L(s) = 1 | − 2-s − 4-s − 5-s + 4·7-s + 3·8-s + 10-s + 2·11-s − 4·14-s − 16-s − 2·17-s + 6·19-s + 20-s − 2·22-s + 6·23-s + 25-s − 4·28-s − 2·29-s + 10·31-s − 5·32-s + 2·34-s − 4·35-s + 2·37-s − 6·38-s − 3·40-s − 6·41-s + 10·43-s − 2·44-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 1/2·4-s − 0.447·5-s + 1.51·7-s + 1.06·8-s + 0.316·10-s + 0.603·11-s − 1.06·14-s − 1/4·16-s − 0.485·17-s + 1.37·19-s + 0.223·20-s − 0.426·22-s + 1.25·23-s + 1/5·25-s − 0.755·28-s − 0.371·29-s + 1.79·31-s − 0.883·32-s + 0.342·34-s − 0.676·35-s + 0.328·37-s − 0.973·38-s − 0.474·40-s − 0.937·41-s + 1.52·43-s − 0.301·44-s + ⋯ |
Λ(s)=(=(7605s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(7605s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.628521543 |
L(21) |
≈ |
1.628521543 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1+T |
| 13 | 1 |
good | 2 | 1+T+pT2 |
| 7 | 1−4T+pT2 |
| 11 | 1−2T+pT2 |
| 17 | 1+2T+pT2 |
| 19 | 1−6T+pT2 |
| 23 | 1−6T+pT2 |
| 29 | 1+2T+pT2 |
| 31 | 1−10T+pT2 |
| 37 | 1−2T+pT2 |
| 41 | 1+6T+pT2 |
| 43 | 1−10T+pT2 |
| 47 | 1−4T+pT2 |
| 53 | 1+2T+pT2 |
| 59 | 1−6T+pT2 |
| 61 | 1−2T+pT2 |
| 67 | 1−4T+pT2 |
| 71 | 1−6T+pT2 |
| 73 | 1−6T+pT2 |
| 79 | 1+12T+pT2 |
| 83 | 1+16T+pT2 |
| 89 | 1−2T+pT2 |
| 97 | 1−2T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.969442651108269867364483714241, −7.42128037066559792393591215373, −6.80492318260472867560284585691, −5.61662059881354107324334466304, −4.90995605920067117221322721145, −4.46271082359165802947890777732, −3.67694005875399616389192429368, −2.53877355899573267136722580164, −1.36388059501191469691228502578, −0.847050927765040751356708691063,
0.847050927765040751356708691063, 1.36388059501191469691228502578, 2.53877355899573267136722580164, 3.67694005875399616389192429368, 4.46271082359165802947890777732, 4.90995605920067117221322721145, 5.61662059881354107324334466304, 6.80492318260472867560284585691, 7.42128037066559792393591215373, 7.969442651108269867364483714241