Properties

Label 7605.2.a.f.1.1
Level $7605$
Weight $2$
Character 7605.1
Self dual yes
Analytic conductor $60.726$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7605,2,Mod(1,7605)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7605, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7605.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7605 = 3^{2} \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7605.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(60.7262307372\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 7605.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} -1.00000 q^{4} -1.00000 q^{5} +4.00000 q^{7} +3.00000 q^{8} +1.00000 q^{10} +2.00000 q^{11} -4.00000 q^{14} -1.00000 q^{16} -2.00000 q^{17} +6.00000 q^{19} +1.00000 q^{20} -2.00000 q^{22} +6.00000 q^{23} +1.00000 q^{25} -4.00000 q^{28} -2.00000 q^{29} +10.0000 q^{31} -5.00000 q^{32} +2.00000 q^{34} -4.00000 q^{35} +2.00000 q^{37} -6.00000 q^{38} -3.00000 q^{40} -6.00000 q^{41} +10.0000 q^{43} -2.00000 q^{44} -6.00000 q^{46} +4.00000 q^{47} +9.00000 q^{49} -1.00000 q^{50} -2.00000 q^{53} -2.00000 q^{55} +12.0000 q^{56} +2.00000 q^{58} +6.00000 q^{59} +2.00000 q^{61} -10.0000 q^{62} +7.00000 q^{64} +4.00000 q^{67} +2.00000 q^{68} +4.00000 q^{70} +6.00000 q^{71} +6.00000 q^{73} -2.00000 q^{74} -6.00000 q^{76} +8.00000 q^{77} -12.0000 q^{79} +1.00000 q^{80} +6.00000 q^{82} -16.0000 q^{83} +2.00000 q^{85} -10.0000 q^{86} +6.00000 q^{88} +2.00000 q^{89} -6.00000 q^{92} -4.00000 q^{94} -6.00000 q^{95} +2.00000 q^{97} -9.00000 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107 −0.353553 0.935414i \(-0.615027\pi\)
−0.353553 + 0.935414i \(0.615027\pi\)
\(3\) 0 0
\(4\) −1.00000 −0.500000
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) 4.00000 1.51186 0.755929 0.654654i \(-0.227186\pi\)
0.755929 + 0.654654i \(0.227186\pi\)
\(8\) 3.00000 1.06066
\(9\) 0 0
\(10\) 1.00000 0.316228
\(11\) 2.00000 0.603023 0.301511 0.953463i \(-0.402509\pi\)
0.301511 + 0.953463i \(0.402509\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) −4.00000 −1.06904
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) −2.00000 −0.485071 −0.242536 0.970143i \(-0.577979\pi\)
−0.242536 + 0.970143i \(0.577979\pi\)
\(18\) 0 0
\(19\) 6.00000 1.37649 0.688247 0.725476i \(-0.258380\pi\)
0.688247 + 0.725476i \(0.258380\pi\)
\(20\) 1.00000 0.223607
\(21\) 0 0
\(22\) −2.00000 −0.426401
\(23\) 6.00000 1.25109 0.625543 0.780189i \(-0.284877\pi\)
0.625543 + 0.780189i \(0.284877\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) −4.00000 −0.755929
\(29\) −2.00000 −0.371391 −0.185695 0.982607i \(-0.559454\pi\)
−0.185695 + 0.982607i \(0.559454\pi\)
\(30\) 0 0
\(31\) 10.0000 1.79605 0.898027 0.439941i \(-0.145001\pi\)
0.898027 + 0.439941i \(0.145001\pi\)
\(32\) −5.00000 −0.883883
\(33\) 0 0
\(34\) 2.00000 0.342997
\(35\) −4.00000 −0.676123
\(36\) 0 0
\(37\) 2.00000 0.328798 0.164399 0.986394i \(-0.447432\pi\)
0.164399 + 0.986394i \(0.447432\pi\)
\(38\) −6.00000 −0.973329
\(39\) 0 0
\(40\) −3.00000 −0.474342
\(41\) −6.00000 −0.937043 −0.468521 0.883452i \(-0.655213\pi\)
−0.468521 + 0.883452i \(0.655213\pi\)
\(42\) 0 0
\(43\) 10.0000 1.52499 0.762493 0.646997i \(-0.223975\pi\)
0.762493 + 0.646997i \(0.223975\pi\)
\(44\) −2.00000 −0.301511
\(45\) 0 0
\(46\) −6.00000 −0.884652
\(47\) 4.00000 0.583460 0.291730 0.956501i \(-0.405769\pi\)
0.291730 + 0.956501i \(0.405769\pi\)
\(48\) 0 0
\(49\) 9.00000 1.28571
\(50\) −1.00000 −0.141421
\(51\) 0 0
\(52\) 0 0
\(53\) −2.00000 −0.274721 −0.137361 0.990521i \(-0.543862\pi\)
−0.137361 + 0.990521i \(0.543862\pi\)
\(54\) 0 0
\(55\) −2.00000 −0.269680
\(56\) 12.0000 1.60357
\(57\) 0 0
\(58\) 2.00000 0.262613
\(59\) 6.00000 0.781133 0.390567 0.920575i \(-0.372279\pi\)
0.390567 + 0.920575i \(0.372279\pi\)
\(60\) 0 0
\(61\) 2.00000 0.256074 0.128037 0.991769i \(-0.459132\pi\)
0.128037 + 0.991769i \(0.459132\pi\)
\(62\) −10.0000 −1.27000
\(63\) 0 0
\(64\) 7.00000 0.875000
\(65\) 0 0
\(66\) 0 0
\(67\) 4.00000 0.488678 0.244339 0.969690i \(-0.421429\pi\)
0.244339 + 0.969690i \(0.421429\pi\)
\(68\) 2.00000 0.242536
\(69\) 0 0
\(70\) 4.00000 0.478091
\(71\) 6.00000 0.712069 0.356034 0.934473i \(-0.384129\pi\)
0.356034 + 0.934473i \(0.384129\pi\)
\(72\) 0 0
\(73\) 6.00000 0.702247 0.351123 0.936329i \(-0.385800\pi\)
0.351123 + 0.936329i \(0.385800\pi\)
\(74\) −2.00000 −0.232495
\(75\) 0 0
\(76\) −6.00000 −0.688247
\(77\) 8.00000 0.911685
\(78\) 0 0
\(79\) −12.0000 −1.35011 −0.675053 0.737769i \(-0.735879\pi\)
−0.675053 + 0.737769i \(0.735879\pi\)
\(80\) 1.00000 0.111803
\(81\) 0 0
\(82\) 6.00000 0.662589
\(83\) −16.0000 −1.75623 −0.878114 0.478451i \(-0.841198\pi\)
−0.878114 + 0.478451i \(0.841198\pi\)
\(84\) 0 0
\(85\) 2.00000 0.216930
\(86\) −10.0000 −1.07833
\(87\) 0 0
\(88\) 6.00000 0.639602
\(89\) 2.00000 0.212000 0.106000 0.994366i \(-0.466196\pi\)
0.106000 + 0.994366i \(0.466196\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −6.00000 −0.625543
\(93\) 0 0
\(94\) −4.00000 −0.412568
\(95\) −6.00000 −0.615587
\(96\) 0 0
\(97\) 2.00000 0.203069 0.101535 0.994832i \(-0.467625\pi\)
0.101535 + 0.994832i \(0.467625\pi\)
\(98\) −9.00000 −0.909137
\(99\) 0 0
\(100\) −1.00000 −0.100000
\(101\) 18.0000 1.79107 0.895533 0.444994i \(-0.146794\pi\)
0.895533 + 0.444994i \(0.146794\pi\)
\(102\) 0 0
\(103\) 2.00000 0.197066 0.0985329 0.995134i \(-0.468585\pi\)
0.0985329 + 0.995134i \(0.468585\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 2.00000 0.194257
\(107\) −10.0000 −0.966736 −0.483368 0.875417i \(-0.660587\pi\)
−0.483368 + 0.875417i \(0.660587\pi\)
\(108\) 0 0
\(109\) −10.0000 −0.957826 −0.478913 0.877862i \(-0.658969\pi\)
−0.478913 + 0.877862i \(0.658969\pi\)
\(110\) 2.00000 0.190693
\(111\) 0 0
\(112\) −4.00000 −0.377964
\(113\) 14.0000 1.31701 0.658505 0.752577i \(-0.271189\pi\)
0.658505 + 0.752577i \(0.271189\pi\)
\(114\) 0 0
\(115\) −6.00000 −0.559503
\(116\) 2.00000 0.185695
\(117\) 0 0
\(118\) −6.00000 −0.552345
\(119\) −8.00000 −0.733359
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) −2.00000 −0.181071
\(123\) 0 0
\(124\) −10.0000 −0.898027
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −2.00000 −0.177471 −0.0887357 0.996055i \(-0.528283\pi\)
−0.0887357 + 0.996055i \(0.528283\pi\)
\(128\) 3.00000 0.265165
\(129\) 0 0
\(130\) 0 0
\(131\) −20.0000 −1.74741 −0.873704 0.486458i \(-0.838289\pi\)
−0.873704 + 0.486458i \(0.838289\pi\)
\(132\) 0 0
\(133\) 24.0000 2.08106
\(134\) −4.00000 −0.345547
\(135\) 0 0
\(136\) −6.00000 −0.514496
\(137\) −2.00000 −0.170872 −0.0854358 0.996344i \(-0.527228\pi\)
−0.0854358 + 0.996344i \(0.527228\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 4.00000 0.338062
\(141\) 0 0
\(142\) −6.00000 −0.503509
\(143\) 0 0
\(144\) 0 0
\(145\) 2.00000 0.166091
\(146\) −6.00000 −0.496564
\(147\) 0 0
\(148\) −2.00000 −0.164399
\(149\) 18.0000 1.47462 0.737309 0.675556i \(-0.236096\pi\)
0.737309 + 0.675556i \(0.236096\pi\)
\(150\) 0 0
\(151\) −10.0000 −0.813788 −0.406894 0.913475i \(-0.633388\pi\)
−0.406894 + 0.913475i \(0.633388\pi\)
\(152\) 18.0000 1.45999
\(153\) 0 0
\(154\) −8.00000 −0.644658
\(155\) −10.0000 −0.803219
\(156\) 0 0
\(157\) −6.00000 −0.478852 −0.239426 0.970915i \(-0.576959\pi\)
−0.239426 + 0.970915i \(0.576959\pi\)
\(158\) 12.0000 0.954669
\(159\) 0 0
\(160\) 5.00000 0.395285
\(161\) 24.0000 1.89146
\(162\) 0 0
\(163\) 12.0000 0.939913 0.469956 0.882690i \(-0.344270\pi\)
0.469956 + 0.882690i \(0.344270\pi\)
\(164\) 6.00000 0.468521
\(165\) 0 0
\(166\) 16.0000 1.24184
\(167\) −12.0000 −0.928588 −0.464294 0.885681i \(-0.653692\pi\)
−0.464294 + 0.885681i \(0.653692\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) −2.00000 −0.153393
\(171\) 0 0
\(172\) −10.0000 −0.762493
\(173\) 6.00000 0.456172 0.228086 0.973641i \(-0.426753\pi\)
0.228086 + 0.973641i \(0.426753\pi\)
\(174\) 0 0
\(175\) 4.00000 0.302372
\(176\) −2.00000 −0.150756
\(177\) 0 0
\(178\) −2.00000 −0.149906
\(179\) −12.0000 −0.896922 −0.448461 0.893802i \(-0.648028\pi\)
−0.448461 + 0.893802i \(0.648028\pi\)
\(180\) 0 0
\(181\) −22.0000 −1.63525 −0.817624 0.575753i \(-0.804709\pi\)
−0.817624 + 0.575753i \(0.804709\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 18.0000 1.32698
\(185\) −2.00000 −0.147043
\(186\) 0 0
\(187\) −4.00000 −0.292509
\(188\) −4.00000 −0.291730
\(189\) 0 0
\(190\) 6.00000 0.435286
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) 2.00000 0.143963 0.0719816 0.997406i \(-0.477068\pi\)
0.0719816 + 0.997406i \(0.477068\pi\)
\(194\) −2.00000 −0.143592
\(195\) 0 0
\(196\) −9.00000 −0.642857
\(197\) −6.00000 −0.427482 −0.213741 0.976890i \(-0.568565\pi\)
−0.213741 + 0.976890i \(0.568565\pi\)
\(198\) 0 0
\(199\) −16.0000 −1.13421 −0.567105 0.823646i \(-0.691937\pi\)
−0.567105 + 0.823646i \(0.691937\pi\)
\(200\) 3.00000 0.212132
\(201\) 0 0
\(202\) −18.0000 −1.26648
\(203\) −8.00000 −0.561490
\(204\) 0 0
\(205\) 6.00000 0.419058
\(206\) −2.00000 −0.139347
\(207\) 0 0
\(208\) 0 0
\(209\) 12.0000 0.830057
\(210\) 0 0
\(211\) 12.0000 0.826114 0.413057 0.910705i \(-0.364461\pi\)
0.413057 + 0.910705i \(0.364461\pi\)
\(212\) 2.00000 0.137361
\(213\) 0 0
\(214\) 10.0000 0.683586
\(215\) −10.0000 −0.681994
\(216\) 0 0
\(217\) 40.0000 2.71538
\(218\) 10.0000 0.677285
\(219\) 0 0
\(220\) 2.00000 0.134840
\(221\) 0 0
\(222\) 0 0
\(223\) −4.00000 −0.267860 −0.133930 0.990991i \(-0.542760\pi\)
−0.133930 + 0.990991i \(0.542760\pi\)
\(224\) −20.0000 −1.33631
\(225\) 0 0
\(226\) −14.0000 −0.931266
\(227\) 4.00000 0.265489 0.132745 0.991150i \(-0.457621\pi\)
0.132745 + 0.991150i \(0.457621\pi\)
\(228\) 0 0
\(229\) 22.0000 1.45380 0.726900 0.686743i \(-0.240960\pi\)
0.726900 + 0.686743i \(0.240960\pi\)
\(230\) 6.00000 0.395628
\(231\) 0 0
\(232\) −6.00000 −0.393919
\(233\) −10.0000 −0.655122 −0.327561 0.944830i \(-0.606227\pi\)
−0.327561 + 0.944830i \(0.606227\pi\)
\(234\) 0 0
\(235\) −4.00000 −0.260931
\(236\) −6.00000 −0.390567
\(237\) 0 0
\(238\) 8.00000 0.518563
\(239\) −6.00000 −0.388108 −0.194054 0.980991i \(-0.562164\pi\)
−0.194054 + 0.980991i \(0.562164\pi\)
\(240\) 0 0
\(241\) −10.0000 −0.644157 −0.322078 0.946713i \(-0.604381\pi\)
−0.322078 + 0.946713i \(0.604381\pi\)
\(242\) 7.00000 0.449977
\(243\) 0 0
\(244\) −2.00000 −0.128037
\(245\) −9.00000 −0.574989
\(246\) 0 0
\(247\) 0 0
\(248\) 30.0000 1.90500
\(249\) 0 0
\(250\) 1.00000 0.0632456
\(251\) −24.0000 −1.51487 −0.757433 0.652913i \(-0.773547\pi\)
−0.757433 + 0.652913i \(0.773547\pi\)
\(252\) 0 0
\(253\) 12.0000 0.754434
\(254\) 2.00000 0.125491
\(255\) 0 0
\(256\) −17.0000 −1.06250
\(257\) −2.00000 −0.124757 −0.0623783 0.998053i \(-0.519869\pi\)
−0.0623783 + 0.998053i \(0.519869\pi\)
\(258\) 0 0
\(259\) 8.00000 0.497096
\(260\) 0 0
\(261\) 0 0
\(262\) 20.0000 1.23560
\(263\) −14.0000 −0.863277 −0.431638 0.902047i \(-0.642064\pi\)
−0.431638 + 0.902047i \(0.642064\pi\)
\(264\) 0 0
\(265\) 2.00000 0.122859
\(266\) −24.0000 −1.47153
\(267\) 0 0
\(268\) −4.00000 −0.244339
\(269\) −6.00000 −0.365826 −0.182913 0.983129i \(-0.558553\pi\)
−0.182913 + 0.983129i \(0.558553\pi\)
\(270\) 0 0
\(271\) −2.00000 −0.121491 −0.0607457 0.998153i \(-0.519348\pi\)
−0.0607457 + 0.998153i \(0.519348\pi\)
\(272\) 2.00000 0.121268
\(273\) 0 0
\(274\) 2.00000 0.120824
\(275\) 2.00000 0.120605
\(276\) 0 0
\(277\) −14.0000 −0.841178 −0.420589 0.907251i \(-0.638177\pi\)
−0.420589 + 0.907251i \(0.638177\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) −12.0000 −0.717137
\(281\) −6.00000 −0.357930 −0.178965 0.983855i \(-0.557275\pi\)
−0.178965 + 0.983855i \(0.557275\pi\)
\(282\) 0 0
\(283\) 2.00000 0.118888 0.0594438 0.998232i \(-0.481067\pi\)
0.0594438 + 0.998232i \(0.481067\pi\)
\(284\) −6.00000 −0.356034
\(285\) 0 0
\(286\) 0 0
\(287\) −24.0000 −1.41668
\(288\) 0 0
\(289\) −13.0000 −0.764706
\(290\) −2.00000 −0.117444
\(291\) 0 0
\(292\) −6.00000 −0.351123
\(293\) 22.0000 1.28525 0.642627 0.766179i \(-0.277845\pi\)
0.642627 + 0.766179i \(0.277845\pi\)
\(294\) 0 0
\(295\) −6.00000 −0.349334
\(296\) 6.00000 0.348743
\(297\) 0 0
\(298\) −18.0000 −1.04271
\(299\) 0 0
\(300\) 0 0
\(301\) 40.0000 2.30556
\(302\) 10.0000 0.575435
\(303\) 0 0
\(304\) −6.00000 −0.344124
\(305\) −2.00000 −0.114520
\(306\) 0 0
\(307\) −8.00000 −0.456584 −0.228292 0.973593i \(-0.573314\pi\)
−0.228292 + 0.973593i \(0.573314\pi\)
\(308\) −8.00000 −0.455842
\(309\) 0 0
\(310\) 10.0000 0.567962
\(311\) 4.00000 0.226819 0.113410 0.993548i \(-0.463823\pi\)
0.113410 + 0.993548i \(0.463823\pi\)
\(312\) 0 0
\(313\) −22.0000 −1.24351 −0.621757 0.783210i \(-0.713581\pi\)
−0.621757 + 0.783210i \(0.713581\pi\)
\(314\) 6.00000 0.338600
\(315\) 0 0
\(316\) 12.0000 0.675053
\(317\) −18.0000 −1.01098 −0.505490 0.862832i \(-0.668688\pi\)
−0.505490 + 0.862832i \(0.668688\pi\)
\(318\) 0 0
\(319\) −4.00000 −0.223957
\(320\) −7.00000 −0.391312
\(321\) 0 0
\(322\) −24.0000 −1.33747
\(323\) −12.0000 −0.667698
\(324\) 0 0
\(325\) 0 0
\(326\) −12.0000 −0.664619
\(327\) 0 0
\(328\) −18.0000 −0.993884
\(329\) 16.0000 0.882109
\(330\) 0 0
\(331\) 18.0000 0.989369 0.494685 0.869072i \(-0.335284\pi\)
0.494685 + 0.869072i \(0.335284\pi\)
\(332\) 16.0000 0.878114
\(333\) 0 0
\(334\) 12.0000 0.656611
\(335\) −4.00000 −0.218543
\(336\) 0 0
\(337\) 26.0000 1.41631 0.708155 0.706057i \(-0.249528\pi\)
0.708155 + 0.706057i \(0.249528\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) −2.00000 −0.108465
\(341\) 20.0000 1.08306
\(342\) 0 0
\(343\) 8.00000 0.431959
\(344\) 30.0000 1.61749
\(345\) 0 0
\(346\) −6.00000 −0.322562
\(347\) 22.0000 1.18102 0.590511 0.807030i \(-0.298926\pi\)
0.590511 + 0.807030i \(0.298926\pi\)
\(348\) 0 0
\(349\) 30.0000 1.60586 0.802932 0.596071i \(-0.203272\pi\)
0.802932 + 0.596071i \(0.203272\pi\)
\(350\) −4.00000 −0.213809
\(351\) 0 0
\(352\) −10.0000 −0.533002
\(353\) 18.0000 0.958043 0.479022 0.877803i \(-0.340992\pi\)
0.479022 + 0.877803i \(0.340992\pi\)
\(354\) 0 0
\(355\) −6.00000 −0.318447
\(356\) −2.00000 −0.106000
\(357\) 0 0
\(358\) 12.0000 0.634220
\(359\) −10.0000 −0.527780 −0.263890 0.964553i \(-0.585006\pi\)
−0.263890 + 0.964553i \(0.585006\pi\)
\(360\) 0 0
\(361\) 17.0000 0.894737
\(362\) 22.0000 1.15629
\(363\) 0 0
\(364\) 0 0
\(365\) −6.00000 −0.314054
\(366\) 0 0
\(367\) −14.0000 −0.730794 −0.365397 0.930852i \(-0.619067\pi\)
−0.365397 + 0.930852i \(0.619067\pi\)
\(368\) −6.00000 −0.312772
\(369\) 0 0
\(370\) 2.00000 0.103975
\(371\) −8.00000 −0.415339
\(372\) 0 0
\(373\) 34.0000 1.76045 0.880227 0.474554i \(-0.157390\pi\)
0.880227 + 0.474554i \(0.157390\pi\)
\(374\) 4.00000 0.206835
\(375\) 0 0
\(376\) 12.0000 0.618853
\(377\) 0 0
\(378\) 0 0
\(379\) −10.0000 −0.513665 −0.256833 0.966456i \(-0.582679\pi\)
−0.256833 + 0.966456i \(0.582679\pi\)
\(380\) 6.00000 0.307794
\(381\) 0 0
\(382\) 0 0
\(383\) 12.0000 0.613171 0.306586 0.951843i \(-0.400813\pi\)
0.306586 + 0.951843i \(0.400813\pi\)
\(384\) 0 0
\(385\) −8.00000 −0.407718
\(386\) −2.00000 −0.101797
\(387\) 0 0
\(388\) −2.00000 −0.101535
\(389\) 10.0000 0.507020 0.253510 0.967333i \(-0.418415\pi\)
0.253510 + 0.967333i \(0.418415\pi\)
\(390\) 0 0
\(391\) −12.0000 −0.606866
\(392\) 27.0000 1.36371
\(393\) 0 0
\(394\) 6.00000 0.302276
\(395\) 12.0000 0.603786
\(396\) 0 0
\(397\) −6.00000 −0.301131 −0.150566 0.988600i \(-0.548110\pi\)
−0.150566 + 0.988600i \(0.548110\pi\)
\(398\) 16.0000 0.802008
\(399\) 0 0
\(400\) −1.00000 −0.0500000
\(401\) 10.0000 0.499376 0.249688 0.968326i \(-0.419672\pi\)
0.249688 + 0.968326i \(0.419672\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) −18.0000 −0.895533
\(405\) 0 0
\(406\) 8.00000 0.397033
\(407\) 4.00000 0.198273
\(408\) 0 0
\(409\) −18.0000 −0.890043 −0.445021 0.895520i \(-0.646804\pi\)
−0.445021 + 0.895520i \(0.646804\pi\)
\(410\) −6.00000 −0.296319
\(411\) 0 0
\(412\) −2.00000 −0.0985329
\(413\) 24.0000 1.18096
\(414\) 0 0
\(415\) 16.0000 0.785409
\(416\) 0 0
\(417\) 0 0
\(418\) −12.0000 −0.586939
\(419\) 40.0000 1.95413 0.977064 0.212946i \(-0.0683059\pi\)
0.977064 + 0.212946i \(0.0683059\pi\)
\(420\) 0 0
\(421\) −10.0000 −0.487370 −0.243685 0.969854i \(-0.578356\pi\)
−0.243685 + 0.969854i \(0.578356\pi\)
\(422\) −12.0000 −0.584151
\(423\) 0 0
\(424\) −6.00000 −0.291386
\(425\) −2.00000 −0.0970143
\(426\) 0 0
\(427\) 8.00000 0.387147
\(428\) 10.0000 0.483368
\(429\) 0 0
\(430\) 10.0000 0.482243
\(431\) 14.0000 0.674356 0.337178 0.941441i \(-0.390528\pi\)
0.337178 + 0.941441i \(0.390528\pi\)
\(432\) 0 0
\(433\) 10.0000 0.480569 0.240285 0.970702i \(-0.422759\pi\)
0.240285 + 0.970702i \(0.422759\pi\)
\(434\) −40.0000 −1.92006
\(435\) 0 0
\(436\) 10.0000 0.478913
\(437\) 36.0000 1.72211
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) −6.00000 −0.286039
\(441\) 0 0
\(442\) 0 0
\(443\) −14.0000 −0.665160 −0.332580 0.943075i \(-0.607919\pi\)
−0.332580 + 0.943075i \(0.607919\pi\)
\(444\) 0 0
\(445\) −2.00000 −0.0948091
\(446\) 4.00000 0.189405
\(447\) 0 0
\(448\) 28.0000 1.32288
\(449\) −6.00000 −0.283158 −0.141579 0.989927i \(-0.545218\pi\)
−0.141579 + 0.989927i \(0.545218\pi\)
\(450\) 0 0
\(451\) −12.0000 −0.565058
\(452\) −14.0000 −0.658505
\(453\) 0 0
\(454\) −4.00000 −0.187729
\(455\) 0 0
\(456\) 0 0
\(457\) −38.0000 −1.77757 −0.888783 0.458329i \(-0.848448\pi\)
−0.888783 + 0.458329i \(0.848448\pi\)
\(458\) −22.0000 −1.02799
\(459\) 0 0
\(460\) 6.00000 0.279751
\(461\) 10.0000 0.465746 0.232873 0.972507i \(-0.425187\pi\)
0.232873 + 0.972507i \(0.425187\pi\)
\(462\) 0 0
\(463\) 24.0000 1.11537 0.557687 0.830051i \(-0.311689\pi\)
0.557687 + 0.830051i \(0.311689\pi\)
\(464\) 2.00000 0.0928477
\(465\) 0 0
\(466\) 10.0000 0.463241
\(467\) 10.0000 0.462745 0.231372 0.972865i \(-0.425678\pi\)
0.231372 + 0.972865i \(0.425678\pi\)
\(468\) 0 0
\(469\) 16.0000 0.738811
\(470\) 4.00000 0.184506
\(471\) 0 0
\(472\) 18.0000 0.828517
\(473\) 20.0000 0.919601
\(474\) 0 0
\(475\) 6.00000 0.275299
\(476\) 8.00000 0.366679
\(477\) 0 0
\(478\) 6.00000 0.274434
\(479\) 30.0000 1.37073 0.685367 0.728197i \(-0.259642\pi\)
0.685367 + 0.728197i \(0.259642\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 10.0000 0.455488
\(483\) 0 0
\(484\) 7.00000 0.318182
\(485\) −2.00000 −0.0908153
\(486\) 0 0
\(487\) 40.0000 1.81257 0.906287 0.422664i \(-0.138905\pi\)
0.906287 + 0.422664i \(0.138905\pi\)
\(488\) 6.00000 0.271607
\(489\) 0 0
\(490\) 9.00000 0.406579
\(491\) 24.0000 1.08310 0.541552 0.840667i \(-0.317837\pi\)
0.541552 + 0.840667i \(0.317837\pi\)
\(492\) 0 0
\(493\) 4.00000 0.180151
\(494\) 0 0
\(495\) 0 0
\(496\) −10.0000 −0.449013
\(497\) 24.0000 1.07655
\(498\) 0 0
\(499\) −10.0000 −0.447661 −0.223831 0.974628i \(-0.571856\pi\)
−0.223831 + 0.974628i \(0.571856\pi\)
\(500\) 1.00000 0.0447214
\(501\) 0 0
\(502\) 24.0000 1.07117
\(503\) 18.0000 0.802580 0.401290 0.915951i \(-0.368562\pi\)
0.401290 + 0.915951i \(0.368562\pi\)
\(504\) 0 0
\(505\) −18.0000 −0.800989
\(506\) −12.0000 −0.533465
\(507\) 0 0
\(508\) 2.00000 0.0887357
\(509\) −6.00000 −0.265945 −0.132973 0.991120i \(-0.542452\pi\)
−0.132973 + 0.991120i \(0.542452\pi\)
\(510\) 0 0
\(511\) 24.0000 1.06170
\(512\) 11.0000 0.486136
\(513\) 0 0
\(514\) 2.00000 0.0882162
\(515\) −2.00000 −0.0881305
\(516\) 0 0
\(517\) 8.00000 0.351840
\(518\) −8.00000 −0.351500
\(519\) 0 0
\(520\) 0 0
\(521\) −6.00000 −0.262865 −0.131432 0.991325i \(-0.541958\pi\)
−0.131432 + 0.991325i \(0.541958\pi\)
\(522\) 0 0
\(523\) 6.00000 0.262362 0.131181 0.991358i \(-0.458123\pi\)
0.131181 + 0.991358i \(0.458123\pi\)
\(524\) 20.0000 0.873704
\(525\) 0 0
\(526\) 14.0000 0.610429
\(527\) −20.0000 −0.871214
\(528\) 0 0
\(529\) 13.0000 0.565217
\(530\) −2.00000 −0.0868744
\(531\) 0 0
\(532\) −24.0000 −1.04053
\(533\) 0 0
\(534\) 0 0
\(535\) 10.0000 0.432338
\(536\) 12.0000 0.518321
\(537\) 0 0
\(538\) 6.00000 0.258678
\(539\) 18.0000 0.775315
\(540\) 0 0
\(541\) 22.0000 0.945854 0.472927 0.881102i \(-0.343197\pi\)
0.472927 + 0.881102i \(0.343197\pi\)
\(542\) 2.00000 0.0859074
\(543\) 0 0
\(544\) 10.0000 0.428746
\(545\) 10.0000 0.428353
\(546\) 0 0
\(547\) −6.00000 −0.256541 −0.128271 0.991739i \(-0.540943\pi\)
−0.128271 + 0.991739i \(0.540943\pi\)
\(548\) 2.00000 0.0854358
\(549\) 0 0
\(550\) −2.00000 −0.0852803
\(551\) −12.0000 −0.511217
\(552\) 0 0
\(553\) −48.0000 −2.04117
\(554\) 14.0000 0.594803
\(555\) 0 0
\(556\) 0 0
\(557\) −26.0000 −1.10166 −0.550828 0.834619i \(-0.685688\pi\)
−0.550828 + 0.834619i \(0.685688\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 4.00000 0.169031
\(561\) 0 0
\(562\) 6.00000 0.253095
\(563\) 22.0000 0.927189 0.463595 0.886047i \(-0.346559\pi\)
0.463595 + 0.886047i \(0.346559\pi\)
\(564\) 0 0
\(565\) −14.0000 −0.588984
\(566\) −2.00000 −0.0840663
\(567\) 0 0
\(568\) 18.0000 0.755263
\(569\) 26.0000 1.08998 0.544988 0.838444i \(-0.316534\pi\)
0.544988 + 0.838444i \(0.316534\pi\)
\(570\) 0 0
\(571\) 24.0000 1.00437 0.502184 0.864761i \(-0.332530\pi\)
0.502184 + 0.864761i \(0.332530\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 24.0000 1.00174
\(575\) 6.00000 0.250217
\(576\) 0 0
\(577\) −2.00000 −0.0832611 −0.0416305 0.999133i \(-0.513255\pi\)
−0.0416305 + 0.999133i \(0.513255\pi\)
\(578\) 13.0000 0.540729
\(579\) 0 0
\(580\) −2.00000 −0.0830455
\(581\) −64.0000 −2.65517
\(582\) 0 0
\(583\) −4.00000 −0.165663
\(584\) 18.0000 0.744845
\(585\) 0 0
\(586\) −22.0000 −0.908812
\(587\) −44.0000 −1.81607 −0.908037 0.418890i \(-0.862419\pi\)
−0.908037 + 0.418890i \(0.862419\pi\)
\(588\) 0 0
\(589\) 60.0000 2.47226
\(590\) 6.00000 0.247016
\(591\) 0 0
\(592\) −2.00000 −0.0821995
\(593\) 14.0000 0.574911 0.287456 0.957794i \(-0.407191\pi\)
0.287456 + 0.957794i \(0.407191\pi\)
\(594\) 0 0
\(595\) 8.00000 0.327968
\(596\) −18.0000 −0.737309
\(597\) 0 0
\(598\) 0 0
\(599\) 4.00000 0.163436 0.0817178 0.996656i \(-0.473959\pi\)
0.0817178 + 0.996656i \(0.473959\pi\)
\(600\) 0 0
\(601\) 10.0000 0.407909 0.203954 0.978980i \(-0.434621\pi\)
0.203954 + 0.978980i \(0.434621\pi\)
\(602\) −40.0000 −1.63028
\(603\) 0 0
\(604\) 10.0000 0.406894
\(605\) 7.00000 0.284590
\(606\) 0 0
\(607\) 34.0000 1.38002 0.690009 0.723801i \(-0.257607\pi\)
0.690009 + 0.723801i \(0.257607\pi\)
\(608\) −30.0000 −1.21666
\(609\) 0 0
\(610\) 2.00000 0.0809776
\(611\) 0 0
\(612\) 0 0
\(613\) 6.00000 0.242338 0.121169 0.992632i \(-0.461336\pi\)
0.121169 + 0.992632i \(0.461336\pi\)
\(614\) 8.00000 0.322854
\(615\) 0 0
\(616\) 24.0000 0.966988
\(617\) −42.0000 −1.69086 −0.845428 0.534089i \(-0.820655\pi\)
−0.845428 + 0.534089i \(0.820655\pi\)
\(618\) 0 0
\(619\) 2.00000 0.0803868 0.0401934 0.999192i \(-0.487203\pi\)
0.0401934 + 0.999192i \(0.487203\pi\)
\(620\) 10.0000 0.401610
\(621\) 0 0
\(622\) −4.00000 −0.160385
\(623\) 8.00000 0.320513
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 22.0000 0.879297
\(627\) 0 0
\(628\) 6.00000 0.239426
\(629\) −4.00000 −0.159490
\(630\) 0 0
\(631\) 14.0000 0.557331 0.278666 0.960388i \(-0.410108\pi\)
0.278666 + 0.960388i \(0.410108\pi\)
\(632\) −36.0000 −1.43200
\(633\) 0 0
\(634\) 18.0000 0.714871
\(635\) 2.00000 0.0793676
\(636\) 0 0
\(637\) 0 0
\(638\) 4.00000 0.158362
\(639\) 0 0
\(640\) −3.00000 −0.118585
\(641\) 46.0000 1.81689 0.908445 0.418004i \(-0.137270\pi\)
0.908445 + 0.418004i \(0.137270\pi\)
\(642\) 0 0
\(643\) 16.0000 0.630978 0.315489 0.948929i \(-0.397831\pi\)
0.315489 + 0.948929i \(0.397831\pi\)
\(644\) −24.0000 −0.945732
\(645\) 0 0
\(646\) 12.0000 0.472134
\(647\) −38.0000 −1.49393 −0.746967 0.664861i \(-0.768491\pi\)
−0.746967 + 0.664861i \(0.768491\pi\)
\(648\) 0 0
\(649\) 12.0000 0.471041
\(650\) 0 0
\(651\) 0 0
\(652\) −12.0000 −0.469956
\(653\) 6.00000 0.234798 0.117399 0.993085i \(-0.462544\pi\)
0.117399 + 0.993085i \(0.462544\pi\)
\(654\) 0 0
\(655\) 20.0000 0.781465
\(656\) 6.00000 0.234261
\(657\) 0 0
\(658\) −16.0000 −0.623745
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) −2.00000 −0.0777910 −0.0388955 0.999243i \(-0.512384\pi\)
−0.0388955 + 0.999243i \(0.512384\pi\)
\(662\) −18.0000 −0.699590
\(663\) 0 0
\(664\) −48.0000 −1.86276
\(665\) −24.0000 −0.930680
\(666\) 0 0
\(667\) −12.0000 −0.464642
\(668\) 12.0000 0.464294
\(669\) 0 0
\(670\) 4.00000 0.154533
\(671\) 4.00000 0.154418
\(672\) 0 0
\(673\) −30.0000 −1.15642 −0.578208 0.815890i \(-0.696248\pi\)
−0.578208 + 0.815890i \(0.696248\pi\)
\(674\) −26.0000 −1.00148
\(675\) 0 0
\(676\) 0 0
\(677\) 6.00000 0.230599 0.115299 0.993331i \(-0.463217\pi\)
0.115299 + 0.993331i \(0.463217\pi\)
\(678\) 0 0
\(679\) 8.00000 0.307012
\(680\) 6.00000 0.230089
\(681\) 0 0
\(682\) −20.0000 −0.765840
\(683\) −20.0000 −0.765279 −0.382639 0.923898i \(-0.624985\pi\)
−0.382639 + 0.923898i \(0.624985\pi\)
\(684\) 0 0
\(685\) 2.00000 0.0764161
\(686\) −8.00000 −0.305441
\(687\) 0 0
\(688\) −10.0000 −0.381246
\(689\) 0 0
\(690\) 0 0
\(691\) −22.0000 −0.836919 −0.418460 0.908235i \(-0.637430\pi\)
−0.418460 + 0.908235i \(0.637430\pi\)
\(692\) −6.00000 −0.228086
\(693\) 0 0
\(694\) −22.0000 −0.835109
\(695\) 0 0
\(696\) 0 0
\(697\) 12.0000 0.454532
\(698\) −30.0000 −1.13552
\(699\) 0 0
\(700\) −4.00000 −0.151186
\(701\) 26.0000 0.982006 0.491003 0.871158i \(-0.336630\pi\)
0.491003 + 0.871158i \(0.336630\pi\)
\(702\) 0 0
\(703\) 12.0000 0.452589
\(704\) 14.0000 0.527645
\(705\) 0 0
\(706\) −18.0000 −0.677439
\(707\) 72.0000 2.70784
\(708\) 0 0
\(709\) −10.0000 −0.375558 −0.187779 0.982211i \(-0.560129\pi\)
−0.187779 + 0.982211i \(0.560129\pi\)
\(710\) 6.00000 0.225176
\(711\) 0 0
\(712\) 6.00000 0.224860
\(713\) 60.0000 2.24702
\(714\) 0 0
\(715\) 0 0
\(716\) 12.0000 0.448461
\(717\) 0 0
\(718\) 10.0000 0.373197
\(719\) 32.0000 1.19340 0.596699 0.802465i \(-0.296479\pi\)
0.596699 + 0.802465i \(0.296479\pi\)
\(720\) 0 0
\(721\) 8.00000 0.297936
\(722\) −17.0000 −0.632674
\(723\) 0 0
\(724\) 22.0000 0.817624
\(725\) −2.00000 −0.0742781
\(726\) 0 0
\(727\) −18.0000 −0.667583 −0.333792 0.942647i \(-0.608328\pi\)
−0.333792 + 0.942647i \(0.608328\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 6.00000 0.222070
\(731\) −20.0000 −0.739727
\(732\) 0 0
\(733\) −34.0000 −1.25582 −0.627909 0.778287i \(-0.716089\pi\)
−0.627909 + 0.778287i \(0.716089\pi\)
\(734\) 14.0000 0.516749
\(735\) 0 0
\(736\) −30.0000 −1.10581
\(737\) 8.00000 0.294684
\(738\) 0 0
\(739\) −6.00000 −0.220714 −0.110357 0.993892i \(-0.535199\pi\)
−0.110357 + 0.993892i \(0.535199\pi\)
\(740\) 2.00000 0.0735215
\(741\) 0 0
\(742\) 8.00000 0.293689
\(743\) −12.0000 −0.440237 −0.220119 0.975473i \(-0.570644\pi\)
−0.220119 + 0.975473i \(0.570644\pi\)
\(744\) 0 0
\(745\) −18.0000 −0.659469
\(746\) −34.0000 −1.24483
\(747\) 0 0
\(748\) 4.00000 0.146254
\(749\) −40.0000 −1.46157
\(750\) 0 0
\(751\) −28.0000 −1.02173 −0.510867 0.859660i \(-0.670676\pi\)
−0.510867 + 0.859660i \(0.670676\pi\)
\(752\) −4.00000 −0.145865
\(753\) 0 0
\(754\) 0 0
\(755\) 10.0000 0.363937
\(756\) 0 0
\(757\) 2.00000 0.0726912 0.0363456 0.999339i \(-0.488428\pi\)
0.0363456 + 0.999339i \(0.488428\pi\)
\(758\) 10.0000 0.363216
\(759\) 0 0
\(760\) −18.0000 −0.652929
\(761\) 18.0000 0.652499 0.326250 0.945284i \(-0.394215\pi\)
0.326250 + 0.945284i \(0.394215\pi\)
\(762\) 0 0
\(763\) −40.0000 −1.44810
\(764\) 0 0
\(765\) 0 0
\(766\) −12.0000 −0.433578
\(767\) 0 0
\(768\) 0 0
\(769\) −26.0000 −0.937584 −0.468792 0.883309i \(-0.655311\pi\)
−0.468792 + 0.883309i \(0.655311\pi\)
\(770\) 8.00000 0.288300
\(771\) 0 0
\(772\) −2.00000 −0.0719816
\(773\) −2.00000 −0.0719350 −0.0359675 0.999353i \(-0.511451\pi\)
−0.0359675 + 0.999353i \(0.511451\pi\)
\(774\) 0 0
\(775\) 10.0000 0.359211
\(776\) 6.00000 0.215387
\(777\) 0 0
\(778\) −10.0000 −0.358517
\(779\) −36.0000 −1.28983
\(780\) 0 0
\(781\) 12.0000 0.429394
\(782\) 12.0000 0.429119
\(783\) 0 0
\(784\) −9.00000 −0.321429
\(785\) 6.00000 0.214149
\(786\) 0 0
\(787\) −8.00000 −0.285169 −0.142585 0.989783i \(-0.545541\pi\)
−0.142585 + 0.989783i \(0.545541\pi\)
\(788\) 6.00000 0.213741
\(789\) 0 0
\(790\) −12.0000 −0.426941
\(791\) 56.0000 1.99113
\(792\) 0 0
\(793\) 0 0
\(794\) 6.00000 0.212932
\(795\) 0 0
\(796\) 16.0000 0.567105
\(797\) −42.0000 −1.48772 −0.743858 0.668338i \(-0.767006\pi\)
−0.743858 + 0.668338i \(0.767006\pi\)
\(798\) 0 0
\(799\) −8.00000 −0.283020
\(800\) −5.00000 −0.176777
\(801\) 0 0
\(802\) −10.0000 −0.353112
\(803\) 12.0000 0.423471
\(804\) 0 0
\(805\) −24.0000 −0.845889
\(806\) 0 0
\(807\) 0 0
\(808\) 54.0000 1.89971
\(809\) 2.00000 0.0703163 0.0351581 0.999382i \(-0.488807\pi\)
0.0351581 + 0.999382i \(0.488807\pi\)
\(810\) 0 0
\(811\) 42.0000 1.47482 0.737410 0.675446i \(-0.236049\pi\)
0.737410 + 0.675446i \(0.236049\pi\)
\(812\) 8.00000 0.280745
\(813\) 0 0
\(814\) −4.00000 −0.140200
\(815\) −12.0000 −0.420342
\(816\) 0 0
\(817\) 60.0000 2.09913
\(818\) 18.0000 0.629355
\(819\) 0 0
\(820\) −6.00000 −0.209529
\(821\) 50.0000 1.74501 0.872506 0.488603i \(-0.162493\pi\)
0.872506 + 0.488603i \(0.162493\pi\)
\(822\) 0 0
\(823\) −46.0000 −1.60346 −0.801730 0.597687i \(-0.796087\pi\)
−0.801730 + 0.597687i \(0.796087\pi\)
\(824\) 6.00000 0.209020
\(825\) 0 0
\(826\) −24.0000 −0.835067
\(827\) −32.0000 −1.11275 −0.556375 0.830932i \(-0.687808\pi\)
−0.556375 + 0.830932i \(0.687808\pi\)
\(828\) 0 0
\(829\) 34.0000 1.18087 0.590434 0.807086i \(-0.298956\pi\)
0.590434 + 0.807086i \(0.298956\pi\)
\(830\) −16.0000 −0.555368
\(831\) 0 0
\(832\) 0 0
\(833\) −18.0000 −0.623663
\(834\) 0 0
\(835\) 12.0000 0.415277
\(836\) −12.0000 −0.415029
\(837\) 0 0
\(838\) −40.0000 −1.38178
\(839\) 38.0000 1.31191 0.655953 0.754802i \(-0.272267\pi\)
0.655953 + 0.754802i \(0.272267\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) 10.0000 0.344623
\(843\) 0 0
\(844\) −12.0000 −0.413057
\(845\) 0 0
\(846\) 0 0
\(847\) −28.0000 −0.962091
\(848\) 2.00000 0.0686803
\(849\) 0 0
\(850\) 2.00000 0.0685994
\(851\) 12.0000 0.411355
\(852\) 0 0
\(853\) −6.00000 −0.205436 −0.102718 0.994711i \(-0.532754\pi\)
−0.102718 + 0.994711i \(0.532754\pi\)
\(854\) −8.00000 −0.273754
\(855\) 0 0
\(856\) −30.0000 −1.02538
\(857\) −18.0000 −0.614868 −0.307434 0.951569i \(-0.599470\pi\)
−0.307434 + 0.951569i \(0.599470\pi\)
\(858\) 0 0
\(859\) 40.0000 1.36478 0.682391 0.730987i \(-0.260940\pi\)
0.682391 + 0.730987i \(0.260940\pi\)
\(860\) 10.0000 0.340997
\(861\) 0 0
\(862\) −14.0000 −0.476842
\(863\) 12.0000 0.408485 0.204242 0.978920i \(-0.434527\pi\)
0.204242 + 0.978920i \(0.434527\pi\)
\(864\) 0 0
\(865\) −6.00000 −0.204006
\(866\) −10.0000 −0.339814
\(867\) 0 0
\(868\) −40.0000 −1.35769
\(869\) −24.0000 −0.814144
\(870\) 0 0
\(871\) 0 0
\(872\) −30.0000 −1.01593
\(873\) 0 0
\(874\) −36.0000 −1.21772
\(875\) −4.00000 −0.135225
\(876\) 0 0
\(877\) −18.0000 −0.607817 −0.303908 0.952701i \(-0.598292\pi\)
−0.303908 + 0.952701i \(0.598292\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 2.00000 0.0674200
\(881\) −38.0000 −1.28025 −0.640126 0.768270i \(-0.721118\pi\)
−0.640126 + 0.768270i \(0.721118\pi\)
\(882\) 0 0
\(883\) −22.0000 −0.740359 −0.370179 0.928960i \(-0.620704\pi\)
−0.370179 + 0.928960i \(0.620704\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 14.0000 0.470339
\(887\) −58.0000 −1.94745 −0.973725 0.227728i \(-0.926870\pi\)
−0.973725 + 0.227728i \(0.926870\pi\)
\(888\) 0 0
\(889\) −8.00000 −0.268311
\(890\) 2.00000 0.0670402
\(891\) 0 0
\(892\) 4.00000 0.133930
\(893\) 24.0000 0.803129
\(894\) 0 0
\(895\) 12.0000 0.401116
\(896\) 12.0000 0.400892
\(897\) 0 0
\(898\) 6.00000 0.200223
\(899\) −20.0000 −0.667037
\(900\) 0 0
\(901\) 4.00000 0.133259
\(902\) 12.0000 0.399556
\(903\) 0 0
\(904\) 42.0000 1.39690
\(905\) 22.0000 0.731305
\(906\) 0 0
\(907\) −34.0000 −1.12895 −0.564476 0.825450i \(-0.690922\pi\)
−0.564476 + 0.825450i \(0.690922\pi\)
\(908\) −4.00000 −0.132745
\(909\) 0 0
\(910\) 0 0
\(911\) 48.0000 1.59031 0.795155 0.606406i \(-0.207389\pi\)
0.795155 + 0.606406i \(0.207389\pi\)
\(912\) 0 0
\(913\) −32.0000 −1.05905
\(914\) 38.0000 1.25693
\(915\) 0 0
\(916\) −22.0000 −0.726900
\(917\) −80.0000 −2.64183
\(918\) 0 0
\(919\) −52.0000 −1.71532 −0.857661 0.514216i \(-0.828083\pi\)
−0.857661 + 0.514216i \(0.828083\pi\)
\(920\) −18.0000 −0.593442
\(921\) 0 0
\(922\) −10.0000 −0.329332
\(923\) 0 0
\(924\) 0 0
\(925\) 2.00000 0.0657596
\(926\) −24.0000 −0.788689
\(927\) 0 0
\(928\) 10.0000 0.328266
\(929\) −38.0000 −1.24674 −0.623370 0.781927i \(-0.714237\pi\)
−0.623370 + 0.781927i \(0.714237\pi\)
\(930\) 0 0
\(931\) 54.0000 1.76978
\(932\) 10.0000 0.327561
\(933\) 0 0
\(934\) −10.0000 −0.327210
\(935\) 4.00000 0.130814
\(936\) 0 0
\(937\) −30.0000 −0.980057 −0.490029 0.871706i \(-0.663014\pi\)
−0.490029 + 0.871706i \(0.663014\pi\)
\(938\) −16.0000 −0.522419
\(939\) 0 0
\(940\) 4.00000 0.130466
\(941\) 18.0000 0.586783 0.293392 0.955992i \(-0.405216\pi\)
0.293392 + 0.955992i \(0.405216\pi\)
\(942\) 0 0
\(943\) −36.0000 −1.17232
\(944\) −6.00000 −0.195283
\(945\) 0 0
\(946\) −20.0000 −0.650256
\(947\) 24.0000 0.779895 0.389948 0.920837i \(-0.372493\pi\)
0.389948 + 0.920837i \(0.372493\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) −6.00000 −0.194666
\(951\) 0 0
\(952\) −24.0000 −0.777844
\(953\) −18.0000 −0.583077 −0.291539 0.956559i \(-0.594167\pi\)
−0.291539 + 0.956559i \(0.594167\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 6.00000 0.194054
\(957\) 0 0
\(958\) −30.0000 −0.969256
\(959\) −8.00000 −0.258333
\(960\) 0 0
\(961\) 69.0000 2.22581
\(962\) 0 0
\(963\) 0 0
\(964\) 10.0000 0.322078
\(965\) −2.00000 −0.0643823
\(966\) 0 0
\(967\) 8.00000 0.257263 0.128631 0.991692i \(-0.458942\pi\)
0.128631 + 0.991692i \(0.458942\pi\)
\(968\) −21.0000 −0.674966
\(969\) 0 0
\(970\) 2.00000 0.0642161
\(971\) 28.0000 0.898563 0.449281 0.893390i \(-0.351680\pi\)
0.449281 + 0.893390i \(0.351680\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −40.0000 −1.28168
\(975\) 0 0
\(976\) −2.00000 −0.0640184
\(977\) 18.0000 0.575871 0.287936 0.957650i \(-0.407031\pi\)
0.287936 + 0.957650i \(0.407031\pi\)
\(978\) 0 0
\(979\) 4.00000 0.127841
\(980\) 9.00000 0.287494
\(981\) 0 0
\(982\) −24.0000 −0.765871
\(983\) 56.0000 1.78612 0.893061 0.449935i \(-0.148553\pi\)
0.893061 + 0.449935i \(0.148553\pi\)
\(984\) 0 0
\(985\) 6.00000 0.191176
\(986\) −4.00000 −0.127386
\(987\) 0 0
\(988\) 0 0
\(989\) 60.0000 1.90789
\(990\) 0 0
\(991\) 48.0000 1.52477 0.762385 0.647124i \(-0.224028\pi\)
0.762385 + 0.647124i \(0.224028\pi\)
\(992\) −50.0000 −1.58750
\(993\) 0 0
\(994\) −24.0000 −0.761234
\(995\) 16.0000 0.507234
\(996\) 0 0
\(997\) −22.0000 −0.696747 −0.348373 0.937356i \(-0.613266\pi\)
−0.348373 + 0.937356i \(0.613266\pi\)
\(998\) 10.0000 0.316544
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7605.2.a.f.1.1 1
3.2 odd 2 845.2.a.a.1.1 1
13.12 even 2 585.2.a.h.1.1 1
15.14 odd 2 4225.2.a.g.1.1 1
39.2 even 12 845.2.m.b.316.2 4
39.5 even 4 845.2.c.a.506.1 2
39.8 even 4 845.2.c.a.506.2 2
39.11 even 12 845.2.m.b.316.1 4
39.17 odd 6 845.2.e.b.146.1 2
39.20 even 12 845.2.m.b.361.2 4
39.23 odd 6 845.2.e.b.191.1 2
39.29 odd 6 845.2.e.a.191.1 2
39.32 even 12 845.2.m.b.361.1 4
39.35 odd 6 845.2.e.a.146.1 2
39.38 odd 2 65.2.a.a.1.1 1
52.51 odd 2 9360.2.a.ca.1.1 1
65.12 odd 4 2925.2.c.h.2224.2 2
65.38 odd 4 2925.2.c.h.2224.1 2
65.64 even 2 2925.2.a.f.1.1 1
156.155 even 2 1040.2.a.f.1.1 1
195.38 even 4 325.2.b.b.274.2 2
195.77 even 4 325.2.b.b.274.1 2
195.194 odd 2 325.2.a.d.1.1 1
273.272 even 2 3185.2.a.e.1.1 1
312.77 odd 2 4160.2.a.q.1.1 1
312.155 even 2 4160.2.a.f.1.1 1
429.428 even 2 7865.2.a.c.1.1 1
780.779 even 2 5200.2.a.d.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.a.a.1.1 1 39.38 odd 2
325.2.a.d.1.1 1 195.194 odd 2
325.2.b.b.274.1 2 195.77 even 4
325.2.b.b.274.2 2 195.38 even 4
585.2.a.h.1.1 1 13.12 even 2
845.2.a.a.1.1 1 3.2 odd 2
845.2.c.a.506.1 2 39.5 even 4
845.2.c.a.506.2 2 39.8 even 4
845.2.e.a.146.1 2 39.35 odd 6
845.2.e.a.191.1 2 39.29 odd 6
845.2.e.b.146.1 2 39.17 odd 6
845.2.e.b.191.1 2 39.23 odd 6
845.2.m.b.316.1 4 39.11 even 12
845.2.m.b.316.2 4 39.2 even 12
845.2.m.b.361.1 4 39.32 even 12
845.2.m.b.361.2 4 39.20 even 12
1040.2.a.f.1.1 1 156.155 even 2
2925.2.a.f.1.1 1 65.64 even 2
2925.2.c.h.2224.1 2 65.38 odd 4
2925.2.c.h.2224.2 2 65.12 odd 4
3185.2.a.e.1.1 1 273.272 even 2
4160.2.a.f.1.1 1 312.155 even 2
4160.2.a.q.1.1 1 312.77 odd 2
4225.2.a.g.1.1 1 15.14 odd 2
5200.2.a.d.1.1 1 780.779 even 2
7605.2.a.f.1.1 1 1.1 even 1 trivial
7865.2.a.c.1.1 1 429.428 even 2
9360.2.a.ca.1.1 1 52.51 odd 2