Properties

Label 2-7605-1.1-c1-0-95
Degree $2$
Conductor $7605$
Sign $1$
Analytic cond. $60.7262$
Root an. cond. $7.79270$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 4-s − 5-s + 4·7-s + 3·8-s + 10-s + 2·11-s − 4·14-s − 16-s − 2·17-s + 6·19-s + 20-s − 2·22-s + 6·23-s + 25-s − 4·28-s − 2·29-s + 10·31-s − 5·32-s + 2·34-s − 4·35-s + 2·37-s − 6·38-s − 3·40-s − 6·41-s + 10·43-s − 2·44-s + ⋯
L(s)  = 1  − 0.707·2-s − 1/2·4-s − 0.447·5-s + 1.51·7-s + 1.06·8-s + 0.316·10-s + 0.603·11-s − 1.06·14-s − 1/4·16-s − 0.485·17-s + 1.37·19-s + 0.223·20-s − 0.426·22-s + 1.25·23-s + 1/5·25-s − 0.755·28-s − 0.371·29-s + 1.79·31-s − 0.883·32-s + 0.342·34-s − 0.676·35-s + 0.328·37-s − 0.973·38-s − 0.474·40-s − 0.937·41-s + 1.52·43-s − 0.301·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7605 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7605 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7605\)    =    \(3^{2} \cdot 5 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(60.7262\)
Root analytic conductor: \(7.79270\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7605,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.628521543\)
\(L(\frac12)\) \(\approx\) \(1.628521543\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 + T \)
13 \( 1 \)
good2 \( 1 + T + p T^{2} \)
7 \( 1 - 4 T + p T^{2} \)
11 \( 1 - 2 T + p T^{2} \)
17 \( 1 + 2 T + p T^{2} \)
19 \( 1 - 6 T + p T^{2} \)
23 \( 1 - 6 T + p T^{2} \)
29 \( 1 + 2 T + p T^{2} \)
31 \( 1 - 10 T + p T^{2} \)
37 \( 1 - 2 T + p T^{2} \)
41 \( 1 + 6 T + p T^{2} \)
43 \( 1 - 10 T + p T^{2} \)
47 \( 1 - 4 T + p T^{2} \)
53 \( 1 + 2 T + p T^{2} \)
59 \( 1 - 6 T + p T^{2} \)
61 \( 1 - 2 T + p T^{2} \)
67 \( 1 - 4 T + p T^{2} \)
71 \( 1 - 6 T + p T^{2} \)
73 \( 1 - 6 T + p T^{2} \)
79 \( 1 + 12 T + p T^{2} \)
83 \( 1 + 16 T + p T^{2} \)
89 \( 1 - 2 T + p T^{2} \)
97 \( 1 - 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.969442651108269867364483714241, −7.42128037066559792393591215373, −6.80492318260472867560284585691, −5.61662059881354107324334466304, −4.90995605920067117221322721145, −4.46271082359165802947890777732, −3.67694005875399616389192429368, −2.53877355899573267136722580164, −1.36388059501191469691228502578, −0.847050927765040751356708691063, 0.847050927765040751356708691063, 1.36388059501191469691228502578, 2.53877355899573267136722580164, 3.67694005875399616389192429368, 4.46271082359165802947890777732, 4.90995605920067117221322721145, 5.61662059881354107324334466304, 6.80492318260472867560284585691, 7.42128037066559792393591215373, 7.969442651108269867364483714241

Graph of the $Z$-function along the critical line