\pi\)
0.900131 0.435619i \(-0.143470\pi\)
\(74\) 0 0
\(75\) −8.37499 11.5133i −0.967061 1.32944i
\(76\) 0 0
\(77\) 0.829270i 0.0945041i
\(78\) 0 0
\(79\) 9.69485 1.09076 0.545378 0.838190i \(-0.316386\pi\)
0.545378 + 0.838190i \(0.316386\pi\)
\(80\) 0 0
\(81\) 1.76638 0.196264
\(82\) 0 0
\(83\) 2.17116i 0.238316i 0.992875 + 0.119158i \(0.0380194\pi\)
−0.992875 + 0.119158i \(0.961981\pi\)
\(84\) 0 0
\(85\) −15.2120 + 4.94752i −1.64997 + 0.536634i
\(86\) 0 0
\(87\) 15.5700i 1.66928i
\(88\) 0 0
\(89\) −3.90782 −0.414228 −0.207114 0.978317i \(-0.566407\pi\)
−0.207114 + 0.978317i \(0.566407\pi\)
\(90\) 0 0
\(91\) −0.760481 −0.0797201
\(92\) 0 0
\(93\) 10.7494i 1.11466i
\(94\) 0 0
\(95\) −0.691595 2.12643i −0.0709561 0.218167i
\(96\) 0 0
\(97\) 4.98328i 0.505976i 0.967469 + 0.252988i \(0.0814132\pi\)
−0.967469 + 0.252988i \(0.918587\pi\)
\(98\) 0 0
\(99\) 29.2052 2.93524
\(100\) 0 0
\(101\) −5.35148 −0.532493 −0.266246 0.963905i \(-0.585783\pi\)
−0.266246 + 0.963905i \(0.585783\pi\)
\(102\) 0 0
\(103\) 3.59495i 0.354221i 0.984191 + 0.177111i \(0.0566750\pi\)
−0.984191 + 0.177111i \(0.943325\pi\)
\(104\) 0 0
\(105\) 0.285611 + 0.878160i 0.0278728 + 0.0856997i
\(106\) 0 0
\(107\) 15.3518i 1.48412i −0.670335 0.742059i \(-0.733850\pi\)
0.670335 0.742059i \(-0.266150\pi\)
\(108\) 0 0
\(109\) −2.20105 −0.210823 −0.105411 0.994429i \(-0.533616\pi\)
−0.105411 + 0.994429i \(0.533616\pi\)
\(110\) 0 0
\(111\) 14.3383 1.36093
\(112\) 0 0
\(113\) 12.3613i 1.16286i 0.813598 + 0.581428i \(0.197506\pi\)
−0.813598 + 0.581428i \(0.802494\pi\)
\(114\) 0 0
\(115\) −1.32426 + 0.430699i −0.123488 + 0.0401629i
\(116\) 0 0
\(117\) 26.7826i 2.47605i
\(118\) 0 0
\(119\) 1.03754 0.0951116
\(120\) 0 0
\(121\) 21.6926 1.97205
\(122\) 0 0
\(123\) 16.4442i 1.48273i
\(124\) 0 0
\(125\) −9.05075 6.56383i −0.809524 0.587087i
\(126\) 0 0
\(127\) 18.0907i 1.60529i 0.596459 + 0.802644i \(0.296574\pi\)
−0.596459 + 0.802644i \(0.703426\pi\)
\(128\) 0 0
\(129\) −9.46222 −0.833102
\(130\) 0 0
\(131\) 12.1244 1.05931 0.529655 0.848213i \(-0.322321\pi\)
0.529655 + 0.848213i \(0.322321\pi\)
\(132\) 0 0
\(133\) 0.145034i 0.0125761i
\(134\) 0 0
\(135\) 12.7625 4.15086i 1.09842 0.357249i
\(136\) 0 0
\(137\) 20.0385i 1.71201i −0.516969 0.856004i \(-0.672940\pi\)
0.516969 0.856004i \(-0.327060\pi\)
\(138\) 0 0
\(139\) −11.3996 −0.966905 −0.483452 0.875371i \(-0.660617\pi\)
−0.483452 + 0.875371i \(0.660617\pi\)
\(140\) 0 0
\(141\) −16.6769 −1.40445
\(142\) 0 0
\(143\) 29.9807i 2.50711i
\(144\) 0 0
\(145\) 3.78172 + 11.6276i 0.314055 + 0.965616i
\(146\) 0 0
\(147\) 19.8721i 1.63902i
\(148\) 0 0
\(149\) 15.5818 1.27651 0.638257 0.769823i \(-0.279656\pi\)
0.638257 + 0.769823i \(0.279656\pi\)
\(150\) 0 0
\(151\) 22.3717 1.82058 0.910292 0.413966i \(-0.135857\pi\)
0.910292 + 0.413966i \(0.135857\pi\)
\(152\) 0 0
\(153\) 36.5403i 2.95410i
\(154\) 0 0
\(155\) −2.61086 8.02754i −0.209709 0.644788i
\(156\) 0 0
\(157\) 23.1047i 1.84395i 0.387246 + 0.921976i \(0.373426\pi\)
−0.387246 + 0.921976i \(0.626574\pi\)
\(158\) 0 0
\(159\) −19.8528 −1.57443
\(160\) 0 0
\(161\) 0.0903219 0.00711836
\(162\) 0 0
\(163\) 11.3524i 0.889186i −0.895733 0.444593i \(-0.853348\pi\)
0.895733 0.444593i \(-0.146652\pi\)
\(164\) 0 0
\(165\) 34.6200 11.2597i 2.69517 0.876570i
\(166\) 0 0
\(167\) 6.09989i 0.472024i 0.971750 + 0.236012i \(0.0758405\pi\)
−0.971750 + 0.236012i \(0.924160\pi\)
\(168\) 0 0
\(169\) −14.4938 −1.11491
\(170\) 0 0
\(171\) 5.10782 0.390605
\(172\) 0 0
\(173\) 10.8951i 0.828338i 0.910200 + 0.414169i \(0.135928\pi\)
−0.910200 + 0.414169i \(0.864072\pi\)
\(174\) 0 0
\(175\) 0.426583 + 0.586431i 0.0322466 + 0.0443300i
\(176\) 0 0
\(177\) 25.8856i 1.94568i
\(178\) 0 0
\(179\) −4.46123 −0.333448 −0.166724 0.986004i \(-0.553319\pi\)
−0.166724 + 0.986004i \(0.553319\pi\)
\(180\) 0 0
\(181\) 3.58784 0.266682 0.133341 0.991070i \(-0.457429\pi\)
0.133341 + 0.991070i \(0.457429\pi\)
\(182\) 0 0
\(183\) 23.2551i 1.71907i
\(184\) 0 0
\(185\) 10.7077 3.48254i 0.787245 0.256042i
\(186\) 0 0
\(187\) 40.9035i 2.99116i
\(188\) 0 0
\(189\) −0.870477 −0.0633179
\(190\) 0 0
\(191\) 8.00777 0.579422 0.289711 0.957114i \(-0.406441\pi\)
0.289711 + 0.957114i \(0.406441\pi\)
\(192\) 0 0
\(193\) 1.45641i 0.104835i 0.998625 + 0.0524173i \(0.0166926\pi\)
−0.998625 + 0.0524173i \(0.983307\pi\)
\(194\) 0 0
\(195\) 10.3257 + 31.7483i 0.739441 + 2.27354i
\(196\) 0 0
\(197\) 26.3510i 1.87743i 0.344692 + 0.938716i \(0.387983\pi\)
−0.344692 + 0.938716i \(0.612017\pi\)
\(198\) 0 0
\(199\) −12.1739 −0.862985 −0.431492 0.902117i \(-0.642013\pi\)
−0.431492 + 0.902117i \(0.642013\pi\)
\(200\) 0 0
\(201\) −38.8909 −2.74316
\(202\) 0 0
\(203\) 0.793065i 0.0556622i
\(204\) 0 0
\(205\) 3.99405 + 12.2804i 0.278956 + 0.857700i
\(206\) 0 0
\(207\) 3.18096i 0.221092i
\(208\) 0 0
\(209\) 5.71774 0.395505
\(210\) 0 0
\(211\) −19.5088 −1.34304 −0.671521 0.740985i \(-0.734359\pi\)
−0.671521 + 0.740985i \(0.734359\pi\)
\(212\) 0 0
\(213\) 6.87606i 0.471140i
\(214\) 0 0
\(215\) −7.06629 + 2.29822i −0.481917 + 0.156738i
\(216\) 0 0
\(217\) 0.547524i 0.0371683i
\(218\) 0 0
\(219\) 21.1958 1.43228
\(220\) 0 0
\(221\) 37.5105 2.52323
\(222\) 0 0
\(223\) 14.9208i 0.999168i −0.866265 0.499584i \(-0.833486\pi\)
0.866265 0.499584i \(-0.166514\pi\)
\(224\) 0 0
\(225\) 20.6529 15.0234i 1.37686 1.00156i
\(226\) 0 0
\(227\) 13.4422i 0.892192i 0.894985 + 0.446096i \(0.147186\pi\)
−0.894985 + 0.446096i \(0.852814\pi\)
\(228\) 0 0
\(229\) 7.36620 0.486772 0.243386 0.969929i \(-0.421742\pi\)
0.243386 + 0.969929i \(0.421742\pi\)
\(230\) 0 0
\(231\) −2.36128 −0.155361
\(232\) 0 0
\(233\) 4.24405i 0.278037i −0.990290 0.139018i \(-0.955605\pi\)
0.990290 0.139018i \(-0.0443947\pi\)
\(234\) 0 0
\(235\) −12.4541 + 4.05055i −0.812417 + 0.264229i
\(236\) 0 0
\(237\) 27.6053i 1.79316i
\(238\) 0 0
\(239\) 15.3387 0.992176 0.496088 0.868272i \(-0.334769\pi\)
0.496088 + 0.868272i \(0.334769\pi\)
\(240\) 0 0
\(241\) 26.7026 1.72006 0.860032 0.510240i \(-0.170443\pi\)
0.860032 + 0.510240i \(0.170443\pi\)
\(242\) 0 0
\(243\) 12.9760i 0.832408i
\(244\) 0 0
\(245\) 4.82662 + 14.8403i 0.308361 + 0.948110i
\(246\) 0 0
\(247\) 5.24345i 0.333633i
\(248\) 0 0
\(249\) −6.18221 −0.391781
\(250\) 0 0
\(251\) 3.64463 0.230047 0.115023 0.993363i \(-0.463306\pi\)
0.115023 + 0.993363i \(0.463306\pi\)
\(252\) 0 0
\(253\) 3.56079i 0.223865i
\(254\) 0 0
\(255\) −14.0877 43.3150i −0.882205 2.71249i
\(256\) 0 0
\(257\) 9.71103i 0.605757i 0.953029 + 0.302879i \(0.0979477\pi\)
−0.953029 + 0.302879i \(0.902052\pi\)
\(258\) 0 0
\(259\) −0.730325 −0.0453802
\(260\) 0 0
\(261\) −27.9302 −1.72883
\(262\) 0 0
\(263\) 1.82052i 0.112258i 0.998424 + 0.0561290i \(0.0178758\pi\)
−0.998424 + 0.0561290i \(0.982124\pi\)
\(264\) 0 0
\(265\) −14.8259 + 4.82193i −0.910746 + 0.296209i
\(266\) 0 0
\(267\) 11.1272i 0.680974i
\(268\) 0 0
\(269\) −21.6353 −1.31913 −0.659563 0.751649i \(-0.729259\pi\)
−0.659563 + 0.751649i \(0.729259\pi\)
\(270\) 0 0
\(271\) −7.54436 −0.458287 −0.229144 0.973393i \(-0.573593\pi\)
−0.229144 + 0.973393i \(0.573593\pi\)
\(272\) 0 0
\(273\) 2.16541i 0.131057i
\(274\) 0 0
\(275\) 23.1191 16.8173i 1.39413 1.01412i
\(276\) 0 0
\(277\) 12.5559i 0.754410i −0.926130 0.377205i \(-0.876885\pi\)
0.926130 0.377205i \(-0.123115\pi\)
\(278\) 0 0
\(279\) 19.2827 1.15442
\(280\) 0 0
\(281\) 22.1947 1.32403 0.662013 0.749493i \(-0.269703\pi\)
0.662013 + 0.749493i \(0.269703\pi\)
\(282\) 0 0
\(283\) 20.6171i 1.22556i −0.790254 0.612779i \(-0.790052\pi\)
0.790254 0.612779i \(-0.209948\pi\)
\(284\) 0 0
\(285\) 6.05484 1.96926i 0.358658 0.116649i
\(286\) 0 0
\(287\) 0.837592i 0.0494415i
\(288\) 0 0
\(289\) −34.1766 −2.01039
\(290\) 0 0
\(291\) −14.1895 −0.831804
\(292\) 0 0
\(293\) 22.1421i 1.29356i −0.762679 0.646778i \(-0.776116\pi\)
0.762679 0.646778i \(-0.223884\pi\)
\(294\) 0 0
\(295\) −6.28721 19.3311i −0.366056 1.12550i
\(296\) 0 0
\(297\) 34.3171i 1.99128i
\(298\) 0 0
\(299\) 3.26542 0.188844
\(300\) 0 0
\(301\) 0.481961 0.0277798
\(302\) 0 0
\(303\) 15.2379i 0.875397i
\(304\) 0 0
\(305\) −5.64830 17.3667i −0.323421 0.994413i
\(306\) 0 0
\(307\) 1.80060i 0.102766i −0.998679 0.0513828i \(-0.983637\pi\)
0.998679 0.0513828i \(-0.0163629\pi\)
\(308\) 0 0
\(309\) −10.2364 −0.582326
\(310\) 0 0
\(311\) −9.26554 −0.525401 −0.262700 0.964877i \(-0.584613\pi\)
−0.262700 + 0.964877i \(0.584613\pi\)
\(312\) 0 0
\(313\) 4.29779i 0.242925i 0.992596 + 0.121463i \(0.0387585\pi\)
−0.992596 + 0.121463i \(0.961242\pi\)
\(314\) 0 0
\(315\) −1.57528 + 0.512340i −0.0887569 + 0.0288671i
\(316\) 0 0
\(317\) 4.61065i 0.258960i −0.991582 0.129480i \(-0.958669\pi\)
0.991582 0.129480i \(-0.0413308\pi\)
\(318\) 0 0
\(319\) −31.2653 −1.75052
\(320\) 0 0
\(321\) 43.7132 2.43983
\(322\) 0 0
\(323\) 7.15378i 0.398047i
\(324\) 0 0
\(325\) 15.4223 + 21.2013i 0.855476 + 1.17604i
\(326\) 0 0
\(327\) 6.26734i 0.346584i
\(328\) 0 0
\(329\) 0.849442 0.0468312
\(330\) 0 0
\(331\) −0.934366 −0.0513574 −0.0256787 0.999670i \(-0.508175\pi\)
−0.0256787 + 0.999670i \(0.508175\pi\)
\(332\) 0 0
\(333\) 25.7206i 1.40948i
\(334\) 0 0
\(335\) −29.0434 + 9.44600i −1.58681 + 0.516090i
\(336\) 0 0
\(337\) 29.8588i 1.62651i 0.581905 + 0.813256i \(0.302307\pi\)
−0.581905 + 0.813256i \(0.697693\pi\)
\(338\) 0 0
\(339\) −35.1980 −1.91169
\(340\) 0 0
\(341\) 21.5852 1.16891
\(342\) 0 0
\(343\) 2.02743i 0.109471i
\(344\) 0 0
\(345\) −1.22638 3.77072i −0.0660262 0.203009i
\(346\) 0 0
\(347\) 10.6502i 0.571732i 0.958270 + 0.285866i \(0.0922813\pi\)
−0.958270 + 0.285866i \(0.907719\pi\)
\(348\) 0 0
\(349\) −29.3479 −1.57096 −0.785480 0.618888i \(-0.787584\pi\)
−0.785480 + 0.618888i \(0.787584\pi\)
\(350\) 0 0
\(351\) −31.4705 −1.67977
\(352\) 0 0
\(353\) 14.3847i 0.765619i 0.923827 + 0.382810i \(0.125043\pi\)
−0.923827 + 0.382810i \(0.874957\pi\)
\(354\) 0 0
\(355\) 1.67009 + 5.13498i 0.0886391 + 0.272536i
\(356\) 0 0
\(357\) 2.95433i 0.156360i
\(358\) 0 0
\(359\) 2.23773 0.118103 0.0590514 0.998255i \(-0.481192\pi\)
0.0590514 + 0.998255i \(0.481192\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 61.7680i 3.24198i
\(364\) 0 0
\(365\) 15.8288 5.14813i 0.828518 0.269465i
\(366\) 0 0
\(367\) 0.636873i 0.0332445i −0.999862 0.0166222i \(-0.994709\pi\)
0.999862 0.0166222i \(-0.00529127\pi\)
\(368\) 0 0
\(369\) −29.4983 −1.53562
\(370\) 0 0
\(371\) 1.01121 0.0524993
\(372\) 0 0
\(373\) 16.2358i 0.840655i −0.907372 0.420328i \(-0.861915\pi\)
0.907372 0.420328i \(-0.138085\pi\)
\(374\) 0 0
\(375\) 18.6900 25.7713i 0.965148 1.33083i
\(376\) 0 0
\(377\) 28.6718i 1.47667i
\(378\) 0 0
\(379\) 17.9624 0.922667 0.461333 0.887227i \(-0.347371\pi\)
0.461333 + 0.887227i \(0.347371\pi\)
\(380\) 0 0
\(381\) −51.5118 −2.63903
\(382\) 0 0
\(383\) 4.06305i 0.207612i −0.994598 0.103806i \(-0.966898\pi\)
0.994598 0.103806i \(-0.0331021\pi\)
\(384\) 0 0
\(385\) −1.76338 + 0.573519i −0.0898703 + 0.0292292i
\(386\) 0 0
\(387\) 16.9737i 0.862822i
\(388\) 0 0
\(389\) 28.7507 1.45772 0.728859 0.684663i \(-0.240051\pi\)
0.728859 + 0.684663i \(0.240051\pi\)
\(390\) 0 0
\(391\) −4.45510 −0.225304
\(392\) 0 0
\(393\) 34.5232i 1.74147i
\(394\) 0 0
\(395\) 6.70491 + 20.6154i 0.337360 + 1.03727i
\(396\) 0 0
\(397\) 11.6518i 0.584786i −0.956298 0.292393i \(-0.905548\pi\)
0.956298 0.292393i \(-0.0944515\pi\)
\(398\) 0 0
\(399\) −0.412974 −0.0206746
\(400\) 0 0
\(401\) 1.98190 0.0989716 0.0494858 0.998775i \(-0.484242\pi\)
0.0494858 + 0.998775i \(0.484242\pi\)
\(402\) 0 0
\(403\) 19.7947i 0.986045i
\(404\) 0 0
\(405\) 1.22162 + 3.75608i 0.0607027 + 0.186641i
\(406\) 0 0
\(407\) 28.7919i 1.42716i
\(408\) 0 0
\(409\) −26.3984 −1.30532 −0.652660 0.757651i \(-0.726347\pi\)
−0.652660 + 0.757651i \(0.726347\pi\)
\(410\) 0 0
\(411\) 57.0582 2.81447
\(412\) 0 0
\(413\) 1.31849i 0.0648788i
\(414\) 0 0
\(415\) −4.61681 + 1.50156i −0.226630 + 0.0737087i
\(416\) 0 0
\(417\) 32.4596i 1.58955i
\(418\) 0 0
\(419\) 16.3134 0.796963 0.398481 0.917176i \(-0.369537\pi\)
0.398481 + 0.917176i \(0.369537\pi\)
\(420\) 0 0
\(421\) −1.90815 −0.0929976 −0.0464988 0.998918i \(-0.514806\pi\)
−0.0464988 + 0.998918i \(0.514806\pi\)
\(422\) 0 0
\(423\) 29.9156i 1.45455i
\(424\) 0 0
\(425\) −21.0411 28.9256i −1.02064 1.40310i
\(426\) 0 0
\(427\) 1.18451i 0.0573223i
\(428\) 0 0
\(429\) −85.3678 −4.12160
\(430\) 0 0
\(431\) 13.9013 0.669600 0.334800 0.942289i \(-0.391331\pi\)
0.334800 + 0.942289i \(0.391331\pi\)
\(432\) 0 0
\(433\) 4.93885i 0.237346i 0.992933 + 0.118673i \(0.0378640\pi\)
−0.992933 + 0.118673i \(0.962136\pi\)
\(434\) 0 0
\(435\) −33.1086 + 10.7682i −1.58743 + 0.516294i
\(436\) 0 0
\(437\) 0.622762i 0.0297907i
\(438\) 0 0
\(439\) 18.0918 0.863473 0.431736 0.902000i \(-0.357901\pi\)
0.431736 + 0.902000i \(0.357901\pi\)
\(440\) 0 0
\(441\) −35.6473 −1.69749
\(442\) 0 0
\(443\) 8.13690i 0.386596i −0.981140 0.193298i \(-0.938082\pi\)
0.981140 0.193298i \(-0.0619184\pi\)
\(444\) 0 0
\(445\) −2.70262 8.30969i −0.128117 0.393917i
\(446\) 0 0
\(447\) 44.3681i 2.09854i
\(448\) 0 0
\(449\) −19.9187 −0.940020 −0.470010 0.882661i \(-0.655750\pi\)
−0.470010 + 0.882661i \(0.655750\pi\)
\(450\) 0 0
\(451\) −33.0207 −1.55488
\(452\) 0 0
\(453\) 63.7018i 2.99297i
\(454\) 0 0
\(455\) −0.525945 1.61711i −0.0246567 0.0758112i
\(456\) 0 0
\(457\) 21.4434i 1.00308i 0.865134 + 0.501540i \(0.167233\pi\)
−0.865134 + 0.501540i \(0.832767\pi\)
\(458\) 0 0
\(459\) 42.9360 2.00408
\(460\) 0 0
\(461\) 11.2325 0.523148 0.261574 0.965183i \(-0.415758\pi\)
0.261574 + 0.965183i \(0.415758\pi\)
\(462\) 0 0
\(463\) 37.8262i 1.75793i −0.476882 0.878967i \(-0.658233\pi\)
0.476882 0.878967i \(-0.341767\pi\)
\(464\) 0 0
\(465\) 22.8578 7.43422i 1.06001 0.344754i
\(466\) 0 0
\(467\) 30.3388i 1.40391i −0.712221 0.701955i \(-0.752311\pi\)
0.712221 0.701955i \(-0.247689\pi\)
\(468\) 0 0
\(469\) 1.98092 0.0914705
\(470\) 0 0
\(471\) −65.7888 −3.03139
\(472\) 0 0
\(473\) 19.0005i 0.873645i
\(474\) 0 0
\(475\) 4.04339 2.94125i 0.185524 0.134954i
\(476\) 0 0
\(477\) 35.6127i 1.63059i
\(478\) 0 0
\(479\) 35.3121 1.61345 0.806725 0.590927i \(-0.201238\pi\)
0.806725 + 0.590927i \(0.201238\pi\)
\(480\) 0 0
\(481\) −26.4035 −1.20390
\(482\) 0 0
\(483\) 0.257185i 0.0117023i
\(484\) 0 0
\(485\) −10.5966 + 3.44641i −0.481166 + 0.156493i
\(486\) 0 0
\(487\) 6.88482i 0.311981i 0.987759 + 0.155991i \(0.0498569\pi\)
−0.987759 + 0.155991i \(0.950143\pi\)
\(488\) 0 0
\(489\) 32.3250 1.46179
\(490\) 0 0
\(491\) −10.1116 −0.456328 −0.228164 0.973623i \(-0.573272\pi\)
−0.228164 + 0.973623i \(0.573272\pi\)
\(492\) 0 0
\(493\) 39.1177i 1.76177i
\(494\) 0 0
\(495\) 20.1982 + 62.1028i 0.907841 + 2.79131i
\(496\) 0 0
\(497\) 0.350234i 0.0157102i
\(498\) 0 0
\(499\) 36.4594 1.63215 0.816074 0.577947i \(-0.196146\pi\)
0.816074 + 0.577947i \(0.196146\pi\)
\(500\) 0 0
\(501\) −17.3690 −0.775989
\(502\) 0 0
\(503\) 9.00269i 0.401410i −0.979652 0.200705i \(-0.935677\pi\)
0.979652 0.200705i \(-0.0643233\pi\)
\(504\) 0 0
\(505\) −3.70106 11.3795i −0.164695 0.506383i
\(506\) 0 0
\(507\) 41.2700i 1.83286i
\(508\) 0 0
\(509\) −10.3542 −0.458943 −0.229471 0.973315i \(-0.573700\pi\)
−0.229471 + 0.973315i \(0.573700\pi\)
\(510\) 0 0
\(511\) −1.07961 −0.0477594
\(512\) 0 0
\(513\) 6.00186i 0.264989i
\(514\) 0 0
\(515\) −7.64441 + 2.48625i −0.336853 + 0.109557i
\(516\) 0 0
\(517\) 33.4878i 1.47279i
\(518\) 0 0
\(519\) −31.0229 −1.36175
\(520\) 0 0
\(521\) 11.5209 0.504738 0.252369 0.967631i \(-0.418790\pi\)
0.252369 + 0.967631i \(0.418790\pi\)
\(522\) 0 0
\(523\) 24.0131i 1.05002i −0.851097 0.525009i \(-0.824062\pi\)
0.851097 0.525009i \(-0.175938\pi\)
\(524\) 0 0
\(525\) −1.66982 + 1.21466i −0.0728768 + 0.0530122i
\(526\) 0 0
\(527\) 27.0065i 1.17642i
\(528\) 0 0
\(529\) 22.6122 0.983138
\(530\) 0 0
\(531\) 46.4347 2.01509
\(532\) 0 0
\(533\) 30.2816i 1.31164i
\(534\) 0 0
\(535\) 32.6446 10.6172i 1.41135 0.459023i
\(536\) 0 0
\(537\) 12.7030i 0.548175i
\(538\) 0 0
\(539\) −39.9039 −1.71878
\(540\) 0 0
\(541\) −34.5131 −1.48383 −0.741916 0.670492i \(-0.766083\pi\)
−0.741916 + 0.670492i \(0.766083\pi\)
\(542\) 0 0
\(543\) 10.2161i 0.438415i
\(544\) 0 0
\(545\) −1.52224 4.68039i −0.0652055 0.200486i
\(546\) 0 0
\(547\) 3.89383i 0.166488i −0.996529 0.0832441i \(-0.973472\pi\)
0.996529 0.0832441i \(-0.0265281\pi\)
\(548\) 0 0
\(549\) 41.7159 1.78039
\(550\) 0 0
\(551\) −5.46811 −0.232949
\(552\) 0 0
\(553\) 1.40609i 0.0597929i
\(554\) 0 0
\(555\) 9.91628 + 30.4893i 0.420923 + 1.29420i
\(556\) 0 0
\(557\) 11.1816i 0.473779i −0.971537 0.236889i \(-0.923872\pi\)
0.971537 0.236889i \(-0.0761279\pi\)
\(558\) 0 0
\(559\) 17.4244 0.736974
\(560\) 0 0
\(561\) 116.470 4.91735
\(562\) 0 0
\(563\) 2.54455i 0.107240i −0.998561 0.0536200i \(-0.982924\pi\)
0.998561 0.0536200i \(-0.0170760\pi\)
\(564\) 0 0
\(565\) −26.2855 + 8.54903i −1.10584 + 0.359660i
\(566\) 0 0
\(567\) 0.256186i 0.0107588i
\(568\) 0 0
\(569\) −2.09511 −0.0878314 −0.0439157 0.999035i \(-0.513983\pi\)
−0.0439157 + 0.999035i \(0.513983\pi\)
\(570\) 0 0
\(571\) 36.2358 1.51642 0.758211 0.652009i \(-0.226074\pi\)
0.758211 + 0.652009i \(0.226074\pi\)
\(572\) 0 0
\(573\) 22.8015i 0.952547i
\(574\) 0 0
\(575\) −1.83170 2.51807i −0.0763872 0.105011i
\(576\) 0 0
\(577\) 15.5756i 0.648419i −0.945985 0.324209i \(-0.894902\pi\)
0.945985 0.324209i \(-0.105098\pi\)
\(578\) 0 0
\(579\) −4.14702 −0.172344
\(580\) 0 0
\(581\) 0.314893 0.0130639
\(582\) 0 0
\(583\) 39.8652i 1.65105i
\(584\) 0 0
\(585\) −56.9513 + 18.5227i −2.35465 + 0.765820i
\(586\) 0 0
\(587\) 8.54894i 0.352853i −0.984314 0.176426i \(-0.943546\pi\)
0.984314 0.176426i \(-0.0564537\pi\)
\(588\) 0 0
\(589\) 3.77513 0.155551
\(590\) 0 0
\(591\) −75.0325 −3.08642
\(592\) 0 0
\(593\) 25.1005i 1.03075i 0.856964 + 0.515377i \(0.172348\pi\)
−0.856964 + 0.515377i \(0.827652\pi\)
\(594\) 0 0
\(595\) 0.717561 + 2.20626i 0.0294171 + 0.0904480i
\(596\) 0 0
\(597\) 34.6642i 1.41871i
\(598\) 0 0
\(599\) 24.9528 1.01954 0.509772 0.860310i \(-0.329730\pi\)
0.509772 + 0.860310i \(0.329730\pi\)
\(600\) 0 0
\(601\) 11.9744 0.488445 0.244223 0.969719i \(-0.421467\pi\)
0.244223 + 0.969719i \(0.421467\pi\)
\(602\) 0 0
\(603\) 69.7641i 2.84101i
\(604\) 0 0
\(605\) 15.0025 + 46.1278i 0.609938 + 1.87536i
\(606\) 0 0
\(607\) 6.89412i 0.279824i −0.990164 0.139912i \(-0.955318\pi\)
0.990164 0.139912i \(-0.0446819\pi\)
\(608\) 0 0
\(609\) 2.25819 0.0915065
\(610\) 0 0
\(611\) 30.7100 1.24239
\(612\) 0 0
\(613\) 25.8193i 1.04283i −0.853303 0.521416i \(-0.825404\pi\)
0.853303 0.521416i \(-0.174596\pi\)
\(614\) 0 0
\(615\) −34.9675 + 11.3727i −1.41003 + 0.458594i
\(616\) 0 0
\(617\) 15.7584i 0.634408i −0.948357 0.317204i \(-0.897256\pi\)
0.948357 0.317204i \(-0.102744\pi\)
\(618\) 0 0
\(619\) 25.9111 1.04145 0.520727 0.853723i \(-0.325661\pi\)
0.520727 + 0.853723i \(0.325661\pi\)
\(620\) 0 0
\(621\) 3.73773 0.149990
\(622\) 0 0
\(623\) 0.566768i 0.0227071i
\(624\) 0 0
\(625\) 7.69806 23.7853i 0.307922 0.951411i
\(626\) 0 0
\(627\) 16.2808i 0.650194i
\(628\) 0 0
\(629\) 36.0231 1.43633
\(630\) 0 0
\(631\) −6.86287 −0.273207 −0.136603 0.990626i \(-0.543619\pi\)
−0.136603 + 0.990626i \(0.543619\pi\)
\(632\) 0 0
\(633\) 55.5499i 2.20791i
\(634\) 0 0
\(635\) −38.4685 + 12.5114i −1.52658 + 0.496500i
\(636\) 0 0
\(637\) 36.5939i 1.44990i
\(638\) 0 0
\(639\) −12.3346 −0.487947
\(640\) 0 0
\(641\) −35.4136 −1.39875 −0.699376 0.714754i \(-0.746539\pi\)
−0.699376 + 0.714754i \(0.746539\pi\)
\(642\) 0 0
\(643\) 27.6618i 1.09088i −0.838151 0.545438i \(-0.816363\pi\)
0.838151 0.545438i \(-0.183637\pi\)
\(644\) 0 0
\(645\) −6.54402 20.1207i −0.257670 0.792253i
\(646\) 0 0
\(647\) 29.0871i 1.14353i 0.820417 + 0.571765i \(0.193741\pi\)
−0.820417 + 0.571765i \(0.806259\pi\)
\(648\) 0 0
\(649\) 51.9794 2.04037
\(650\) 0 0
\(651\) −1.55903 −0.0611033
\(652\) 0 0
\(653\) 22.7798i 0.891444i 0.895171 + 0.445722i \(0.147053\pi\)
−0.895171 + 0.445722i \(0.852947\pi\)
\(654\) 0 0
\(655\) 8.38515 + 25.7816i 0.327635 + 1.00737i
\(656\) 0 0
\(657\) 38.0219i 1.48337i
\(658\) 0 0
\(659\) 13.5698 0.528605 0.264302 0.964440i \(-0.414858\pi\)
0.264302 + 0.964440i \(0.414858\pi\)
\(660\) 0 0
\(661\) 47.4318 1.84489 0.922443 0.386134i \(-0.126190\pi\)
0.922443 + 0.386134i \(0.126190\pi\)
\(662\) 0 0
\(663\) 106.808i 4.14809i
\(664\) 0 0
\(665\) −0.308405 + 0.100305i −0.0119594 + 0.00388966i
\(666\) 0 0
\(667\) 3.40533i 0.131855i
\(668\) 0 0
\(669\) 42.4857 1.64259
\(670\) 0 0
\(671\) 46.6972 1.80273
\(672\) 0 0
\(673\) 4.71398i 0.181711i 0.995864 + 0.0908553i \(0.0289601\pi\)
−0.995864 + 0.0908553i \(0.971040\pi\)
\(674\) 0 0
\(675\) 17.6530 + 24.2679i 0.679464 + 0.934072i
\(676\) 0 0
\(677\) 42.5524i 1.63542i 0.575629 + 0.817711i \(0.304757\pi\)
−0.575629 + 0.817711i \(0.695243\pi\)
\(678\) 0 0
\(679\) 0.722747 0.0277365
\(680\) 0 0
\(681\) −38.2757 −1.46673
\(682\) 0 0
\(683\) 34.6186i 1.32464i 0.749220 + 0.662321i \(0.230429\pi\)
−0.749220 + 0.662321i \(0.769571\pi\)
\(684\) 0 0
\(685\) 42.6105 13.8585i 1.62806 0.529508i
\(686\) 0 0
\(687\) 20.9747i 0.800235i
\(688\) 0 0
\(689\) 36.5584 1.39276
\(690\) 0 0
\(691\) 22.4131 0.852636 0.426318 0.904573i \(-0.359811\pi\)
0.426318 + 0.904573i \(0.359811\pi\)
\(692\) 0 0
\(693\) 4.23576i 0.160903i
\(694\) 0 0
\(695\) −7.88393 24.2405i −0.299055 0.919495i
\(696\) 0 0
\(697\) 41.3140i 1.56488i
\(698\) 0 0
\(699\) 12.0846 0.457082
\(700\) 0 0
\(701\) −30.3599 −1.14668 −0.573339 0.819318i \(-0.694352\pi\)
−0.573339 + 0.819318i \(0.694352\pi\)
\(702\) 0 0
\(703\) 5.03553i 0.189919i
\(704\) 0 0
\(705\) −11.5336 35.4622i −0.434382 1.33558i
\(706\) 0 0
\(707\) 0.776149i 0.0291901i
\(708\) 0 0
\(709\) 11.2281 0.421679 0.210839 0.977521i \(-0.432380\pi\)
0.210839 + 0.977521i \(0.432380\pi\)
\(710\) 0 0
\(711\) −49.5196 −1.85713
\(712\) 0 0
\(713\) 2.35101i 0.0880459i
\(714\) 0 0
\(715\) −63.7518 + 20.7345i −2.38418 + 0.775427i
\(716\) 0 0
\(717\) 43.6757i 1.63110i
\(718\) 0 0
\(719\) 27.4485 1.02366 0.511829 0.859088i \(-0.328968\pi\)
0.511829 + 0.859088i \(0.328968\pi\)
\(720\) 0 0
\(721\) 0.521392 0.0194177
\(722\) 0 0
\(723\) 76.0336i 2.82772i
\(724\) 0 0
\(725\) −22.1097 + 16.0831i −0.821135 + 0.597312i
\(726\) 0 0
\(727\) 17.2650i 0.640323i −0.947363 0.320162i \(-0.896263\pi\)
0.947363 0.320162i \(-0.103737\pi\)
\(728\) 0 0
\(729\) 42.2472 1.56471
\(730\) 0 0
\(731\) −23.7726 −0.879261
\(732\) 0 0
\(733\) 15.6789i 0.579112i 0.957161 + 0.289556i \(0.0935077\pi\)
−0.957161 + 0.289556i \(0.906492\pi\)
\(734\) 0 0
\(735\) −42.2565 + 13.7434i −1.55866 + 0.506934i
\(736\) 0 0
\(737\) 78.0946i 2.87665i
\(738\) 0 0
\(739\) −47.7761 −1.75747 −0.878737 0.477307i \(-0.841613\pi\)
−0.878737 + 0.477307i \(0.841613\pi\)
\(740\) 0 0
\(741\) −14.9303 −0.548479
\(742\) 0 0
\(743\) 37.5789i 1.37864i −0.724459 0.689318i \(-0.757910\pi\)
0.724459 0.689318i \(-0.242090\pi\)
\(744\) 0 0
\(745\) 10.7763 + 33.1337i 0.394814 + 1.21392i
\(746\) 0 0
\(747\) 11.0899i 0.405758i
\(748\) 0 0
\(749\) −2.22654 −0.0813561
\(750\) 0 0
\(751\) 50.4411 1.84062 0.920311 0.391188i \(-0.127936\pi\)
0.920311 + 0.391188i \(0.127936\pi\)
\(752\) 0 0
\(753\) 10.3778i 0.378188i
\(754\) 0 0
\(755\) 15.4722 + 47.5719i 0.563090 + 1.73132i
\(756\) 0 0
\(757\) 10.8756i 0.395280i 0.980275 + 0.197640i \(0.0633276\pi\)
−0.980275 + 0.197640i \(0.936672\pi\)
\(758\) 0 0
\(759\) 10.1391 0.368026
\(760\) 0 0
\(761\) 10.7675 0.390322 0.195161 0.980771i \(-0.437477\pi\)
0.195161 + 0.980771i \(0.437477\pi\)
\(762\) 0 0
\(763\) 0.319229i 0.0115569i
\(764\) 0 0
\(765\) 77.7002 25.2710i 2.80926 0.913677i
\(766\) 0 0
\(767\) 47.6677i 1.72118i
\(768\) 0 0
\(769\) 1.76320 0.0635827 0.0317914 0.999495i \(-0.489879\pi\)
0.0317914 + 0.999495i \(0.489879\pi\)
\(770\) 0 0
\(771\) −27.6514 −0.995841
\(772\) 0 0
\(773\) 26.5661i 0.955517i −0.878491 0.477759i \(-0.841449\pi\)
0.878491 0.477759i \(-0.158551\pi\)
\(774\) 0 0
\(775\) 15.2643 11.1036i 0.548311 0.398853i
\(776\) 0 0
\(777\) 2.07954i 0.0746032i
\(778\) 0 0
\(779\) −5.77513 −0.206915
\(780\) 0 0
\(781\) −13.8074 −0.494068
\(782\) 0 0
\(783\) 32.8189i 1.17285i
\(784\) 0 0
\(785\) −49.1304 + 15.9791i −1.75354 + 0.570317i
\(786\) 0 0
\(787\) 34.4557i 1.22821i 0.789223 + 0.614106i \(0.210483\pi\)
−0.789223 + 0.614106i \(0.789517\pi\)
\(788\) 0 0
\(789\) −5.18379 −0.184548
\(790\) 0 0
\(791\) 1.79282 0.0637453
\(792\) 0 0
\(793\) 42.8236i 1.52071i
\(794\) 0 0
\(795\) −13.7301 42.2155i −0.486956 1.49723i
\(796\) 0 0
\(797\) 11.5121i 0.407779i −0.978994 0.203890i \(-0.934642\pi\)
0.978994 0.203890i \(-0.0653584\pi\)
\(798\) 0 0
\(799\) −41.8985 −1.48226
\(800\) 0 0
\(801\) 19.9604 0.705267
\(802\) 0 0
\(803\) 42.5621i 1.50198i
\(804\) 0 0
\(805\) 0.0624661 + 0.192063i 0.00220164 + 0.00676933i
\(806\) 0 0
\(807\) 61.6048i 2.16859i
\(808\) 0 0
\(809\) −35.7367 −1.25643 −0.628217 0.778038i \(-0.716215\pi\)
−0.628217 + 0.778038i \(0.716215\pi\)
\(810\) 0 0
\(811\) −47.4425 −1.66593 −0.832966 0.553324i \(-0.813359\pi\)
−0.832966 + 0.553324i \(0.813359\pi\)
\(812\) 0 0
\(813\) 21.4820i 0.753406i
\(814\) 0 0
\(815\) 24.1400 7.85124i 0.845588 0.275017i
\(816\) 0 0
\(817\) 3.32308i 0.116260i
\(818\) 0 0
\(819\) 3.88440 0.135732
\(820\) 0 0
\(821\) −5.70237 −0.199014 −0.0995070 0.995037i \(-0.531727\pi\)
−0.0995070 + 0.995037i \(0.531727\pi\)
\(822\) 0 0
\(823\) 3.37125i 0.117514i 0.998272 + 0.0587572i \(0.0187138\pi\)
−0.998272 + 0.0587572i \(0.981286\pi\)
\(824\) 0 0
\(825\) 47.8861 + 65.8298i 1.66718 + 2.29190i
\(826\) 0 0
\(827\) 3.22704i 0.112215i −0.998425 0.0561075i \(-0.982131\pi\)
0.998425 0.0561075i \(-0.0178690\pi\)
\(828\) 0 0
\(829\) −10.5746 −0.367273 −0.183636 0.982994i \(-0.558787\pi\)
−0.183636 + 0.982994i \(0.558787\pi\)
\(830\) 0 0
\(831\) 35.7519 1.24022
\(832\) 0 0
\(833\) 49.9260i 1.72983i
\(834\) 0 0
\(835\) −12.9710 + 4.21865i −0.448880 + 0.145993i
\(836\) 0 0
\(837\) 22.6578i 0.783168i
\(838\) 0 0
\(839\) −51.5214 −1.77872 −0.889359 0.457210i \(-0.848849\pi\)
−0.889359 + 0.457210i \(0.848849\pi\)
\(840\) 0 0
\(841\) 0.900274 0.0310439
\(842\) 0 0
\(843\) 63.1977i 2.17665i
\(844\) 0 0
\(845\) −10.0238 30.8200i −0.344830 1.06024i
\(846\) 0 0
\(847\) 3.14617i 0.108104i
\(848\) 0 0
\(849\) 58.7055 2.01477
\(850\) 0 0
\(851\) 3.13593 0.107498
\(852\) 0 0
\(853\) 14.3074i 0.489874i 0.969539 + 0.244937i \(0.0787673\pi\)
−0.969539 + 0.244937i \(0.921233\pi\)
\(854\) 0 0
\(855\) 3.53254 + 10.8614i 0.120810 + 0.371453i
\(856\) 0 0
\(857\) 3.55632i 0.121482i 0.998154 + 0.0607408i \(0.0193463\pi\)
−0.998154 + 0.0607408i \(0.980654\pi\)
\(858\) 0 0
\(859\) −13.8084 −0.471135 −0.235568 0.971858i \(-0.575695\pi\)
−0.235568 + 0.971858i \(0.575695\pi\)
\(860\) 0 0
\(861\) 2.38498 0.0812799
\(862\) 0 0
\(863\) 11.3476i 0.386277i −0.981171 0.193139i \(-0.938133\pi\)
0.981171 0.193139i \(-0.0618667\pi\)
\(864\) 0 0
\(865\) −23.1676 + 7.53498i −0.787722 + 0.256197i
\(866\) 0 0
\(867\) 97.3154i 3.30500i
\(868\) 0 0
\(869\) −55.4327 −1.88042
\(870\) 0 0
\(871\) 71.6166 2.42664
\(872\) 0 0
\(873\) 25.4537i 0.861478i
\(874\) 0 0
\(875\) −0.951981 + 1.31267i −0.0321828 + 0.0443764i
\(876\) 0 0
\(877\) 44.6155i 1.50656i −0.657701 0.753279i \(-0.728471\pi\)
0.657701 0.753279i \(-0.271529\pi\)
\(878\) 0 0
\(879\) 63.0479 2.12655
\(880\) 0 0
\(881\) 34.3973 1.15887 0.579437 0.815017i \(-0.303272\pi\)
0.579437 + 0.815017i \(0.303272\pi\)
\(882\) 0 0
\(883\) 54.2057i 1.82417i −0.410004 0.912084i \(-0.634473\pi\)
0.410004 0.912084i \(-0.365527\pi\)
\(884\) 0 0
\(885\) 55.0439 17.9024i 1.85028 0.601781i
\(886\) 0 0
\(887\) 1.69998i 0.0570798i −0.999593 0.0285399i \(-0.990914\pi\)
0.999593 0.0285399i \(-0.00908577\pi\)
\(888\) 0 0
\(889\) 2.62377 0.0879984
\(890\) 0 0
\(891\) −10.0997 −0.338353
\(892\) 0 0
\(893\) 5.85683i 0.195991i
\(894\) 0 0
\(895\) −3.08536 9.48648i −0.103132 0.317098i
\(896\) 0 0
\(897\) 9.29804i 0.310453i
\(898\) 0 0
\(899\) −20.6428 −0.688477
\(900\) 0 0
\(901\) −49.8776 −1.66166
\(902\) 0 0
\(903\) 1.37235i 0.0456689i
\(904\) 0 0
\(905\) 2.48133 + 7.62928i 0.0824822 + 0.253606i
\(906\) 0 0
\(907\) 13.1338i 0.436101i 0.975938 + 0.218050i \(0.0699697\pi\)
−0.975938 + 0.218050i \(0.930030\pi\)
\(908\) 0 0
\(909\) 27.3344 0.906626
\(910\) 0 0
\(911\) 24.7511 0.820040 0.410020 0.912076i \(-0.365522\pi\)
0.410020 + 0.912076i \(0.365522\pi\)
\(912\) 0 0
\(913\) 12.4141i 0.410848i
\(914\) 0 0
\(915\) 49.4503 16.0831i 1.63478 0.531691i
\(916\) 0 0
\(917\) 1.75845i 0.0580692i
\(918\) 0 0
\(919\) 14.2789 0.471019 0.235510 0.971872i \(-0.424324\pi\)
0.235510 + 0.971872i \(0.424324\pi\)
\(920\) 0 0
\(921\) 5.12707 0.168943
\(922\) 0 0
\(923\) 12.6621i 0.416777i
\(924\) 0 0
\(925\) 14.8108 + 20.3606i 0.486975 + 0.669453i
\(926\) 0 0
\(927\) 18.3624i 0.603100i
\(928\) 0 0
\(929\) −18.6484 −0.611834 −0.305917 0.952058i \(-0.598963\pi\)
−0.305917 + 0.952058i \(0.598963\pi\)
\(930\) 0 0
\(931\) −6.97897 −0.228726
\(932\) 0 0
\(933\) 26.3829i 0.863738i
\(934\) 0 0
\(935\) 86.9784 28.2887i 2.84450 0.925138i
\(936\) 0 0
\(937\) 17.9120i 0.585159i −0.956241 0.292580i \(-0.905486\pi\)
0.956241 0.292580i \(-0.0945136\pi\)
\(938\) 0 0
\(939\) −12.2376 −0.399360
\(940\) 0 0
\(941\) 10.7412 0.350152 0.175076 0.984555i \(-0.443983\pi\)
0.175076 + 0.984555i \(0.443983\pi\)
\(942\) 0 0
\(943\) 3.59653i 0.117119i
\(944\) 0 0
\(945\) −0.602017 1.85101i −0.0195836 0.0602132i
\(946\) 0 0
\(947\) 58.5220i 1.90171i 0.309636 + 0.950855i \(0.399793\pi\)
−0.309636 + 0.950855i \(0.600207\pi\)
\(948\) 0 0
\(949\) −39.0315 −1.26702
\(950\) 0 0
\(951\) 13.1285 0.425720
\(952\) 0 0
\(953\) 2.93656i 0.0951244i −0.998868 0.0475622i \(-0.984855\pi\)
0.998868 0.0475622i \(-0.0151452\pi\)
\(954\) 0 0
\(955\) 5.53813 + 17.0280i 0.179210 + 0.551012i
\(956\) 0 0
\(957\) 89.0255i 2.87779i
\(958\) 0 0
\(959\) −2.90628 −0.0938486
\(960\) 0 0
\(961\) −16.7484 −0.540271
\(962\) 0 0
\(963\) 78.4144i 2.52687i
\(964\) 0 0
\(965\) −3.09695 + 1.00725i −0.0996944 + 0.0324244i
\(966\) 0 0
\(967\) 20.5192i 0.659852i 0.944007 + 0.329926i \(0.107024\pi\)
−0.944007 + 0.329926i \(0.892976\pi\)
\(968\) 0 0
\(969\) 20.3699 0.654374
\(970\) 0 0
\(971\) −2.37837 −0.0763255 −0.0381628 0.999272i \(-0.512151\pi\)
−0.0381628 + 0.999272i \(0.512151\pi\)
\(972\) 0 0
\(973\) 1.65334i 0.0530037i
\(974\) 0 0
\(975\) −60.3692 + 43.9139i −1.93336 + 1.40637i
\(976\) 0 0
\(977\) 46.2822i 1.48070i −0.672222 0.740349i \(-0.734660\pi\)
0.672222 0.740349i \(-0.265340\pi\)
\(978\) 0 0
\(979\) 22.3439 0.714114
\(980\) 0 0
\(981\) 11.2426 0.358948
\(982\) 0 0
\(983\) 49.2913i 1.57215i 0.618133 + 0.786074i \(0.287889\pi\)
−0.618133 + 0.786074i \(0.712111\pi\)
\(984\) 0 0
\(985\) −56.0335 + 18.2242i −1.78538 + 0.580672i
\(986\) 0 0
\(987\) 2.41872i 0.0769887i
\(988\) 0 0
\(989\) −2.06949 −0.0658059
\(990\) 0 0
\(991\) 6.92186 0.219880 0.109940 0.993938i \(-0.464934\pi\)
0.109940 + 0.993938i \(0.464934\pi\)
\(992\) 0 0
\(993\) 2.66054i 0.0844296i
\(994\) 0 0
\(995\) −8.41940 25.8869i −0.266913 0.820670i
\(996\) 0 0
\(997\) 28.1533i 0.891624i −0.895127 0.445812i \(-0.852915\pi\)
0.895127 0.445812i \(-0.147085\pi\)
\(998\) 0 0
\(999\) −30.2225 −0.956199
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 760.2.d.e.609.11 yes 12
4.3 odd 2 1520.2.d.k.609.2 12
5.2 odd 4 3800.2.a.z.1.6 6
5.3 odd 4 3800.2.a.be.1.1 6
5.4 even 2 inner 760.2.d.e.609.2 12
20.3 even 4 7600.2.a.cg.1.6 6
20.7 even 4 7600.2.a.cn.1.1 6
20.19 odd 2 1520.2.d.k.609.11 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
760.2.d.e.609.2 12 5.4 even 2 inner
760.2.d.e.609.11 yes 12 1.1 even 1 trivial
1520.2.d.k.609.2 12 4.3 odd 2
1520.2.d.k.609.11 12 20.19 odd 2
3800.2.a.z.1.6 6 5.2 odd 4
3800.2.a.be.1.1 6 5.3 odd 4
7600.2.a.cg.1.6 6 20.3 even 4
7600.2.a.cn.1.1 6 20.7 even 4