L(s) = 1 | + 0.618·2-s − 1.61·4-s + 0.381·5-s + 7-s − 2.23·8-s + 0.236·10-s − 13-s + 0.618·14-s + 1.85·16-s + 4.23·17-s − 0.618·20-s + 3.23·23-s − 4.85·25-s − 0.618·26-s − 1.61·28-s − 6.70·29-s − 10.2·31-s + 5.61·32-s + 2.61·34-s + 0.381·35-s + 6.94·37-s − 0.854·40-s − 5.09·41-s − 43-s + 2.00·46-s + 7.32·47-s + 49-s + ⋯ |
L(s) = 1 | + 0.437·2-s − 0.809·4-s + 0.170·5-s + 0.377·7-s − 0.790·8-s + 0.0746·10-s − 0.277·13-s + 0.165·14-s + 0.463·16-s + 1.02·17-s − 0.138·20-s + 0.674·23-s − 0.970·25-s − 0.121·26-s − 0.305·28-s − 1.24·29-s − 1.83·31-s + 0.993·32-s + 0.448·34-s + 0.0645·35-s + 1.14·37-s − 0.135·40-s − 0.794·41-s − 0.152·43-s + 0.294·46-s + 1.06·47-s + 0.142·49-s + ⋯ |
Λ(s)=(=(7623s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(7623s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1−T |
| 11 | 1 |
good | 2 | 1−0.618T+2T2 |
| 5 | 1−0.381T+5T2 |
| 13 | 1+T+13T2 |
| 17 | 1−4.23T+17T2 |
| 19 | 1+19T2 |
| 23 | 1−3.23T+23T2 |
| 29 | 1+6.70T+29T2 |
| 31 | 1+10.2T+31T2 |
| 37 | 1−6.94T+37T2 |
| 41 | 1+5.09T+41T2 |
| 43 | 1+T+43T2 |
| 47 | 1−7.32T+47T2 |
| 53 | 1+7.61T+53T2 |
| 59 | 1−4.14T+59T2 |
| 61 | 1+5.76T+61T2 |
| 67 | 1+9.23T+67T2 |
| 71 | 1−7.47T+71T2 |
| 73 | 1−11.5T+73T2 |
| 79 | 1−10.8T+79T2 |
| 83 | 1−6T+83T2 |
| 89 | 1−6.38T+89T2 |
| 97 | 1+17T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.74607574496326732163732655815, −6.80293717043010550500974724616, −5.79973212324884226975447910529, −5.44421402194162496616611601776, −4.77250187209593489514959980178, −3.87219579206636883680054317876, −3.40356513863813462369537628487, −2.30442816032702091542250214980, −1.26301442173657144658398263786, 0,
1.26301442173657144658398263786, 2.30442816032702091542250214980, 3.40356513863813462369537628487, 3.87219579206636883680054317876, 4.77250187209593489514959980178, 5.44421402194162496616611601776, 5.79973212324884226975447910529, 6.80293717043010550500974724616, 7.74607574496326732163732655815