Properties

Label 2-7605-1.1-c1-0-32
Degree $2$
Conductor $7605$
Sign $1$
Analytic cond. $60.7262$
Root an. cond. $7.79270$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.56·2-s + 0.438·4-s + 5-s − 0.561·7-s + 2.43·8-s − 1.56·10-s + 1.43·11-s + 0.876·14-s − 4.68·16-s − 4.56·17-s − 7.12·19-s + 0.438·20-s − 2.24·22-s + 1.43·23-s + 25-s − 0.246·28-s + 8.24·29-s − 6·31-s + 2.43·32-s + 7.12·34-s − 0.561·35-s − 1.43·37-s + 11.1·38-s + 2.43·40-s + 4.56·41-s + 1.12·43-s + 0.630·44-s + ⋯
L(s)  = 1  − 1.10·2-s + 0.219·4-s + 0.447·5-s − 0.212·7-s + 0.862·8-s − 0.493·10-s + 0.433·11-s + 0.234·14-s − 1.17·16-s − 1.10·17-s − 1.63·19-s + 0.0980·20-s − 0.478·22-s + 0.299·23-s + 0.200·25-s − 0.0465·28-s + 1.53·29-s − 1.07·31-s + 0.431·32-s + 1.22·34-s − 0.0949·35-s − 0.236·37-s + 1.80·38-s + 0.385·40-s + 0.712·41-s + 0.171·43-s + 0.0950·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7605 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7605 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7605\)    =    \(3^{2} \cdot 5 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(60.7262\)
Root analytic conductor: \(7.79270\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7605,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7829549605\)
\(L(\frac12)\) \(\approx\) \(0.7829549605\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 - T \)
13 \( 1 \)
good2 \( 1 + 1.56T + 2T^{2} \)
7 \( 1 + 0.561T + 7T^{2} \)
11 \( 1 - 1.43T + 11T^{2} \)
17 \( 1 + 4.56T + 17T^{2} \)
19 \( 1 + 7.12T + 19T^{2} \)
23 \( 1 - 1.43T + 23T^{2} \)
29 \( 1 - 8.24T + 29T^{2} \)
31 \( 1 + 6T + 31T^{2} \)
37 \( 1 + 1.43T + 37T^{2} \)
41 \( 1 - 4.56T + 41T^{2} \)
43 \( 1 - 1.12T + 43T^{2} \)
47 \( 1 + 4T + 47T^{2} \)
53 \( 1 + 10.8T + 53T^{2} \)
59 \( 1 - 4T + 59T^{2} \)
61 \( 1 + 12.5T + 61T^{2} \)
67 \( 1 - 11.1T + 67T^{2} \)
71 \( 1 - 3.68T + 71T^{2} \)
73 \( 1 + 2.87T + 73T^{2} \)
79 \( 1 + 1.43T + 79T^{2} \)
83 \( 1 - 11.3T + 83T^{2} \)
89 \( 1 - 13.6T + 89T^{2} \)
97 \( 1 - 13.9T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.132440212592810593275888644316, −7.25205233852613308409661805611, −6.53151885810136376711864138728, −6.16741889807198677992386620483, −4.85762674651273764162901638050, −4.49649604719643185178212294231, −3.47583711628516405329842142870, −2.31190517990692117373700324639, −1.68939782714197712377292569486, −0.52657234839112931251656539288, 0.52657234839112931251656539288, 1.68939782714197712377292569486, 2.31190517990692117373700324639, 3.47583711628516405329842142870, 4.49649604719643185178212294231, 4.85762674651273764162901638050, 6.16741889807198677992386620483, 6.53151885810136376711864138728, 7.25205233852613308409661805611, 8.132440212592810593275888644316

Graph of the $Z$-function along the critical line