Properties

Label 2-7623-1.1-c1-0-209
Degree $2$
Conductor $7623$
Sign $-1$
Analytic cond. $60.8699$
Root an. cond. $7.80192$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.618·2-s − 1.61·4-s + 0.381·5-s + 7-s − 2.23·8-s + 0.236·10-s − 13-s + 0.618·14-s + 1.85·16-s + 4.23·17-s − 0.618·20-s + 3.23·23-s − 4.85·25-s − 0.618·26-s − 1.61·28-s − 6.70·29-s − 10.2·31-s + 5.61·32-s + 2.61·34-s + 0.381·35-s + 6.94·37-s − 0.854·40-s − 5.09·41-s − 43-s + 2.00·46-s + 7.32·47-s + 49-s + ⋯
L(s)  = 1  + 0.437·2-s − 0.809·4-s + 0.170·5-s + 0.377·7-s − 0.790·8-s + 0.0746·10-s − 0.277·13-s + 0.165·14-s + 0.463·16-s + 1.02·17-s − 0.138·20-s + 0.674·23-s − 0.970·25-s − 0.121·26-s − 0.305·28-s − 1.24·29-s − 1.83·31-s + 0.993·32-s + 0.448·34-s + 0.0645·35-s + 1.14·37-s − 0.135·40-s − 0.794·41-s − 0.152·43-s + 0.294·46-s + 1.06·47-s + 0.142·49-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7623 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7623 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7623\)    =    \(3^{2} \cdot 7 \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(60.8699\)
Root analytic conductor: \(7.80192\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 7623,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 - T \)
11 \( 1 \)
good2 \( 1 - 0.618T + 2T^{2} \)
5 \( 1 - 0.381T + 5T^{2} \)
13 \( 1 + T + 13T^{2} \)
17 \( 1 - 4.23T + 17T^{2} \)
19 \( 1 + 19T^{2} \)
23 \( 1 - 3.23T + 23T^{2} \)
29 \( 1 + 6.70T + 29T^{2} \)
31 \( 1 + 10.2T + 31T^{2} \)
37 \( 1 - 6.94T + 37T^{2} \)
41 \( 1 + 5.09T + 41T^{2} \)
43 \( 1 + T + 43T^{2} \)
47 \( 1 - 7.32T + 47T^{2} \)
53 \( 1 + 7.61T + 53T^{2} \)
59 \( 1 - 4.14T + 59T^{2} \)
61 \( 1 + 5.76T + 61T^{2} \)
67 \( 1 + 9.23T + 67T^{2} \)
71 \( 1 - 7.47T + 71T^{2} \)
73 \( 1 - 11.5T + 73T^{2} \)
79 \( 1 - 10.8T + 79T^{2} \)
83 \( 1 - 6T + 83T^{2} \)
89 \( 1 - 6.38T + 89T^{2} \)
97 \( 1 + 17T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.74607574496326732163732655815, −6.80293717043010550500974724616, −5.79973212324884226975447910529, −5.44421402194162496616611601776, −4.77250187209593489514959980178, −3.87219579206636883680054317876, −3.40356513863813462369537628487, −2.30442816032702091542250214980, −1.26301442173657144658398263786, 0, 1.26301442173657144658398263786, 2.30442816032702091542250214980, 3.40356513863813462369537628487, 3.87219579206636883680054317876, 4.77250187209593489514959980178, 5.44421402194162496616611601776, 5.79973212324884226975447910529, 6.80293717043010550500974724616, 7.74607574496326732163732655815

Graph of the $Z$-function along the critical line