L(s) = 1 | − 1.56·2-s + 0.438·4-s + 5-s − 0.561·7-s + 2.43·8-s − 1.56·10-s + 1.43·11-s + 0.876·14-s − 4.68·16-s − 4.56·17-s − 7.12·19-s + 0.438·20-s − 2.24·22-s + 1.43·23-s + 25-s − 0.246·28-s + 8.24·29-s − 6·31-s + 2.43·32-s + 7.12·34-s − 0.561·35-s − 1.43·37-s + 11.1·38-s + 2.43·40-s + 4.56·41-s + 1.12·43-s + 0.630·44-s + ⋯ |
L(s) = 1 | − 1.10·2-s + 0.219·4-s + 0.447·5-s − 0.212·7-s + 0.862·8-s − 0.493·10-s + 0.433·11-s + 0.234·14-s − 1.17·16-s − 1.10·17-s − 1.63·19-s + 0.0980·20-s − 0.478·22-s + 0.299·23-s + 0.200·25-s − 0.0465·28-s + 1.53·29-s − 1.07·31-s + 0.431·32-s + 1.22·34-s − 0.0949·35-s − 0.236·37-s + 1.80·38-s + 0.385·40-s + 0.712·41-s + 0.171·43-s + 0.0950·44-s + ⋯ |
Λ(s)=(=(7605s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(7605s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.7829549605 |
L(21) |
≈ |
0.7829549605 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1−T |
| 13 | 1 |
good | 2 | 1+1.56T+2T2 |
| 7 | 1+0.561T+7T2 |
| 11 | 1−1.43T+11T2 |
| 17 | 1+4.56T+17T2 |
| 19 | 1+7.12T+19T2 |
| 23 | 1−1.43T+23T2 |
| 29 | 1−8.24T+29T2 |
| 31 | 1+6T+31T2 |
| 37 | 1+1.43T+37T2 |
| 41 | 1−4.56T+41T2 |
| 43 | 1−1.12T+43T2 |
| 47 | 1+4T+47T2 |
| 53 | 1+10.8T+53T2 |
| 59 | 1−4T+59T2 |
| 61 | 1+12.5T+61T2 |
| 67 | 1−11.1T+67T2 |
| 71 | 1−3.68T+71T2 |
| 73 | 1+2.87T+73T2 |
| 79 | 1+1.43T+79T2 |
| 83 | 1−11.3T+83T2 |
| 89 | 1−13.6T+89T2 |
| 97 | 1−13.9T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.132440212592810593275888644316, −7.25205233852613308409661805611, −6.53151885810136376711864138728, −6.16741889807198677992386620483, −4.85762674651273764162901638050, −4.49649604719643185178212294231, −3.47583711628516405329842142870, −2.31190517990692117373700324639, −1.68939782714197712377292569486, −0.52657234839112931251656539288,
0.52657234839112931251656539288, 1.68939782714197712377292569486, 2.31190517990692117373700324639, 3.47583711628516405329842142870, 4.49649604719643185178212294231, 4.85762674651273764162901638050, 6.16741889807198677992386620483, 6.53151885810136376711864138728, 7.25205233852613308409661805611, 8.132440212592810593275888644316