Properties

Label 7605.2.a.bh
Level 76057605
Weight 22
Character orbit 7605.a
Self dual yes
Analytic conductor 60.72660.726
Analytic rank 00
Dimension 22
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7605,2,Mod(1,7605)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7605, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7605.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 7605=325132 7605 = 3^{2} \cdot 5 \cdot 13^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 7605.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,1,0,5,2,0,3,9,0,1,7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 60.726230737260.7262307372
Analytic rank: 00
Dimension: 22
Coefficient field: Q(17)\Q(\sqrt{17})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2x4 x^{2} - x - 4 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 195)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=12(1+17)\beta = \frac{1}{2}(1 + \sqrt{17}). We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+βq2+(β+2)q4+q5+(β+1)q7+(β+4)q8+βq10+(β+3)q11+(2β+4)q14+3βq16+(β3)q17+(2β4)q19++(β+12)q98+O(q100) q + \beta q^{2} + (\beta + 2) q^{4} + q^{5} + (\beta + 1) q^{7} + (\beta + 4) q^{8} + \beta q^{10} + (\beta + 3) q^{11} + (2 \beta + 4) q^{14} + 3 \beta q^{16} + (\beta - 3) q^{17} + (2 \beta - 4) q^{19}+ \cdots + (\beta + 12) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+q2+5q4+2q5+3q7+9q8+q10+7q11+10q14+3q165q176q19+5q20+12q22+7q23+2q25+16q2812q31+9q32+6q34++25q98+O(q100) 2 q + q^{2} + 5 q^{4} + 2 q^{5} + 3 q^{7} + 9 q^{8} + q^{10} + 7 q^{11} + 10 q^{14} + 3 q^{16} - 5 q^{17} - 6 q^{19} + 5 q^{20} + 12 q^{22} + 7 q^{23} + 2 q^{25} + 16 q^{28} - 12 q^{31} + 9 q^{32} + 6 q^{34}+ \cdots + 25 q^{98}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−1.56155
2.56155
−1.56155 0 0.438447 1.00000 0 −0.561553 2.43845 0 −1.56155
1.2 2.56155 0 4.56155 1.00000 0 3.56155 6.56155 0 2.56155
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
33 1 -1
55 1 -1
1313 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7605.2.a.bh 2
3.b odd 2 1 2535.2.a.p 2
13.b even 2 1 7605.2.a.bc 2
13.d odd 4 2 585.2.b.e 4
39.d odd 2 1 2535.2.a.q 2
39.f even 4 2 195.2.b.c 4
156.l odd 4 2 3120.2.g.n 4
195.j odd 4 2 975.2.h.e 4
195.n even 4 2 975.2.b.f 4
195.u odd 4 2 975.2.h.g 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
195.2.b.c 4 39.f even 4 2
585.2.b.e 4 13.d odd 4 2
975.2.b.f 4 195.n even 4 2
975.2.h.e 4 195.j odd 4 2
975.2.h.g 4 195.u odd 4 2
2535.2.a.p 2 3.b odd 2 1
2535.2.a.q 2 39.d odd 2 1
3120.2.g.n 4 156.l odd 4 2
7605.2.a.bc 2 13.b even 2 1
7605.2.a.bh 2 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(7605))S_{2}^{\mathrm{new}}(\Gamma_0(7605)):

T22T24 T_{2}^{2} - T_{2} - 4 Copy content Toggle raw display
T723T72 T_{7}^{2} - 3T_{7} - 2 Copy content Toggle raw display
T1127T11+8 T_{11}^{2} - 7T_{11} + 8 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2T4 T^{2} - T - 4 Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 (T1)2 (T - 1)^{2} Copy content Toggle raw display
77 T23T2 T^{2} - 3T - 2 Copy content Toggle raw display
1111 T27T+8 T^{2} - 7T + 8 Copy content Toggle raw display
1313 T2 T^{2} Copy content Toggle raw display
1717 T2+5T+2 T^{2} + 5T + 2 Copy content Toggle raw display
1919 T2+6T8 T^{2} + 6T - 8 Copy content Toggle raw display
2323 T27T+8 T^{2} - 7T + 8 Copy content Toggle raw display
2929 T268 T^{2} - 68 Copy content Toggle raw display
3131 (T+6)2 (T + 6)^{2} Copy content Toggle raw display
3737 T2+7T+8 T^{2} + 7T + 8 Copy content Toggle raw display
4141 T25T+2 T^{2} - 5T + 2 Copy content Toggle raw display
4343 T2+6T8 T^{2} + 6T - 8 Copy content Toggle raw display
4747 (T+4)2 (T + 4)^{2} Copy content Toggle raw display
5353 T2+T106 T^{2} + T - 106 Copy content Toggle raw display
5959 (T4)2 (T - 4)^{2} Copy content Toggle raw display
6161 T2+21T+106 T^{2} + 21T + 106 Copy content Toggle raw display
6767 T214T+32 T^{2} - 14T + 32 Copy content Toggle raw display
7171 T2+5T32 T^{2} + 5T - 32 Copy content Toggle raw display
7373 T2+14T+32 T^{2} + 14T + 32 Copy content Toggle raw display
7979 T2+7T+8 T^{2} + 7T + 8 Copy content Toggle raw display
8383 T2+2T152 T^{2} + 2T - 152 Copy content Toggle raw display
8989 T215T+18 T^{2} - 15T + 18 Copy content Toggle raw display
9797 T2+T208 T^{2} + T - 208 Copy content Toggle raw display
show more
show less