Properties

Label 760.2.d.e.609.11
Level 760760
Weight 22
Character 760.609
Analytic conductor 6.0696.069
Analytic rank 00
Dimension 1212
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [760,2,Mod(609,760)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(760, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("760.609");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 760=23519 760 = 2^{3} \cdot 5 \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 760.d (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 6.068630553626.06863055362
Analytic rank: 00
Dimension: 1212
Coefficient field: Q[x]/(x12)\mathbb{Q}[x]/(x^{12} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x124x11+9x108x911x8+60x7126x6+180x599x4++729 x^{12} - 4 x^{11} + 9 x^{10} - 8 x^{9} - 11 x^{8} + 60 x^{7} - 126 x^{6} + 180 x^{5} - 99 x^{4} + \cdots + 729 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 27 2^{7}
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 609.11
Root 1.351191.08364i1.35119 - 1.08364i of defining polynomial
Character χ\chi == 760.609
Dual form 760.2.d.e.609.2

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+2.84742iq3+(0.691595+2.12643i)q50.145034iq75.10782q95.71774q115.24345iq13+(6.05484+1.96926i)q15+7.15378iq171.00000q19+0.412974q21+0.622762iq23+(4.04339+2.94125i)q256.00186iq27+5.46811q293.77513q3116.2808iq33+(0.3084050.100305i)q355.03553iq37+14.9303q39+5.77513q41+3.32308iq43+(3.5325410.8614i)q45+5.85683iq47+6.97897q4920.3699q51+6.97219iq53+(3.9543612.1584i)q552.84742iq579.09089q598.16707q61+0.740810iq63+(11.14983.62634i)q65+13.6583iq671.77327q69+2.41484q717.44385iq73+(8.3749911.5133i)q75+0.829270iq77+9.69485q79+1.76638q81+2.17116iq83+(15.2120+4.94752i)q85+15.5700iq873.90782q890.760481q9110.7494iq93+(0.6915952.12643i)q95+4.98328iq97+29.2052q99+O(q100)q+2.84742i q^{3} +(0.691595 + 2.12643i) q^{5} -0.145034i q^{7} -5.10782 q^{9} -5.71774 q^{11} -5.24345i q^{13} +(-6.05484 + 1.96926i) q^{15} +7.15378i q^{17} -1.00000 q^{19} +0.412974 q^{21} +0.622762i q^{23} +(-4.04339 + 2.94125i) q^{25} -6.00186i q^{27} +5.46811 q^{29} -3.77513 q^{31} -16.2808i q^{33} +(0.308405 - 0.100305i) q^{35} -5.03553i q^{37} +14.9303 q^{39} +5.77513 q^{41} +3.32308i q^{43} +(-3.53254 - 10.8614i) q^{45} +5.85683i q^{47} +6.97897 q^{49} -20.3699 q^{51} +6.97219i q^{53} +(-3.95436 - 12.1584i) q^{55} -2.84742i q^{57} -9.09089 q^{59} -8.16707 q^{61} +0.740810i q^{63} +(11.1498 - 3.62634i) q^{65} +13.6583i q^{67} -1.77327 q^{69} +2.41484 q^{71} -7.44385i q^{73} +(-8.37499 - 11.5133i) q^{75} +0.829270i q^{77} +9.69485 q^{79} +1.76638 q^{81} +2.17116i q^{83} +(-15.2120 + 4.94752i) q^{85} +15.5700i q^{87} -3.90782 q^{89} -0.760481 q^{91} -10.7494i q^{93} +(-0.691595 - 2.12643i) q^{95} +4.98328i q^{97} +29.2052 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 12q+6q516q94q1112q1512q19+36q21+18q25+4q29+16q31+6q35+36q39+8q412q454q4968q5118q55+4q59+20q61++44q99+O(q100) 12 q + 6 q^{5} - 16 q^{9} - 4 q^{11} - 12 q^{15} - 12 q^{19} + 36 q^{21} + 18 q^{25} + 4 q^{29} + 16 q^{31} + 6 q^{35} + 36 q^{39} + 8 q^{41} - 2 q^{45} - 4 q^{49} - 68 q^{51} - 18 q^{55} + 4 q^{59} + 20 q^{61}+ \cdots + 44 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/760Z)×\left(\mathbb{Z}/760\mathbb{Z}\right)^\times.

nn 191191 381381 401401 457457
χ(n)\chi(n) 11 11 11 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 2.84742i 1.64396i 0.569516 + 0.821980i 0.307131π0.307131\pi
−0.569516 + 0.821980i 0.692869π0.692869\pi
44 0 0
55 0.691595 + 2.12643i 0.309291 + 0.950968i
66 0 0
77 0.145034i 0.0548179i −0.999624 0.0274089i 0.991274π-0.991274\pi
0.999624 0.0274089i 0.00872563π-0.00872563\pi
88 0 0
99 −5.10782 −1.70261
1010 0 0
1111 −5.71774 −1.72396 −0.861982 0.506938i 0.830777π-0.830777\pi
−0.861982 + 0.506938i 0.830777π0.830777\pi
1212 0 0
1313 5.24345i 1.45427i −0.686493 0.727136i 0.740851π-0.740851\pi
0.686493 0.727136i 0.259149π-0.259149\pi
1414 0 0
1515 −6.05484 + 1.96926i −1.56335 + 0.508462i
1616 0 0
1717 7.15378i 1.73505i 0.497396 + 0.867524i 0.334290π0.334290\pi
−0.497396 + 0.867524i 0.665710π0.665710\pi
1818 0 0
1919 −1.00000 −0.229416
2020 0 0
2121 0.412974 0.0901184
2222 0 0
2323 0.622762i 0.129855i 0.997890 + 0.0649274i 0.0206816π0.0206816\pi
−0.997890 + 0.0649274i 0.979318π0.979318\pi
2424 0 0
2525 −4.04339 + 2.94125i −0.808679 + 0.588251i
2626 0 0
2727 6.00186i 1.15506i
2828 0 0
2929 5.46811 1.01540 0.507702 0.861533i 0.330495π-0.330495\pi
0.507702 + 0.861533i 0.330495π0.330495\pi
3030 0 0
3131 −3.77513 −0.678033 −0.339017 0.940780i 0.610094π-0.610094\pi
−0.339017 + 0.940780i 0.610094π0.610094\pi
3232 0 0
3333 16.2808i 2.83413i
3434 0 0
3535 0.308405 0.100305i 0.0521300 0.0169546i
3636 0 0
3737 5.03553i 0.827836i −0.910314 0.413918i 0.864160π-0.864160\pi
0.910314 0.413918i 0.135840π-0.135840\pi
3838 0 0
3939 14.9303 2.39077
4040 0 0
4141 5.77513 0.901924 0.450962 0.892543i 0.351081π-0.351081\pi
0.450962 + 0.892543i 0.351081π0.351081\pi
4242 0 0
4343 3.32308i 0.506765i 0.967366 + 0.253382i 0.0815431π0.0815431\pi
−0.967366 + 0.253382i 0.918457π0.918457\pi
4444 0 0
4545 −3.53254 10.8614i −0.526600 1.61912i
4646 0 0
4747 5.85683i 0.854306i 0.904179 + 0.427153i 0.140483π0.140483\pi
−0.904179 + 0.427153i 0.859517π0.859517\pi
4848 0 0
4949 6.97897 0.996995
5050 0 0
5151 −20.3699 −2.85235
5252 0 0
5353 6.97219i 0.957704i 0.877896 + 0.478852i 0.158947π0.158947\pi
−0.877896 + 0.478852i 0.841053π0.841053\pi
5454 0 0
5555 −3.95436 12.1584i −0.533206 1.63943i
5656 0 0
5757 2.84742i 0.377150i
5858 0 0
5959 −9.09089 −1.18353 −0.591767 0.806109i 0.701569π-0.701569\pi
−0.591767 + 0.806109i 0.701569π0.701569\pi
6060 0 0
6161 −8.16707 −1.04569 −0.522843 0.852429i 0.675129π-0.675129\pi
−0.522843 + 0.852429i 0.675129π0.675129\pi
6262 0 0
6363 0.740810i 0.0933333i
6464 0 0
6565 11.1498 3.62634i 1.38297 0.449793i
6666 0 0
6767 13.6583i 1.66863i 0.551291 + 0.834313i 0.314135π0.314135\pi
−0.551291 + 0.834313i 0.685865π0.685865\pi
6868 0 0
6969 −1.77327 −0.213476
7070 0 0
7171 2.41484 0.286588 0.143294 0.989680i 0.454230π-0.454230\pi
0.143294 + 0.989680i 0.454230π0.454230\pi
7272 0 0
7373 7.44385i 0.871237i −0.900131 0.435619i 0.856530π-0.856530\pi
0.900131 0.435619i 0.143470π-0.143470\pi
7474 0 0
7575 −8.37499 11.5133i −0.967061 1.32944i
7676 0 0
7777 0.829270i 0.0945041i
7878 0 0
7979 9.69485 1.09076 0.545378 0.838190i 0.316386π-0.316386\pi
0.545378 + 0.838190i 0.316386π0.316386\pi
8080 0 0
8181 1.76638 0.196264
8282 0 0
8383 2.17116i 0.238316i 0.992875 + 0.119158i 0.0380194π0.0380194\pi
−0.992875 + 0.119158i 0.961981π0.961981\pi
8484 0 0
8585 −15.2120 + 4.94752i −1.64997 + 0.536634i
8686 0 0
8787 15.5700i 1.66928i
8888 0 0
8989 −3.90782 −0.414228 −0.207114 0.978317i 0.566407π-0.566407\pi
−0.207114 + 0.978317i 0.566407π0.566407\pi
9090 0 0
9191 −0.760481 −0.0797201
9292 0 0
9393 10.7494i 1.11466i
9494 0 0
9595 −0.691595 2.12643i −0.0709561 0.218167i
9696 0 0
9797 4.98328i 0.505976i 0.967469 + 0.252988i 0.0814132π0.0814132\pi
−0.967469 + 0.252988i 0.918587π0.918587\pi
9898 0 0
9999 29.2052 2.93524
100100 0 0
101101 −5.35148 −0.532493 −0.266246 0.963905i 0.585783π-0.585783\pi
−0.266246 + 0.963905i 0.585783π0.585783\pi
102102 0 0
103103 3.59495i 0.354221i 0.984191 + 0.177111i 0.0566750π0.0566750\pi
−0.984191 + 0.177111i 0.943325π0.943325\pi
104104 0 0
105105 0.285611 + 0.878160i 0.0278728 + 0.0856997i
106106 0 0
107107 15.3518i 1.48412i −0.670335 0.742059i 0.733850π-0.733850\pi
0.670335 0.742059i 0.266150π-0.266150\pi
108108 0 0
109109 −2.20105 −0.210823 −0.105411 0.994429i 0.533616π-0.533616\pi
−0.105411 + 0.994429i 0.533616π0.533616\pi
110110 0 0
111111 14.3383 1.36093
112112 0 0
113113 12.3613i 1.16286i 0.813598 + 0.581428i 0.197506π0.197506\pi
−0.813598 + 0.581428i 0.802494π0.802494\pi
114114 0 0
115115 −1.32426 + 0.430699i −0.123488 + 0.0401629i
116116 0 0
117117 26.7826i 2.47605i
118118 0 0
119119 1.03754 0.0951116
120120 0 0
121121 21.6926 1.97205
122122 0 0
123123 16.4442i 1.48273i
124124 0 0
125125 −9.05075 6.56383i −0.809524 0.587087i
126126 0 0
127127 18.0907i 1.60529i 0.596459 + 0.802644i 0.296574π0.296574\pi
−0.596459 + 0.802644i 0.703426π0.703426\pi
128128 0 0
129129 −9.46222 −0.833102
130130 0 0
131131 12.1244 1.05931 0.529655 0.848213i 0.322321π-0.322321\pi
0.529655 + 0.848213i 0.322321π0.322321\pi
132132 0 0
133133 0.145034i 0.0125761i
134134 0 0
135135 12.7625 4.15086i 1.09842 0.357249i
136136 0 0
137137 20.0385i 1.71201i −0.516969 0.856004i 0.672940π-0.672940\pi
0.516969 0.856004i 0.327060π-0.327060\pi
138138 0 0
139139 −11.3996 −0.966905 −0.483452 0.875371i 0.660617π-0.660617\pi
−0.483452 + 0.875371i 0.660617π0.660617\pi
140140 0 0
141141 −16.6769 −1.40445
142142 0 0
143143 29.9807i 2.50711i
144144 0 0
145145 3.78172 + 11.6276i 0.314055 + 0.965616i
146146 0 0
147147 19.8721i 1.63902i
148148 0 0
149149 15.5818 1.27651 0.638257 0.769823i 0.279656π-0.279656\pi
0.638257 + 0.769823i 0.279656π0.279656\pi
150150 0 0
151151 22.3717 1.82058 0.910292 0.413966i 0.135857π-0.135857\pi
0.910292 + 0.413966i 0.135857π0.135857\pi
152152 0 0
153153 36.5403i 2.95410i
154154 0 0
155155 −2.61086 8.02754i −0.209709 0.644788i
156156 0 0
157157 23.1047i 1.84395i 0.387246 + 0.921976i 0.373426π0.373426\pi
−0.387246 + 0.921976i 0.626574π0.626574\pi
158158 0 0
159159 −19.8528 −1.57443
160160 0 0
161161 0.0903219 0.00711836
162162 0 0
163163 11.3524i 0.889186i −0.895733 0.444593i 0.853348π-0.853348\pi
0.895733 0.444593i 0.146652π-0.146652\pi
164164 0 0
165165 34.6200 11.2597i 2.69517 0.876570i
166166 0 0
167167 6.09989i 0.472024i 0.971750 + 0.236012i 0.0758405π0.0758405\pi
−0.971750 + 0.236012i 0.924160π0.924160\pi
168168 0 0
169169 −14.4938 −1.11491
170170 0 0
171171 5.10782 0.390605
172172 0 0
173173 10.8951i 0.828338i 0.910200 + 0.414169i 0.135928π0.135928\pi
−0.910200 + 0.414169i 0.864072π0.864072\pi
174174 0 0
175175 0.426583 + 0.586431i 0.0322466 + 0.0443300i
176176 0 0
177177 25.8856i 1.94568i
178178 0 0
179179 −4.46123 −0.333448 −0.166724 0.986004i 0.553319π-0.553319\pi
−0.166724 + 0.986004i 0.553319π0.553319\pi
180180 0 0
181181 3.58784 0.266682 0.133341 0.991070i 0.457429π-0.457429\pi
0.133341 + 0.991070i 0.457429π0.457429\pi
182182 0 0
183183 23.2551i 1.71907i
184184 0 0
185185 10.7077 3.48254i 0.787245 0.256042i
186186 0 0
187187 40.9035i 2.99116i
188188 0 0
189189 −0.870477 −0.0633179
190190 0 0
191191 8.00777 0.579422 0.289711 0.957114i 0.406441π-0.406441\pi
0.289711 + 0.957114i 0.406441π0.406441\pi
192192 0 0
193193 1.45641i 0.104835i 0.998625 + 0.0524173i 0.0166926π0.0166926\pi
−0.998625 + 0.0524173i 0.983307π0.983307\pi
194194 0 0
195195 10.3257 + 31.7483i 0.739441 + 2.27354i
196196 0 0
197197 26.3510i 1.87743i 0.344692 + 0.938716i 0.387983π0.387983\pi
−0.344692 + 0.938716i 0.612017π0.612017\pi
198198 0 0
199199 −12.1739 −0.862985 −0.431492 0.902117i 0.642013π-0.642013\pi
−0.431492 + 0.902117i 0.642013π0.642013\pi
200200 0 0
201201 −38.8909 −2.74316
202202 0 0
203203 0.793065i 0.0556622i
204204 0 0
205205 3.99405 + 12.2804i 0.278956 + 0.857700i
206206 0 0
207207 3.18096i 0.221092i
208208 0 0
209209 5.71774 0.395505
210210 0 0
211211 −19.5088 −1.34304 −0.671521 0.740985i 0.734359π-0.734359\pi
−0.671521 + 0.740985i 0.734359π0.734359\pi
212212 0 0
213213 6.87606i 0.471140i
214214 0 0
215215 −7.06629 + 2.29822i −0.481917 + 0.156738i
216216 0 0
217217 0.547524i 0.0371683i
218218 0 0
219219 21.1958 1.43228
220220 0 0
221221 37.5105 2.52323
222222 0 0
223223 14.9208i 0.999168i −0.866265 0.499584i 0.833486π-0.833486\pi
0.866265 0.499584i 0.166514π-0.166514\pi
224224 0 0
225225 20.6529 15.0234i 1.37686 1.00156i
226226 0 0
227227 13.4422i 0.892192i 0.894985 + 0.446096i 0.147186π0.147186\pi
−0.894985 + 0.446096i 0.852814π0.852814\pi
228228 0 0
229229 7.36620 0.486772 0.243386 0.969929i 0.421742π-0.421742\pi
0.243386 + 0.969929i 0.421742π0.421742\pi
230230 0 0
231231 −2.36128 −0.155361
232232 0 0
233233 4.24405i 0.278037i −0.990290 0.139018i 0.955605π-0.955605\pi
0.990290 0.139018i 0.0443947π-0.0443947\pi
234234 0 0
235235 −12.4541 + 4.05055i −0.812417 + 0.264229i
236236 0 0
237237 27.6053i 1.79316i
238238 0 0
239239 15.3387 0.992176 0.496088 0.868272i 0.334769π-0.334769\pi
0.496088 + 0.868272i 0.334769π0.334769\pi
240240 0 0
241241 26.7026 1.72006 0.860032 0.510240i 0.170443π-0.170443\pi
0.860032 + 0.510240i 0.170443π0.170443\pi
242242 0 0
243243 12.9760i 0.832408i
244244 0 0
245245 4.82662 + 14.8403i 0.308361 + 0.948110i
246246 0 0
247247 5.24345i 0.333633i
248248 0 0
249249 −6.18221 −0.391781
250250 0 0
251251 3.64463 0.230047 0.115023 0.993363i 0.463306π-0.463306\pi
0.115023 + 0.993363i 0.463306π0.463306\pi
252252 0 0
253253 3.56079i 0.223865i
254254 0 0
255255 −14.0877 43.3150i −0.882205 2.71249i
256256 0 0
257257 9.71103i 0.605757i 0.953029 + 0.302879i 0.0979477π0.0979477\pi
−0.953029 + 0.302879i 0.902052π0.902052\pi
258258 0 0
259259 −0.730325 −0.0453802
260260 0 0
261261 −27.9302 −1.72883
262262 0 0
263263 1.82052i 0.112258i 0.998424 + 0.0561290i 0.0178758π0.0178758\pi
−0.998424 + 0.0561290i 0.982124π0.982124\pi
264264 0 0
265265 −14.8259 + 4.82193i −0.910746 + 0.296209i
266266 0 0
267267 11.1272i 0.680974i
268268 0 0
269269 −21.6353 −1.31913 −0.659563 0.751649i 0.729259π-0.729259\pi
−0.659563 + 0.751649i 0.729259π0.729259\pi
270270 0 0
271271 −7.54436 −0.458287 −0.229144 0.973393i 0.573593π-0.573593\pi
−0.229144 + 0.973393i 0.573593π0.573593\pi
272272 0 0
273273 2.16541i 0.131057i
274274 0 0
275275 23.1191 16.8173i 1.39413 1.01412i
276276 0 0
277277 12.5559i 0.754410i −0.926130 0.377205i 0.876885π-0.876885\pi
0.926130 0.377205i 0.123115π-0.123115\pi
278278 0 0
279279 19.2827 1.15442
280280 0 0
281281 22.1947 1.32403 0.662013 0.749493i 0.269703π-0.269703\pi
0.662013 + 0.749493i 0.269703π0.269703\pi
282282 0 0
283283 20.6171i 1.22556i −0.790254 0.612779i 0.790052π-0.790052\pi
0.790254 0.612779i 0.209948π-0.209948\pi
284284 0 0
285285 6.05484 1.96926i 0.358658 0.116649i
286286 0 0
287287 0.837592i 0.0494415i
288288 0 0
289289 −34.1766 −2.01039
290290 0 0
291291 −14.1895 −0.831804
292292 0 0
293293 22.1421i 1.29356i −0.762679 0.646778i 0.776116π-0.776116\pi
0.762679 0.646778i 0.223884π-0.223884\pi
294294 0 0
295295 −6.28721 19.3311i −0.366056 1.12550i
296296 0 0
297297 34.3171i 1.99128i
298298 0 0
299299 3.26542 0.188844
300300 0 0
301301 0.481961 0.0277798
302302 0 0
303303 15.2379i 0.875397i
304304 0 0
305305 −5.64830 17.3667i −0.323421 0.994413i
306306 0 0
307307 1.80060i 0.102766i −0.998679 0.0513828i 0.983637π-0.983637\pi
0.998679 0.0513828i 0.0163629π-0.0163629\pi
308308 0 0
309309 −10.2364 −0.582326
310310 0 0
311311 −9.26554 −0.525401 −0.262700 0.964877i 0.584613π-0.584613\pi
−0.262700 + 0.964877i 0.584613π0.584613\pi
312312 0 0
313313 4.29779i 0.242925i 0.992596 + 0.121463i 0.0387585π0.0387585\pi
−0.992596 + 0.121463i 0.961242π0.961242\pi
314314 0 0
315315 −1.57528 + 0.512340i −0.0887569 + 0.0288671i
316316 0 0
317317 4.61065i 0.258960i −0.991582 0.129480i 0.958669π-0.958669\pi
0.991582 0.129480i 0.0413308π-0.0413308\pi
318318 0 0
319319 −31.2653 −1.75052
320320 0 0
321321 43.7132 2.43983
322322 0 0
323323 7.15378i 0.398047i
324324 0 0
325325 15.4223 + 21.2013i 0.855476 + 1.17604i
326326 0 0
327327 6.26734i 0.346584i
328328 0 0
329329 0.849442 0.0468312
330330 0 0
331331 −0.934366 −0.0513574 −0.0256787 0.999670i 0.508175π-0.508175\pi
−0.0256787 + 0.999670i 0.508175π0.508175\pi
332332 0 0
333333 25.7206i 1.40948i
334334 0 0
335335 −29.0434 + 9.44600i −1.58681 + 0.516090i
336336 0 0
337337 29.8588i 1.62651i 0.581905 + 0.813256i 0.302307π0.302307\pi
−0.581905 + 0.813256i 0.697693π0.697693\pi
338338 0 0
339339 −35.1980 −1.91169
340340 0 0
341341 21.5852 1.16891
342342 0 0
343343 2.02743i 0.109471i
344344 0 0
345345 −1.22638 3.77072i −0.0660262 0.203009i
346346 0 0
347347 10.6502i 0.571732i 0.958270 + 0.285866i 0.0922813π0.0922813\pi
−0.958270 + 0.285866i 0.907719π0.907719\pi
348348 0 0
349349 −29.3479 −1.57096 −0.785480 0.618888i 0.787584π-0.787584\pi
−0.785480 + 0.618888i 0.787584π0.787584\pi
350350 0 0
351351 −31.4705 −1.67977
352352 0 0
353353 14.3847i 0.765619i 0.923827 + 0.382810i 0.125043π0.125043\pi
−0.923827 + 0.382810i 0.874957π0.874957\pi
354354 0 0
355355 1.67009 + 5.13498i 0.0886391 + 0.272536i
356356 0 0
357357 2.95433i 0.156360i
358358 0 0
359359 2.23773 0.118103 0.0590514 0.998255i 0.481192π-0.481192\pi
0.0590514 + 0.998255i 0.481192π0.481192\pi
360360 0 0
361361 1.00000 0.0526316
362362 0 0
363363 61.7680i 3.24198i
364364 0 0
365365 15.8288 5.14813i 0.828518 0.269465i
366366 0 0
367367 0.636873i 0.0332445i −0.999862 0.0166222i 0.994709π-0.994709\pi
0.999862 0.0166222i 0.00529127π-0.00529127\pi
368368 0 0
369369 −29.4983 −1.53562
370370 0 0
371371 1.01121 0.0524993
372372 0 0
373373 16.2358i 0.840655i −0.907372 0.420328i 0.861915π-0.861915\pi
0.907372 0.420328i 0.138085π-0.138085\pi
374374 0 0
375375 18.6900 25.7713i 0.965148 1.33083i
376376 0 0
377377 28.6718i 1.47667i
378378 0 0
379379 17.9624 0.922667 0.461333 0.887227i 0.347371π-0.347371\pi
0.461333 + 0.887227i 0.347371π0.347371\pi
380380 0 0
381381 −51.5118 −2.63903
382382 0 0
383383 4.06305i 0.207612i −0.994598 0.103806i 0.966898π-0.966898\pi
0.994598 0.103806i 0.0331021π-0.0331021\pi
384384 0 0
385385 −1.76338 + 0.573519i −0.0898703 + 0.0292292i
386386 0 0
387387 16.9737i 0.862822i
388388 0 0
389389 28.7507 1.45772 0.728859 0.684663i 0.240051π-0.240051\pi
0.728859 + 0.684663i 0.240051π0.240051\pi
390390 0 0
391391 −4.45510 −0.225304
392392 0 0
393393 34.5232i 1.74147i
394394 0 0
395395 6.70491 + 20.6154i 0.337360 + 1.03727i
396396 0 0
397397 11.6518i 0.584786i −0.956298 0.292393i 0.905548π-0.905548\pi
0.956298 0.292393i 0.0944515π-0.0944515\pi
398398 0 0
399399 −0.412974 −0.0206746
400400 0 0
401401 1.98190 0.0989716 0.0494858 0.998775i 0.484242π-0.484242\pi
0.0494858 + 0.998775i 0.484242π0.484242\pi
402402 0 0
403403 19.7947i 0.986045i
404404 0 0
405405 1.22162 + 3.75608i 0.0607027 + 0.186641i
406406 0 0
407407 28.7919i 1.42716i
408408 0 0
409409 −26.3984 −1.30532 −0.652660 0.757651i 0.726347π-0.726347\pi
−0.652660 + 0.757651i 0.726347π0.726347\pi
410410 0 0
411411 57.0582 2.81447
412412 0 0
413413 1.31849i 0.0648788i
414414 0 0
415415 −4.61681 + 1.50156i −0.226630 + 0.0737087i
416416 0 0
417417 32.4596i 1.58955i
418418 0 0
419419 16.3134 0.796963 0.398481 0.917176i 0.369537π-0.369537\pi
0.398481 + 0.917176i 0.369537π0.369537\pi
420420 0 0
421421 −1.90815 −0.0929976 −0.0464988 0.998918i 0.514806π-0.514806\pi
−0.0464988 + 0.998918i 0.514806π0.514806\pi
422422 0 0
423423 29.9156i 1.45455i
424424 0 0
425425 −21.0411 28.9256i −1.02064 1.40310i
426426 0 0
427427 1.18451i 0.0573223i
428428 0 0
429429 −85.3678 −4.12160
430430 0 0
431431 13.9013 0.669600 0.334800 0.942289i 0.391331π-0.391331\pi
0.334800 + 0.942289i 0.391331π0.391331\pi
432432 0 0
433433 4.93885i 0.237346i 0.992933 + 0.118673i 0.0378640π0.0378640\pi
−0.992933 + 0.118673i 0.962136π0.962136\pi
434434 0 0
435435 −33.1086 + 10.7682i −1.58743 + 0.516294i
436436 0 0
437437 0.622762i 0.0297907i
438438 0 0
439439 18.0918 0.863473 0.431736 0.902000i 0.357901π-0.357901\pi
0.431736 + 0.902000i 0.357901π0.357901\pi
440440 0 0
441441 −35.6473 −1.69749
442442 0 0
443443 8.13690i 0.386596i −0.981140 0.193298i 0.938082π-0.938082\pi
0.981140 0.193298i 0.0619184π-0.0619184\pi
444444 0 0
445445 −2.70262 8.30969i −0.128117 0.393917i
446446 0 0
447447 44.3681i 2.09854i
448448 0 0
449449 −19.9187 −0.940020 −0.470010 0.882661i 0.655750π-0.655750\pi
−0.470010 + 0.882661i 0.655750π0.655750\pi
450450 0 0
451451 −33.0207 −1.55488
452452 0 0
453453 63.7018i 2.99297i
454454 0 0
455455 −0.525945 1.61711i −0.0246567 0.0758112i
456456 0 0
457457 21.4434i 1.00308i 0.865134 + 0.501540i 0.167233π0.167233\pi
−0.865134 + 0.501540i 0.832767π0.832767\pi
458458 0 0
459459 42.9360 2.00408
460460 0 0
461461 11.2325 0.523148 0.261574 0.965183i 0.415758π-0.415758\pi
0.261574 + 0.965183i 0.415758π0.415758\pi
462462 0 0
463463 37.8262i 1.75793i −0.476882 0.878967i 0.658233π-0.658233\pi
0.476882 0.878967i 0.341767π-0.341767\pi
464464 0 0
465465 22.8578 7.43422i 1.06001 0.344754i
466466 0 0
467467 30.3388i 1.40391i −0.712221 0.701955i 0.752311π-0.752311\pi
0.712221 0.701955i 0.247689π-0.247689\pi
468468 0 0
469469 1.98092 0.0914705
470470 0 0
471471 −65.7888 −3.03139
472472 0 0
473473 19.0005i 0.873645i
474474 0 0
475475 4.04339 2.94125i 0.185524 0.134954i
476476 0 0
477477 35.6127i 1.63059i
478478 0 0
479479 35.3121 1.61345 0.806725 0.590927i 0.201238π-0.201238\pi
0.806725 + 0.590927i 0.201238π0.201238\pi
480480 0 0
481481 −26.4035 −1.20390
482482 0 0
483483 0.257185i 0.0117023i
484484 0 0
485485 −10.5966 + 3.44641i −0.481166 + 0.156493i
486486 0 0
487487 6.88482i 0.311981i 0.987759 + 0.155991i 0.0498569π0.0498569\pi
−0.987759 + 0.155991i 0.950143π0.950143\pi
488488 0 0
489489 32.3250 1.46179
490490 0 0
491491 −10.1116 −0.456328 −0.228164 0.973623i 0.573272π-0.573272\pi
−0.228164 + 0.973623i 0.573272π0.573272\pi
492492 0 0
493493 39.1177i 1.76177i
494494 0 0
495495 20.1982 + 62.1028i 0.907841 + 2.79131i
496496 0 0
497497 0.350234i 0.0157102i
498498 0 0
499499 36.4594 1.63215 0.816074 0.577947i 0.196146π-0.196146\pi
0.816074 + 0.577947i 0.196146π0.196146\pi
500500 0 0
501501 −17.3690 −0.775989
502502 0 0
503503 9.00269i 0.401410i −0.979652 0.200705i 0.935677π-0.935677\pi
0.979652 0.200705i 0.0643233π-0.0643233\pi
504504 0 0
505505 −3.70106 11.3795i −0.164695 0.506383i
506506 0 0
507507 41.2700i 1.83286i
508508 0 0
509509 −10.3542 −0.458943 −0.229471 0.973315i 0.573700π-0.573700\pi
−0.229471 + 0.973315i 0.573700π0.573700\pi
510510 0 0
511511 −1.07961 −0.0477594
512512 0 0
513513 6.00186i 0.264989i
514514 0 0
515515 −7.64441 + 2.48625i −0.336853 + 0.109557i
516516 0 0
517517 33.4878i 1.47279i
518518 0 0
519519 −31.0229 −1.36175
520520 0 0
521521 11.5209 0.504738 0.252369 0.967631i 0.418790π-0.418790\pi
0.252369 + 0.967631i 0.418790π0.418790\pi
522522 0 0
523523 24.0131i 1.05002i −0.851097 0.525009i 0.824062π-0.824062\pi
0.851097 0.525009i 0.175938π-0.175938\pi
524524 0 0
525525 −1.66982 + 1.21466i −0.0728768 + 0.0530122i
526526 0 0
527527 27.0065i 1.17642i
528528 0 0
529529 22.6122 0.983138
530530 0 0
531531 46.4347 2.01509
532532 0 0
533533 30.2816i 1.31164i
534534 0 0
535535 32.6446 10.6172i 1.41135 0.459023i
536536 0 0
537537 12.7030i 0.548175i
538538 0 0
539539 −39.9039 −1.71878
540540 0 0
541541 −34.5131 −1.48383 −0.741916 0.670492i 0.766083π-0.766083\pi
−0.741916 + 0.670492i 0.766083π0.766083\pi
542542 0 0
543543 10.2161i 0.438415i
544544 0 0
545545 −1.52224 4.68039i −0.0652055 0.200486i
546546 0 0
547547 3.89383i 0.166488i −0.996529 0.0832441i 0.973472π-0.973472\pi
0.996529 0.0832441i 0.0265281π-0.0265281\pi
548548 0 0
549549 41.7159 1.78039
550550 0 0
551551 −5.46811 −0.232949
552552 0 0
553553 1.40609i 0.0597929i
554554 0 0
555555 9.91628 + 30.4893i 0.420923 + 1.29420i
556556 0 0
557557 11.1816i 0.473779i −0.971537 0.236889i 0.923872π-0.923872\pi
0.971537 0.236889i 0.0761279π-0.0761279\pi
558558 0 0
559559 17.4244 0.736974
560560 0 0
561561 116.470 4.91735
562562 0 0
563563 2.54455i 0.107240i −0.998561 0.0536200i 0.982924π-0.982924\pi
0.998561 0.0536200i 0.0170760π-0.0170760\pi
564564 0 0
565565 −26.2855 + 8.54903i −1.10584 + 0.359660i
566566 0 0
567567 0.256186i 0.0107588i
568568 0 0
569569 −2.09511 −0.0878314 −0.0439157 0.999035i 0.513983π-0.513983\pi
−0.0439157 + 0.999035i 0.513983π0.513983\pi
570570 0 0
571571 36.2358 1.51642 0.758211 0.652009i 0.226074π-0.226074\pi
0.758211 + 0.652009i 0.226074π0.226074\pi
572572 0 0
573573 22.8015i 0.952547i
574574 0 0
575575 −1.83170 2.51807i −0.0763872 0.105011i
576576 0 0
577577 15.5756i 0.648419i −0.945985 0.324209i 0.894902π-0.894902\pi
0.945985 0.324209i 0.105098π-0.105098\pi
578578 0 0
579579 −4.14702 −0.172344
580580 0 0
581581 0.314893 0.0130639
582582 0 0
583583 39.8652i 1.65105i
584584 0 0
585585 −56.9513 + 18.5227i −2.35465 + 0.765820i
586586 0 0
587587 8.54894i 0.352853i −0.984314 0.176426i 0.943546π-0.943546\pi
0.984314 0.176426i 0.0564537π-0.0564537\pi
588588 0 0
589589 3.77513 0.155551
590590 0 0
591591 −75.0325 −3.08642
592592 0 0
593593 25.1005i 1.03075i 0.856964 + 0.515377i 0.172348π0.172348\pi
−0.856964 + 0.515377i 0.827652π0.827652\pi
594594 0 0
595595 0.717561 + 2.20626i 0.0294171 + 0.0904480i
596596 0 0
597597 34.6642i 1.41871i
598598 0 0
599599 24.9528 1.01954 0.509772 0.860310i 0.329730π-0.329730\pi
0.509772 + 0.860310i 0.329730π0.329730\pi
600600 0 0
601601 11.9744 0.488445 0.244223 0.969719i 0.421467π-0.421467\pi
0.244223 + 0.969719i 0.421467π0.421467\pi
602602 0 0
603603 69.7641i 2.84101i
604604 0 0
605605 15.0025 + 46.1278i 0.609938 + 1.87536i
606606 0 0
607607 6.89412i 0.279824i −0.990164 0.139912i 0.955318π-0.955318\pi
0.990164 0.139912i 0.0446819π-0.0446819\pi
608608 0 0
609609 2.25819 0.0915065
610610 0 0
611611 30.7100 1.24239
612612 0 0
613613 25.8193i 1.04283i −0.853303 0.521416i 0.825404π-0.825404\pi
0.853303 0.521416i 0.174596π-0.174596\pi
614614 0 0
615615 −34.9675 + 11.3727i −1.41003 + 0.458594i
616616 0 0
617617 15.7584i 0.634408i −0.948357 0.317204i 0.897256π-0.897256\pi
0.948357 0.317204i 0.102744π-0.102744\pi
618618 0 0
619619 25.9111 1.04145 0.520727 0.853723i 0.325661π-0.325661\pi
0.520727 + 0.853723i 0.325661π0.325661\pi
620620 0 0
621621 3.73773 0.149990
622622 0 0
623623 0.566768i 0.0227071i
624624 0 0
625625 7.69806 23.7853i 0.307922 0.951411i
626626 0 0
627627 16.2808i 0.650194i
628628 0 0
629629 36.0231 1.43633
630630 0 0
631631 −6.86287 −0.273207 −0.136603 0.990626i 0.543619π-0.543619\pi
−0.136603 + 0.990626i 0.543619π0.543619\pi
632632 0 0
633633 55.5499i 2.20791i
634634 0 0
635635 −38.4685 + 12.5114i −1.52658 + 0.496500i
636636 0 0
637637 36.5939i 1.44990i
638638 0 0
639639 −12.3346 −0.487947
640640 0 0
641641 −35.4136 −1.39875 −0.699376 0.714754i 0.746539π-0.746539\pi
−0.699376 + 0.714754i 0.746539π0.746539\pi
642642 0 0
643643 27.6618i 1.09088i −0.838151 0.545438i 0.816363π-0.816363\pi
0.838151 0.545438i 0.183637π-0.183637\pi
644644 0 0
645645 −6.54402 20.1207i −0.257670 0.792253i
646646 0 0
647647 29.0871i 1.14353i 0.820417 + 0.571765i 0.193741π0.193741\pi
−0.820417 + 0.571765i 0.806259π0.806259\pi
648648 0 0
649649 51.9794 2.04037
650650 0 0
651651 −1.55903 −0.0611033
652652 0 0
653653 22.7798i 0.891444i 0.895171 + 0.445722i 0.147053π0.147053\pi
−0.895171 + 0.445722i 0.852947π0.852947\pi
654654 0 0
655655 8.38515 + 25.7816i 0.327635 + 1.00737i
656656 0 0
657657 38.0219i 1.48337i
658658 0 0
659659 13.5698 0.528605 0.264302 0.964440i 0.414858π-0.414858\pi
0.264302 + 0.964440i 0.414858π0.414858\pi
660660 0 0
661661 47.4318 1.84489 0.922443 0.386134i 0.126190π-0.126190\pi
0.922443 + 0.386134i 0.126190π0.126190\pi
662662 0 0
663663 106.808i 4.14809i
664664 0 0
665665 −0.308405 + 0.100305i −0.0119594 + 0.00388966i
666666 0 0
667667 3.40533i 0.131855i
668668 0 0
669669 42.4857 1.64259
670670 0 0
671671 46.6972 1.80273
672672 0 0
673673 4.71398i 0.181711i 0.995864 + 0.0908553i 0.0289601π0.0289601\pi
−0.995864 + 0.0908553i 0.971040π0.971040\pi
674674 0 0
675675 17.6530 + 24.2679i 0.679464 + 0.934072i
676676 0 0
677677 42.5524i 1.63542i 0.575629 + 0.817711i 0.304757π0.304757\pi
−0.575629 + 0.817711i 0.695243π0.695243\pi
678678 0 0
679679 0.722747 0.0277365
680680 0 0
681681 −38.2757 −1.46673
682682 0 0
683683 34.6186i 1.32464i 0.749220 + 0.662321i 0.230429π0.230429\pi
−0.749220 + 0.662321i 0.769571π0.769571\pi
684684 0 0
685685 42.6105 13.8585i 1.62806 0.529508i
686686 0 0
687687 20.9747i 0.800235i
688688 0 0
689689 36.5584 1.39276
690690 0 0
691691 22.4131 0.852636 0.426318 0.904573i 0.359811π-0.359811\pi
0.426318 + 0.904573i 0.359811π0.359811\pi
692692 0 0
693693 4.23576i 0.160903i
694694 0 0
695695 −7.88393 24.2405i −0.299055 0.919495i
696696 0 0
697697 41.3140i 1.56488i
698698 0 0
699699 12.0846 0.457082
700700 0 0
701701 −30.3599 −1.14668 −0.573339 0.819318i 0.694352π-0.694352\pi
−0.573339 + 0.819318i 0.694352π0.694352\pi
702702 0 0
703703 5.03553i 0.189919i
704704 0 0
705705 −11.5336 35.4622i −0.434382 1.33558i
706706 0 0
707707 0.776149i 0.0291901i
708708 0 0
709709 11.2281 0.421679 0.210839 0.977521i 0.432380π-0.432380\pi
0.210839 + 0.977521i 0.432380π0.432380\pi
710710 0 0
711711 −49.5196 −1.85713
712712 0 0
713713 2.35101i 0.0880459i
714714 0 0
715715 −63.7518 + 20.7345i −2.38418 + 0.775427i
716716 0 0
717717 43.6757i 1.63110i
718718 0 0
719719 27.4485 1.02366 0.511829 0.859088i 0.328968π-0.328968\pi
0.511829 + 0.859088i 0.328968π0.328968\pi
720720 0 0
721721 0.521392 0.0194177
722722 0 0
723723 76.0336i 2.82772i
724724 0 0
725725 −22.1097 + 16.0831i −0.821135 + 0.597312i
726726 0 0
727727 17.2650i 0.640323i −0.947363 0.320162i 0.896263π-0.896263\pi
0.947363 0.320162i 0.103737π-0.103737\pi
728728 0 0
729729 42.2472 1.56471
730730 0 0
731731 −23.7726 −0.879261
732732 0 0
733733 15.6789i 0.579112i 0.957161 + 0.289556i 0.0935077π0.0935077\pi
−0.957161 + 0.289556i 0.906492π0.906492\pi
734734 0 0
735735 −42.2565 + 13.7434i −1.55866 + 0.506934i
736736 0 0
737737 78.0946i 2.87665i
738738 0 0
739739 −47.7761 −1.75747 −0.878737 0.477307i 0.841613π-0.841613\pi
−0.878737 + 0.477307i 0.841613π0.841613\pi
740740 0 0
741741 −14.9303 −0.548479
742742 0 0
743743 37.5789i 1.37864i −0.724459 0.689318i 0.757910π-0.757910\pi
0.724459 0.689318i 0.242090π-0.242090\pi
744744 0 0
745745 10.7763 + 33.1337i 0.394814 + 1.21392i
746746 0 0
747747 11.0899i 0.405758i
748748 0 0
749749 −2.22654 −0.0813561
750750 0 0
751751 50.4411 1.84062 0.920311 0.391188i 0.127936π-0.127936\pi
0.920311 + 0.391188i 0.127936π0.127936\pi
752752 0 0
753753 10.3778i 0.378188i
754754 0 0
755755 15.4722 + 47.5719i 0.563090 + 1.73132i
756756 0 0
757757 10.8756i 0.395280i 0.980275 + 0.197640i 0.0633276π0.0633276\pi
−0.980275 + 0.197640i 0.936672π0.936672\pi
758758 0 0
759759 10.1391 0.368026
760760 0 0
761761 10.7675 0.390322 0.195161 0.980771i 0.437477π-0.437477\pi
0.195161 + 0.980771i 0.437477π0.437477\pi
762762 0 0
763763 0.319229i 0.0115569i
764764 0 0
765765 77.7002 25.2710i 2.80926 0.913677i
766766 0 0
767767 47.6677i 1.72118i
768768 0 0
769769 1.76320 0.0635827 0.0317914 0.999495i 0.489879π-0.489879\pi
0.0317914 + 0.999495i 0.489879π0.489879\pi
770770 0 0
771771 −27.6514 −0.995841
772772 0 0
773773 26.5661i 0.955517i −0.878491 0.477759i 0.841449π-0.841449\pi
0.878491 0.477759i 0.158551π-0.158551\pi
774774 0 0
775775 15.2643 11.1036i 0.548311 0.398853i
776776 0 0
777777 2.07954i 0.0746032i
778778 0 0
779779 −5.77513 −0.206915
780780 0 0
781781 −13.8074 −0.494068
782782 0 0
783783 32.8189i 1.17285i
784784 0 0
785785 −49.1304 + 15.9791i −1.75354 + 0.570317i
786786 0 0
787787 34.4557i 1.22821i 0.789223 + 0.614106i 0.210483π0.210483\pi
−0.789223 + 0.614106i 0.789517π0.789517\pi
788788 0 0
789789 −5.18379 −0.184548
790790 0 0
791791 1.79282 0.0637453
792792 0 0
793793 42.8236i 1.52071i
794794 0 0
795795 −13.7301 42.2155i −0.486956 1.49723i
796796 0 0
797797 11.5121i 0.407779i −0.978994 0.203890i 0.934642π-0.934642\pi
0.978994 0.203890i 0.0653584π-0.0653584\pi
798798 0 0
799799 −41.8985 −1.48226
800800 0 0
801801 19.9604 0.705267
802802 0 0
803803 42.5621i 1.50198i
804804 0 0
805805 0.0624661 + 0.192063i 0.00220164 + 0.00676933i
806806 0 0
807807 61.6048i 2.16859i
808808 0 0
809809 −35.7367 −1.25643 −0.628217 0.778038i 0.716215π-0.716215\pi
−0.628217 + 0.778038i 0.716215π0.716215\pi
810810 0 0
811811 −47.4425 −1.66593 −0.832966 0.553324i 0.813359π-0.813359\pi
−0.832966 + 0.553324i 0.813359π0.813359\pi
812812 0 0
813813 21.4820i 0.753406i
814814 0 0
815815 24.1400 7.85124i 0.845588 0.275017i
816816 0 0
817817 3.32308i 0.116260i
818818 0 0
819819 3.88440 0.135732
820820 0 0
821821 −5.70237 −0.199014 −0.0995070 0.995037i 0.531727π-0.531727\pi
−0.0995070 + 0.995037i 0.531727π0.531727\pi
822822 0 0
823823 3.37125i 0.117514i 0.998272 + 0.0587572i 0.0187138π0.0187138\pi
−0.998272 + 0.0587572i 0.981286π0.981286\pi
824824 0 0
825825 47.8861 + 65.8298i 1.66718 + 2.29190i
826826 0 0
827827 3.22704i 0.112215i −0.998425 0.0561075i 0.982131π-0.982131\pi
0.998425 0.0561075i 0.0178690π-0.0178690\pi
828828 0 0
829829 −10.5746 −0.367273 −0.183636 0.982994i 0.558787π-0.558787\pi
−0.183636 + 0.982994i 0.558787π0.558787\pi
830830 0 0
831831 35.7519 1.24022
832832 0 0
833833 49.9260i 1.72983i
834834 0 0
835835 −12.9710 + 4.21865i −0.448880 + 0.145993i
836836 0 0
837837 22.6578i 0.783168i
838838 0 0
839839 −51.5214 −1.77872 −0.889359 0.457210i 0.848849π-0.848849\pi
−0.889359 + 0.457210i 0.848849π0.848849\pi
840840 0 0
841841 0.900274 0.0310439
842842 0 0
843843 63.1977i 2.17665i
844844 0 0
845845 −10.0238 30.8200i −0.344830 1.06024i
846846 0 0
847847 3.14617i 0.108104i
848848 0 0
849849 58.7055 2.01477
850850 0 0
851851 3.13593 0.107498
852852 0 0
853853 14.3074i 0.489874i 0.969539 + 0.244937i 0.0787673π0.0787673\pi
−0.969539 + 0.244937i 0.921233π0.921233\pi
854854 0 0
855855 3.53254 + 10.8614i 0.120810 + 0.371453i
856856 0 0
857857 3.55632i 0.121482i 0.998154 + 0.0607408i 0.0193463π0.0193463\pi
−0.998154 + 0.0607408i 0.980654π0.980654\pi
858858 0 0
859859 −13.8084 −0.471135 −0.235568 0.971858i 0.575695π-0.575695\pi
−0.235568 + 0.971858i 0.575695π0.575695\pi
860860 0 0
861861 2.38498 0.0812799
862862 0 0
863863 11.3476i 0.386277i −0.981171 0.193139i 0.938133π-0.938133\pi
0.981171 0.193139i 0.0618667π-0.0618667\pi
864864 0 0
865865 −23.1676 + 7.53498i −0.787722 + 0.256197i
866866 0 0
867867 97.3154i 3.30500i
868868 0 0
869869 −55.4327 −1.88042
870870 0 0
871871 71.6166 2.42664
872872 0 0
873873 25.4537i 0.861478i
874874 0 0
875875 −0.951981 + 1.31267i −0.0321828 + 0.0443764i
876876 0 0
877877 44.6155i 1.50656i −0.657701 0.753279i 0.728471π-0.728471\pi
0.657701 0.753279i 0.271529π-0.271529\pi
878878 0 0
879879 63.0479 2.12655
880880 0 0
881881 34.3973 1.15887 0.579437 0.815017i 0.303272π-0.303272\pi
0.579437 + 0.815017i 0.303272π0.303272\pi
882882 0 0
883883 54.2057i 1.82417i −0.410004 0.912084i 0.634473π-0.634473\pi
0.410004 0.912084i 0.365527π-0.365527\pi
884884 0 0
885885 55.0439 17.9024i 1.85028 0.601781i
886886 0 0
887887 1.69998i 0.0570798i −0.999593 0.0285399i 0.990914π-0.990914\pi
0.999593 0.0285399i 0.00908577π-0.00908577\pi
888888 0 0
889889 2.62377 0.0879984
890890 0 0
891891 −10.0997 −0.338353
892892 0 0
893893 5.85683i 0.195991i
894894 0 0
895895 −3.08536 9.48648i −0.103132 0.317098i
896896 0 0
897897 9.29804i 0.310453i
898898 0 0
899899 −20.6428 −0.688477
900900 0 0
901901 −49.8776 −1.66166
902902 0 0
903903 1.37235i 0.0456689i
904904 0 0
905905 2.48133 + 7.62928i 0.0824822 + 0.253606i
906906 0 0
907907 13.1338i 0.436101i 0.975938 + 0.218050i 0.0699697π0.0699697\pi
−0.975938 + 0.218050i 0.930030π0.930030\pi
908908 0 0
909909 27.3344 0.906626
910910 0 0
911911 24.7511 0.820040 0.410020 0.912076i 0.365522π-0.365522\pi
0.410020 + 0.912076i 0.365522π0.365522\pi
912912 0 0
913913 12.4141i 0.410848i
914914 0 0
915915 49.4503 16.0831i 1.63478 0.531691i
916916 0 0
917917 1.75845i 0.0580692i
918918 0 0
919919 14.2789 0.471019 0.235510 0.971872i 0.424324π-0.424324\pi
0.235510 + 0.971872i 0.424324π0.424324\pi
920920 0 0
921921 5.12707 0.168943
922922 0 0
923923 12.6621i 0.416777i
924924 0 0
925925 14.8108 + 20.3606i 0.486975 + 0.669453i
926926 0 0
927927 18.3624i 0.603100i
928928 0 0
929929 −18.6484 −0.611834 −0.305917 0.952058i 0.598963π-0.598963\pi
−0.305917 + 0.952058i 0.598963π0.598963\pi
930930 0 0
931931 −6.97897 −0.228726
932932 0 0
933933 26.3829i 0.863738i
934934 0 0
935935 86.9784 28.2887i 2.84450 0.925138i
936936 0 0
937937 17.9120i 0.585159i −0.956241 0.292580i 0.905486π-0.905486\pi
0.956241 0.292580i 0.0945136π-0.0945136\pi
938938 0 0
939939 −12.2376 −0.399360
940940 0 0
941941 10.7412 0.350152 0.175076 0.984555i 0.443983π-0.443983\pi
0.175076 + 0.984555i 0.443983π0.443983\pi
942942 0 0
943943 3.59653i 0.117119i
944944 0 0
945945 −0.602017 1.85101i −0.0195836 0.0602132i
946946 0 0
947947 58.5220i 1.90171i 0.309636 + 0.950855i 0.399793π0.399793\pi
−0.309636 + 0.950855i 0.600207π0.600207\pi
948948 0 0
949949 −39.0315 −1.26702
950950 0 0
951951 13.1285 0.425720
952952 0 0
953953 2.93656i 0.0951244i −0.998868 0.0475622i 0.984855π-0.984855\pi
0.998868 0.0475622i 0.0151452π-0.0151452\pi
954954 0 0
955955 5.53813 + 17.0280i 0.179210 + 0.551012i
956956 0 0
957957 89.0255i 2.87779i
958958 0 0
959959 −2.90628 −0.0938486
960960 0 0
961961 −16.7484 −0.540271
962962 0 0
963963 78.4144i 2.52687i
964964 0 0
965965 −3.09695 + 1.00725i −0.0996944 + 0.0324244i
966966 0 0
967967 20.5192i 0.659852i 0.944007 + 0.329926i 0.107024π0.107024\pi
−0.944007 + 0.329926i 0.892976π0.892976\pi
968968 0 0
969969 20.3699 0.654374
970970 0 0
971971 −2.37837 −0.0763255 −0.0381628 0.999272i 0.512151π-0.512151\pi
−0.0381628 + 0.999272i 0.512151π0.512151\pi
972972 0 0
973973 1.65334i 0.0530037i
974974 0 0
975975 −60.3692 + 43.9139i −1.93336 + 1.40637i
976976 0 0
977977 46.2822i 1.48070i −0.672222 0.740349i 0.734660π-0.734660\pi
0.672222 0.740349i 0.265340π-0.265340\pi
978978 0 0
979979 22.3439 0.714114
980980 0 0
981981 11.2426 0.358948
982982 0 0
983983 49.2913i 1.57215i 0.618133 + 0.786074i 0.287889π0.287889\pi
−0.618133 + 0.786074i 0.712111π0.712111\pi
984984 0 0
985985 −56.0335 + 18.2242i −1.78538 + 0.580672i
986986 0 0
987987 2.41872i 0.0769887i
988988 0 0
989989 −2.06949 −0.0658059
990990 0 0
991991 6.92186 0.219880 0.109940 0.993938i 0.464934π-0.464934\pi
0.109940 + 0.993938i 0.464934π0.464934\pi
992992 0 0
993993 2.66054i 0.0844296i
994994 0 0
995995 −8.41940 25.8869i −0.266913 0.820670i
996996 0 0
997997 28.1533i 0.891624i −0.895127 0.445812i 0.852915π-0.852915\pi
0.895127 0.445812i 0.147085π-0.147085\pi
998998 0 0
999999 −30.2225 −0.956199
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 760.2.d.e.609.11 yes 12
4.3 odd 2 1520.2.d.k.609.2 12
5.2 odd 4 3800.2.a.z.1.6 6
5.3 odd 4 3800.2.a.be.1.1 6
5.4 even 2 inner 760.2.d.e.609.2 12
20.3 even 4 7600.2.a.cg.1.6 6
20.7 even 4 7600.2.a.cn.1.1 6
20.19 odd 2 1520.2.d.k.609.11 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
760.2.d.e.609.2 12 5.4 even 2 inner
760.2.d.e.609.11 yes 12 1.1 even 1 trivial
1520.2.d.k.609.2 12 4.3 odd 2
1520.2.d.k.609.11 12 20.19 odd 2
3800.2.a.z.1.6 6 5.2 odd 4
3800.2.a.be.1.1 6 5.3 odd 4
7600.2.a.cg.1.6 6 20.3 even 4
7600.2.a.cn.1.1 6 20.7 even 4