Properties

Label 7623.2.a.ba.1.2
Level $7623$
Weight $2$
Character 7623.1
Self dual yes
Analytic conductor $60.870$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7623,2,Mod(1,7623)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7623, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7623.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7623 = 3^{2} \cdot 7 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7623.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(60.8699614608\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 231)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-0.618034\) of defining polynomial
Character \(\chi\) \(=\) 7623.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.618034 q^{2} -1.61803 q^{4} +0.381966 q^{5} +1.00000 q^{7} -2.23607 q^{8} +0.236068 q^{10} -1.00000 q^{13} +0.618034 q^{14} +1.85410 q^{16} +4.23607 q^{17} -0.618034 q^{20} +3.23607 q^{23} -4.85410 q^{25} -0.618034 q^{26} -1.61803 q^{28} -6.70820 q^{29} -10.2361 q^{31} +5.61803 q^{32} +2.61803 q^{34} +0.381966 q^{35} +6.94427 q^{37} -0.854102 q^{40} -5.09017 q^{41} -1.00000 q^{43} +2.00000 q^{46} +7.32624 q^{47} +1.00000 q^{49} -3.00000 q^{50} +1.61803 q^{52} -7.61803 q^{53} -2.23607 q^{56} -4.14590 q^{58} +4.14590 q^{59} -5.76393 q^{61} -6.32624 q^{62} -0.236068 q^{64} -0.381966 q^{65} -9.23607 q^{67} -6.85410 q^{68} +0.236068 q^{70} +7.47214 q^{71} +11.5623 q^{73} +4.29180 q^{74} +10.8541 q^{79} +0.708204 q^{80} -3.14590 q^{82} +6.00000 q^{83} +1.61803 q^{85} -0.618034 q^{86} +6.38197 q^{89} -1.00000 q^{91} -5.23607 q^{92} +4.52786 q^{94} -17.0000 q^{97} +0.618034 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} - q^{4} + 3 q^{5} + 2 q^{7} - 4 q^{10} - 2 q^{13} - q^{14} - 3 q^{16} + 4 q^{17} + q^{20} + 2 q^{23} - 3 q^{25} + q^{26} - q^{28} - 16 q^{31} + 9 q^{32} + 3 q^{34} + 3 q^{35} - 4 q^{37}+ \cdots - q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.618034 0.437016 0.218508 0.975835i \(-0.429881\pi\)
0.218508 + 0.975835i \(0.429881\pi\)
\(3\) 0 0
\(4\) −1.61803 −0.809017
\(5\) 0.381966 0.170820 0.0854102 0.996346i \(-0.472780\pi\)
0.0854102 + 0.996346i \(0.472780\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) −2.23607 −0.790569
\(9\) 0 0
\(10\) 0.236068 0.0746512
\(11\) 0 0
\(12\) 0 0
\(13\) −1.00000 −0.277350 −0.138675 0.990338i \(-0.544284\pi\)
−0.138675 + 0.990338i \(0.544284\pi\)
\(14\) 0.618034 0.165177
\(15\) 0 0
\(16\) 1.85410 0.463525
\(17\) 4.23607 1.02740 0.513699 0.857971i \(-0.328275\pi\)
0.513699 + 0.857971i \(0.328275\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) −0.618034 −0.138197
\(21\) 0 0
\(22\) 0 0
\(23\) 3.23607 0.674767 0.337383 0.941367i \(-0.390458\pi\)
0.337383 + 0.941367i \(0.390458\pi\)
\(24\) 0 0
\(25\) −4.85410 −0.970820
\(26\) −0.618034 −0.121206
\(27\) 0 0
\(28\) −1.61803 −0.305780
\(29\) −6.70820 −1.24568 −0.622841 0.782348i \(-0.714022\pi\)
−0.622841 + 0.782348i \(0.714022\pi\)
\(30\) 0 0
\(31\) −10.2361 −1.83845 −0.919226 0.393730i \(-0.871184\pi\)
−0.919226 + 0.393730i \(0.871184\pi\)
\(32\) 5.61803 0.993137
\(33\) 0 0
\(34\) 2.61803 0.448989
\(35\) 0.381966 0.0645640
\(36\) 0 0
\(37\) 6.94427 1.14163 0.570816 0.821078i \(-0.306627\pi\)
0.570816 + 0.821078i \(0.306627\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) −0.854102 −0.135045
\(41\) −5.09017 −0.794951 −0.397475 0.917613i \(-0.630114\pi\)
−0.397475 + 0.917613i \(0.630114\pi\)
\(42\) 0 0
\(43\) −1.00000 −0.152499 −0.0762493 0.997089i \(-0.524294\pi\)
−0.0762493 + 0.997089i \(0.524294\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 2.00000 0.294884
\(47\) 7.32624 1.06864 0.534321 0.845282i \(-0.320567\pi\)
0.534321 + 0.845282i \(0.320567\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) −3.00000 −0.424264
\(51\) 0 0
\(52\) 1.61803 0.224381
\(53\) −7.61803 −1.04642 −0.523209 0.852205i \(-0.675265\pi\)
−0.523209 + 0.852205i \(0.675265\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −2.23607 −0.298807
\(57\) 0 0
\(58\) −4.14590 −0.544383
\(59\) 4.14590 0.539750 0.269875 0.962895i \(-0.413018\pi\)
0.269875 + 0.962895i \(0.413018\pi\)
\(60\) 0 0
\(61\) −5.76393 −0.737996 −0.368998 0.929430i \(-0.620299\pi\)
−0.368998 + 0.929430i \(0.620299\pi\)
\(62\) −6.32624 −0.803433
\(63\) 0 0
\(64\) −0.236068 −0.0295085
\(65\) −0.381966 −0.0473771
\(66\) 0 0
\(67\) −9.23607 −1.12837 −0.564183 0.825650i \(-0.690809\pi\)
−0.564183 + 0.825650i \(0.690809\pi\)
\(68\) −6.85410 −0.831182
\(69\) 0 0
\(70\) 0.236068 0.0282155
\(71\) 7.47214 0.886779 0.443390 0.896329i \(-0.353776\pi\)
0.443390 + 0.896329i \(0.353776\pi\)
\(72\) 0 0
\(73\) 11.5623 1.35327 0.676633 0.736321i \(-0.263438\pi\)
0.676633 + 0.736321i \(0.263438\pi\)
\(74\) 4.29180 0.498911
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 10.8541 1.22118 0.610591 0.791946i \(-0.290932\pi\)
0.610591 + 0.791946i \(0.290932\pi\)
\(80\) 0.708204 0.0791796
\(81\) 0 0
\(82\) −3.14590 −0.347406
\(83\) 6.00000 0.658586 0.329293 0.944228i \(-0.393190\pi\)
0.329293 + 0.944228i \(0.393190\pi\)
\(84\) 0 0
\(85\) 1.61803 0.175500
\(86\) −0.618034 −0.0666443
\(87\) 0 0
\(88\) 0 0
\(89\) 6.38197 0.676487 0.338244 0.941059i \(-0.390167\pi\)
0.338244 + 0.941059i \(0.390167\pi\)
\(90\) 0 0
\(91\) −1.00000 −0.104828
\(92\) −5.23607 −0.545898
\(93\) 0 0
\(94\) 4.52786 0.467014
\(95\) 0 0
\(96\) 0 0
\(97\) −17.0000 −1.72609 −0.863044 0.505128i \(-0.831445\pi\)
−0.863044 + 0.505128i \(0.831445\pi\)
\(98\) 0.618034 0.0624309
\(99\) 0 0
\(100\) 7.85410 0.785410
\(101\) 4.18034 0.415959 0.207980 0.978133i \(-0.433311\pi\)
0.207980 + 0.978133i \(0.433311\pi\)
\(102\) 0 0
\(103\) −12.7082 −1.25218 −0.626088 0.779752i \(-0.715345\pi\)
−0.626088 + 0.779752i \(0.715345\pi\)
\(104\) 2.23607 0.219265
\(105\) 0 0
\(106\) −4.70820 −0.457301
\(107\) −15.7639 −1.52396 −0.761978 0.647602i \(-0.775772\pi\)
−0.761978 + 0.647602i \(0.775772\pi\)
\(108\) 0 0
\(109\) −7.56231 −0.724338 −0.362169 0.932113i \(-0.617964\pi\)
−0.362169 + 0.932113i \(0.617964\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 1.85410 0.175196
\(113\) 11.6525 1.09617 0.548086 0.836422i \(-0.315357\pi\)
0.548086 + 0.836422i \(0.315357\pi\)
\(114\) 0 0
\(115\) 1.23607 0.115264
\(116\) 10.8541 1.00778
\(117\) 0 0
\(118\) 2.56231 0.235879
\(119\) 4.23607 0.388320
\(120\) 0 0
\(121\) 0 0
\(122\) −3.56231 −0.322516
\(123\) 0 0
\(124\) 16.5623 1.48734
\(125\) −3.76393 −0.336656
\(126\) 0 0
\(127\) −7.32624 −0.650098 −0.325049 0.945697i \(-0.605381\pi\)
−0.325049 + 0.945697i \(0.605381\pi\)
\(128\) −11.3820 −1.00603
\(129\) 0 0
\(130\) −0.236068 −0.0207045
\(131\) 3.32624 0.290615 0.145307 0.989387i \(-0.453583\pi\)
0.145307 + 0.989387i \(0.453583\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −5.70820 −0.493114
\(135\) 0 0
\(136\) −9.47214 −0.812229
\(137\) 3.05573 0.261068 0.130534 0.991444i \(-0.458331\pi\)
0.130534 + 0.991444i \(0.458331\pi\)
\(138\) 0 0
\(139\) −17.5623 −1.48962 −0.744808 0.667279i \(-0.767459\pi\)
−0.744808 + 0.667279i \(0.767459\pi\)
\(140\) −0.618034 −0.0522334
\(141\) 0 0
\(142\) 4.61803 0.387537
\(143\) 0 0
\(144\) 0 0
\(145\) −2.56231 −0.212788
\(146\) 7.14590 0.591399
\(147\) 0 0
\(148\) −11.2361 −0.923599
\(149\) 13.0902 1.07239 0.536194 0.844095i \(-0.319861\pi\)
0.536194 + 0.844095i \(0.319861\pi\)
\(150\) 0 0
\(151\) −21.0902 −1.71629 −0.858147 0.513404i \(-0.828384\pi\)
−0.858147 + 0.513404i \(0.828384\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −3.90983 −0.314045
\(156\) 0 0
\(157\) −1.67376 −0.133581 −0.0667904 0.997767i \(-0.521276\pi\)
−0.0667904 + 0.997767i \(0.521276\pi\)
\(158\) 6.70820 0.533676
\(159\) 0 0
\(160\) 2.14590 0.169648
\(161\) 3.23607 0.255038
\(162\) 0 0
\(163\) 6.03444 0.472654 0.236327 0.971674i \(-0.424056\pi\)
0.236327 + 0.971674i \(0.424056\pi\)
\(164\) 8.23607 0.643129
\(165\) 0 0
\(166\) 3.70820 0.287812
\(167\) −9.38197 −0.725998 −0.362999 0.931789i \(-0.618247\pi\)
−0.362999 + 0.931789i \(0.618247\pi\)
\(168\) 0 0
\(169\) −12.0000 −0.923077
\(170\) 1.00000 0.0766965
\(171\) 0 0
\(172\) 1.61803 0.123374
\(173\) 14.6180 1.11139 0.555694 0.831387i \(-0.312453\pi\)
0.555694 + 0.831387i \(0.312453\pi\)
\(174\) 0 0
\(175\) −4.85410 −0.366936
\(176\) 0 0
\(177\) 0 0
\(178\) 3.94427 0.295636
\(179\) 2.23607 0.167132 0.0835658 0.996502i \(-0.473369\pi\)
0.0835658 + 0.996502i \(0.473369\pi\)
\(180\) 0 0
\(181\) −0.236068 −0.0175468 −0.00877340 0.999962i \(-0.502793\pi\)
−0.00877340 + 0.999962i \(0.502793\pi\)
\(182\) −0.618034 −0.0458117
\(183\) 0 0
\(184\) −7.23607 −0.533450
\(185\) 2.65248 0.195014
\(186\) 0 0
\(187\) 0 0
\(188\) −11.8541 −0.864549
\(189\) 0 0
\(190\) 0 0
\(191\) −9.76393 −0.706493 −0.353247 0.935530i \(-0.614922\pi\)
−0.353247 + 0.935530i \(0.614922\pi\)
\(192\) 0 0
\(193\) 5.05573 0.363919 0.181960 0.983306i \(-0.441756\pi\)
0.181960 + 0.983306i \(0.441756\pi\)
\(194\) −10.5066 −0.754328
\(195\) 0 0
\(196\) −1.61803 −0.115574
\(197\) 9.23607 0.658043 0.329021 0.944323i \(-0.393281\pi\)
0.329021 + 0.944323i \(0.393281\pi\)
\(198\) 0 0
\(199\) −7.56231 −0.536078 −0.268039 0.963408i \(-0.586376\pi\)
−0.268039 + 0.963408i \(0.586376\pi\)
\(200\) 10.8541 0.767501
\(201\) 0 0
\(202\) 2.58359 0.181781
\(203\) −6.70820 −0.470824
\(204\) 0 0
\(205\) −1.94427 −0.135794
\(206\) −7.85410 −0.547221
\(207\) 0 0
\(208\) −1.85410 −0.128559
\(209\) 0 0
\(210\) 0 0
\(211\) 5.29180 0.364302 0.182151 0.983271i \(-0.441694\pi\)
0.182151 + 0.983271i \(0.441694\pi\)
\(212\) 12.3262 0.846569
\(213\) 0 0
\(214\) −9.74265 −0.665994
\(215\) −0.381966 −0.0260499
\(216\) 0 0
\(217\) −10.2361 −0.694870
\(218\) −4.67376 −0.316547
\(219\) 0 0
\(220\) 0 0
\(221\) −4.23607 −0.284949
\(222\) 0 0
\(223\) −12.7082 −0.851004 −0.425502 0.904957i \(-0.639903\pi\)
−0.425502 + 0.904957i \(0.639903\pi\)
\(224\) 5.61803 0.375371
\(225\) 0 0
\(226\) 7.20163 0.479045
\(227\) −18.9787 −1.25966 −0.629831 0.776732i \(-0.716876\pi\)
−0.629831 + 0.776732i \(0.716876\pi\)
\(228\) 0 0
\(229\) −11.7082 −0.773700 −0.386850 0.922143i \(-0.626437\pi\)
−0.386850 + 0.922143i \(0.626437\pi\)
\(230\) 0.763932 0.0503722
\(231\) 0 0
\(232\) 15.0000 0.984798
\(233\) −6.23607 −0.408538 −0.204269 0.978915i \(-0.565482\pi\)
−0.204269 + 0.978915i \(0.565482\pi\)
\(234\) 0 0
\(235\) 2.79837 0.182546
\(236\) −6.70820 −0.436667
\(237\) 0 0
\(238\) 2.61803 0.169702
\(239\) −19.1459 −1.23845 −0.619223 0.785215i \(-0.712552\pi\)
−0.619223 + 0.785215i \(0.712552\pi\)
\(240\) 0 0
\(241\) −24.7082 −1.59160 −0.795798 0.605563i \(-0.792948\pi\)
−0.795798 + 0.605563i \(0.792948\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 9.32624 0.597051
\(245\) 0.381966 0.0244029
\(246\) 0 0
\(247\) 0 0
\(248\) 22.8885 1.45342
\(249\) 0 0
\(250\) −2.32624 −0.147124
\(251\) −26.5967 −1.67877 −0.839386 0.543536i \(-0.817085\pi\)
−0.839386 + 0.543536i \(0.817085\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −4.52786 −0.284103
\(255\) 0 0
\(256\) −6.56231 −0.410144
\(257\) −26.9443 −1.68074 −0.840369 0.542015i \(-0.817662\pi\)
−0.840369 + 0.542015i \(0.817662\pi\)
\(258\) 0 0
\(259\) 6.94427 0.431496
\(260\) 0.618034 0.0383288
\(261\) 0 0
\(262\) 2.05573 0.127003
\(263\) −0.708204 −0.0436697 −0.0218349 0.999762i \(-0.506951\pi\)
−0.0218349 + 0.999762i \(0.506951\pi\)
\(264\) 0 0
\(265\) −2.90983 −0.178749
\(266\) 0 0
\(267\) 0 0
\(268\) 14.9443 0.912867
\(269\) −23.9443 −1.45991 −0.729954 0.683496i \(-0.760459\pi\)
−0.729954 + 0.683496i \(0.760459\pi\)
\(270\) 0 0
\(271\) −6.41641 −0.389769 −0.194885 0.980826i \(-0.562433\pi\)
−0.194885 + 0.980826i \(0.562433\pi\)
\(272\) 7.85410 0.476225
\(273\) 0 0
\(274\) 1.88854 0.114091
\(275\) 0 0
\(276\) 0 0
\(277\) −25.4164 −1.52712 −0.763562 0.645735i \(-0.776551\pi\)
−0.763562 + 0.645735i \(0.776551\pi\)
\(278\) −10.8541 −0.650986
\(279\) 0 0
\(280\) −0.854102 −0.0510424
\(281\) −15.6180 −0.931694 −0.465847 0.884865i \(-0.654250\pi\)
−0.465847 + 0.884865i \(0.654250\pi\)
\(282\) 0 0
\(283\) 7.29180 0.433452 0.216726 0.976232i \(-0.430462\pi\)
0.216726 + 0.976232i \(0.430462\pi\)
\(284\) −12.0902 −0.717420
\(285\) 0 0
\(286\) 0 0
\(287\) −5.09017 −0.300463
\(288\) 0 0
\(289\) 0.944272 0.0555454
\(290\) −1.58359 −0.0929917
\(291\) 0 0
\(292\) −18.7082 −1.09481
\(293\) 13.2361 0.773259 0.386630 0.922235i \(-0.373639\pi\)
0.386630 + 0.922235i \(0.373639\pi\)
\(294\) 0 0
\(295\) 1.58359 0.0922003
\(296\) −15.5279 −0.902539
\(297\) 0 0
\(298\) 8.09017 0.468651
\(299\) −3.23607 −0.187147
\(300\) 0 0
\(301\) −1.00000 −0.0576390
\(302\) −13.0344 −0.750048
\(303\) 0 0
\(304\) 0 0
\(305\) −2.20163 −0.126065
\(306\) 0 0
\(307\) 19.1803 1.09468 0.547340 0.836910i \(-0.315640\pi\)
0.547340 + 0.836910i \(0.315640\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −2.41641 −0.137243
\(311\) −16.7984 −0.952548 −0.476274 0.879297i \(-0.658013\pi\)
−0.476274 + 0.879297i \(0.658013\pi\)
\(312\) 0 0
\(313\) −15.7984 −0.892977 −0.446488 0.894789i \(-0.647326\pi\)
−0.446488 + 0.894789i \(0.647326\pi\)
\(314\) −1.03444 −0.0583769
\(315\) 0 0
\(316\) −17.5623 −0.987957
\(317\) −25.3607 −1.42440 −0.712199 0.701978i \(-0.752301\pi\)
−0.712199 + 0.701978i \(0.752301\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −0.0901699 −0.00504065
\(321\) 0 0
\(322\) 2.00000 0.111456
\(323\) 0 0
\(324\) 0 0
\(325\) 4.85410 0.269257
\(326\) 3.72949 0.206557
\(327\) 0 0
\(328\) 11.3820 0.628464
\(329\) 7.32624 0.403909
\(330\) 0 0
\(331\) −14.7082 −0.808436 −0.404218 0.914663i \(-0.632456\pi\)
−0.404218 + 0.914663i \(0.632456\pi\)
\(332\) −9.70820 −0.532807
\(333\) 0 0
\(334\) −5.79837 −0.317273
\(335\) −3.52786 −0.192748
\(336\) 0 0
\(337\) 1.29180 0.0703686 0.0351843 0.999381i \(-0.488798\pi\)
0.0351843 + 0.999381i \(0.488798\pi\)
\(338\) −7.41641 −0.403399
\(339\) 0 0
\(340\) −2.61803 −0.141983
\(341\) 0 0
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 2.23607 0.120561
\(345\) 0 0
\(346\) 9.03444 0.485695
\(347\) 25.4164 1.36442 0.682212 0.731154i \(-0.261018\pi\)
0.682212 + 0.731154i \(0.261018\pi\)
\(348\) 0 0
\(349\) 34.9230 1.86938 0.934692 0.355458i \(-0.115675\pi\)
0.934692 + 0.355458i \(0.115675\pi\)
\(350\) −3.00000 −0.160357
\(351\) 0 0
\(352\) 0 0
\(353\) 25.4721 1.35574 0.677872 0.735179i \(-0.262902\pi\)
0.677872 + 0.735179i \(0.262902\pi\)
\(354\) 0 0
\(355\) 2.85410 0.151480
\(356\) −10.3262 −0.547290
\(357\) 0 0
\(358\) 1.38197 0.0730392
\(359\) 33.2148 1.75301 0.876505 0.481394i \(-0.159869\pi\)
0.876505 + 0.481394i \(0.159869\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) −0.145898 −0.00766823
\(363\) 0 0
\(364\) 1.61803 0.0848080
\(365\) 4.41641 0.231165
\(366\) 0 0
\(367\) 11.2918 0.589427 0.294713 0.955586i \(-0.404776\pi\)
0.294713 + 0.955586i \(0.404776\pi\)
\(368\) 6.00000 0.312772
\(369\) 0 0
\(370\) 1.63932 0.0852242
\(371\) −7.61803 −0.395509
\(372\) 0 0
\(373\) 30.1803 1.56268 0.781339 0.624106i \(-0.214537\pi\)
0.781339 + 0.624106i \(0.214537\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −16.3820 −0.844835
\(377\) 6.70820 0.345490
\(378\) 0 0
\(379\) −10.8541 −0.557538 −0.278769 0.960358i \(-0.589926\pi\)
−0.278769 + 0.960358i \(0.589926\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −6.03444 −0.308749
\(383\) 7.90983 0.404173 0.202087 0.979368i \(-0.435228\pi\)
0.202087 + 0.979368i \(0.435228\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 3.12461 0.159039
\(387\) 0 0
\(388\) 27.5066 1.39643
\(389\) −20.6525 −1.04712 −0.523561 0.851988i \(-0.675397\pi\)
−0.523561 + 0.851988i \(0.675397\pi\)
\(390\) 0 0
\(391\) 13.7082 0.693254
\(392\) −2.23607 −0.112938
\(393\) 0 0
\(394\) 5.70820 0.287575
\(395\) 4.14590 0.208603
\(396\) 0 0
\(397\) 25.6869 1.28919 0.644595 0.764524i \(-0.277026\pi\)
0.644595 + 0.764524i \(0.277026\pi\)
\(398\) −4.67376 −0.234275
\(399\) 0 0
\(400\) −9.00000 −0.450000
\(401\) −11.6738 −0.582960 −0.291480 0.956577i \(-0.594148\pi\)
−0.291480 + 0.956577i \(0.594148\pi\)
\(402\) 0 0
\(403\) 10.2361 0.509895
\(404\) −6.76393 −0.336518
\(405\) 0 0
\(406\) −4.14590 −0.205757
\(407\) 0 0
\(408\) 0 0
\(409\) −26.3820 −1.30450 −0.652252 0.758002i \(-0.726176\pi\)
−0.652252 + 0.758002i \(0.726176\pi\)
\(410\) −1.20163 −0.0593441
\(411\) 0 0
\(412\) 20.5623 1.01303
\(413\) 4.14590 0.204006
\(414\) 0 0
\(415\) 2.29180 0.112500
\(416\) −5.61803 −0.275447
\(417\) 0 0
\(418\) 0 0
\(419\) 15.3262 0.748736 0.374368 0.927280i \(-0.377860\pi\)
0.374368 + 0.927280i \(0.377860\pi\)
\(420\) 0 0
\(421\) 2.72949 0.133027 0.0665136 0.997786i \(-0.478812\pi\)
0.0665136 + 0.997786i \(0.478812\pi\)
\(422\) 3.27051 0.159206
\(423\) 0 0
\(424\) 17.0344 0.827266
\(425\) −20.5623 −0.997418
\(426\) 0 0
\(427\) −5.76393 −0.278936
\(428\) 25.5066 1.23291
\(429\) 0 0
\(430\) −0.236068 −0.0113842
\(431\) 37.7984 1.82068 0.910342 0.413857i \(-0.135819\pi\)
0.910342 + 0.413857i \(0.135819\pi\)
\(432\) 0 0
\(433\) −2.58359 −0.124160 −0.0620798 0.998071i \(-0.519773\pi\)
−0.0620798 + 0.998071i \(0.519773\pi\)
\(434\) −6.32624 −0.303669
\(435\) 0 0
\(436\) 12.2361 0.586001
\(437\) 0 0
\(438\) 0 0
\(439\) 0.527864 0.0251936 0.0125968 0.999921i \(-0.495990\pi\)
0.0125968 + 0.999921i \(0.495990\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −2.61803 −0.124527
\(443\) 36.6525 1.74141 0.870706 0.491804i \(-0.163662\pi\)
0.870706 + 0.491804i \(0.163662\pi\)
\(444\) 0 0
\(445\) 2.43769 0.115558
\(446\) −7.85410 −0.371903
\(447\) 0 0
\(448\) −0.236068 −0.0111532
\(449\) −15.6525 −0.738686 −0.369343 0.929293i \(-0.620417\pi\)
−0.369343 + 0.929293i \(0.620417\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) −18.8541 −0.886822
\(453\) 0 0
\(454\) −11.7295 −0.550492
\(455\) −0.381966 −0.0179068
\(456\) 0 0
\(457\) 12.2705 0.573990 0.286995 0.957932i \(-0.407344\pi\)
0.286995 + 0.957932i \(0.407344\pi\)
\(458\) −7.23607 −0.338119
\(459\) 0 0
\(460\) −2.00000 −0.0932505
\(461\) −23.1803 −1.07962 −0.539808 0.841788i \(-0.681503\pi\)
−0.539808 + 0.841788i \(0.681503\pi\)
\(462\) 0 0
\(463\) −35.9230 −1.66948 −0.834741 0.550642i \(-0.814383\pi\)
−0.834741 + 0.550642i \(0.814383\pi\)
\(464\) −12.4377 −0.577405
\(465\) 0 0
\(466\) −3.85410 −0.178538
\(467\) −31.9443 −1.47820 −0.739102 0.673593i \(-0.764750\pi\)
−0.739102 + 0.673593i \(0.764750\pi\)
\(468\) 0 0
\(469\) −9.23607 −0.426482
\(470\) 1.72949 0.0797754
\(471\) 0 0
\(472\) −9.27051 −0.426710
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) −6.85410 −0.314157
\(477\) 0 0
\(478\) −11.8328 −0.541220
\(479\) −21.5066 −0.982661 −0.491330 0.870973i \(-0.663489\pi\)
−0.491330 + 0.870973i \(0.663489\pi\)
\(480\) 0 0
\(481\) −6.94427 −0.316632
\(482\) −15.2705 −0.695553
\(483\) 0 0
\(484\) 0 0
\(485\) −6.49342 −0.294851
\(486\) 0 0
\(487\) 16.6180 0.753035 0.376518 0.926410i \(-0.377121\pi\)
0.376518 + 0.926410i \(0.377121\pi\)
\(488\) 12.8885 0.583437
\(489\) 0 0
\(490\) 0.236068 0.0106645
\(491\) −3.70820 −0.167349 −0.0836745 0.996493i \(-0.526666\pi\)
−0.0836745 + 0.996493i \(0.526666\pi\)
\(492\) 0 0
\(493\) −28.4164 −1.27981
\(494\) 0 0
\(495\) 0 0
\(496\) −18.9787 −0.852169
\(497\) 7.47214 0.335171
\(498\) 0 0
\(499\) −5.00000 −0.223831 −0.111915 0.993718i \(-0.535699\pi\)
−0.111915 + 0.993718i \(0.535699\pi\)
\(500\) 6.09017 0.272361
\(501\) 0 0
\(502\) −16.4377 −0.733650
\(503\) 32.3050 1.44041 0.720203 0.693763i \(-0.244049\pi\)
0.720203 + 0.693763i \(0.244049\pi\)
\(504\) 0 0
\(505\) 1.59675 0.0710543
\(506\) 0 0
\(507\) 0 0
\(508\) 11.8541 0.525941
\(509\) −41.8328 −1.85421 −0.927103 0.374805i \(-0.877709\pi\)
−0.927103 + 0.374805i \(0.877709\pi\)
\(510\) 0 0
\(511\) 11.5623 0.511486
\(512\) 18.7082 0.826794
\(513\) 0 0
\(514\) −16.6525 −0.734509
\(515\) −4.85410 −0.213897
\(516\) 0 0
\(517\) 0 0
\(518\) 4.29180 0.188571
\(519\) 0 0
\(520\) 0.854102 0.0374548
\(521\) 19.1803 0.840306 0.420153 0.907453i \(-0.361976\pi\)
0.420153 + 0.907453i \(0.361976\pi\)
\(522\) 0 0
\(523\) 20.3050 0.887874 0.443937 0.896058i \(-0.353581\pi\)
0.443937 + 0.896058i \(0.353581\pi\)
\(524\) −5.38197 −0.235112
\(525\) 0 0
\(526\) −0.437694 −0.0190844
\(527\) −43.3607 −1.88882
\(528\) 0 0
\(529\) −12.5279 −0.544690
\(530\) −1.79837 −0.0781164
\(531\) 0 0
\(532\) 0 0
\(533\) 5.09017 0.220480
\(534\) 0 0
\(535\) −6.02129 −0.260323
\(536\) 20.6525 0.892051
\(537\) 0 0
\(538\) −14.7984 −0.638003
\(539\) 0 0
\(540\) 0 0
\(541\) 20.0902 0.863744 0.431872 0.901935i \(-0.357853\pi\)
0.431872 + 0.901935i \(0.357853\pi\)
\(542\) −3.96556 −0.170335
\(543\) 0 0
\(544\) 23.7984 1.02035
\(545\) −2.88854 −0.123732
\(546\) 0 0
\(547\) 22.5967 0.966167 0.483084 0.875574i \(-0.339517\pi\)
0.483084 + 0.875574i \(0.339517\pi\)
\(548\) −4.94427 −0.211209
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 10.8541 0.461563
\(554\) −15.7082 −0.667378
\(555\) 0 0
\(556\) 28.4164 1.20512
\(557\) −0.763932 −0.0323688 −0.0161844 0.999869i \(-0.505152\pi\)
−0.0161844 + 0.999869i \(0.505152\pi\)
\(558\) 0 0
\(559\) 1.00000 0.0422955
\(560\) 0.708204 0.0299271
\(561\) 0 0
\(562\) −9.65248 −0.407165
\(563\) 45.0689 1.89943 0.949713 0.313120i \(-0.101374\pi\)
0.949713 + 0.313120i \(0.101374\pi\)
\(564\) 0 0
\(565\) 4.45085 0.187249
\(566\) 4.50658 0.189426
\(567\) 0 0
\(568\) −16.7082 −0.701061
\(569\) −39.0689 −1.63785 −0.818926 0.573899i \(-0.805430\pi\)
−0.818926 + 0.573899i \(0.805430\pi\)
\(570\) 0 0
\(571\) 7.00000 0.292941 0.146470 0.989215i \(-0.453209\pi\)
0.146470 + 0.989215i \(0.453209\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) −3.14590 −0.131307
\(575\) −15.7082 −0.655077
\(576\) 0 0
\(577\) −9.43769 −0.392896 −0.196448 0.980514i \(-0.562941\pi\)
−0.196448 + 0.980514i \(0.562941\pi\)
\(578\) 0.583592 0.0242742
\(579\) 0 0
\(580\) 4.14590 0.172149
\(581\) 6.00000 0.248922
\(582\) 0 0
\(583\) 0 0
\(584\) −25.8541 −1.06985
\(585\) 0 0
\(586\) 8.18034 0.337927
\(587\) −35.8885 −1.48128 −0.740639 0.671903i \(-0.765477\pi\)
−0.740639 + 0.671903i \(0.765477\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0.978714 0.0402930
\(591\) 0 0
\(592\) 12.8754 0.529175
\(593\) 23.8885 0.980985 0.490492 0.871445i \(-0.336817\pi\)
0.490492 + 0.871445i \(0.336817\pi\)
\(594\) 0 0
\(595\) 1.61803 0.0663329
\(596\) −21.1803 −0.867581
\(597\) 0 0
\(598\) −2.00000 −0.0817861
\(599\) −31.5066 −1.28732 −0.643662 0.765310i \(-0.722586\pi\)
−0.643662 + 0.765310i \(0.722586\pi\)
\(600\) 0 0
\(601\) −14.8328 −0.605043 −0.302522 0.953143i \(-0.597828\pi\)
−0.302522 + 0.953143i \(0.597828\pi\)
\(602\) −0.618034 −0.0251892
\(603\) 0 0
\(604\) 34.1246 1.38851
\(605\) 0 0
\(606\) 0 0
\(607\) −16.1459 −0.655342 −0.327671 0.944792i \(-0.606264\pi\)
−0.327671 + 0.944792i \(0.606264\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) −1.36068 −0.0550923
\(611\) −7.32624 −0.296388
\(612\) 0 0
\(613\) 34.4508 1.39146 0.695728 0.718305i \(-0.255082\pi\)
0.695728 + 0.718305i \(0.255082\pi\)
\(614\) 11.8541 0.478393
\(615\) 0 0
\(616\) 0 0
\(617\) 10.0902 0.406215 0.203107 0.979156i \(-0.434896\pi\)
0.203107 + 0.979156i \(0.434896\pi\)
\(618\) 0 0
\(619\) 35.1246 1.41178 0.705889 0.708323i \(-0.250548\pi\)
0.705889 + 0.708323i \(0.250548\pi\)
\(620\) 6.32624 0.254068
\(621\) 0 0
\(622\) −10.3820 −0.416279
\(623\) 6.38197 0.255688
\(624\) 0 0
\(625\) 22.8328 0.913313
\(626\) −9.76393 −0.390245
\(627\) 0 0
\(628\) 2.70820 0.108069
\(629\) 29.4164 1.17291
\(630\) 0 0
\(631\) −9.18034 −0.365464 −0.182732 0.983163i \(-0.558494\pi\)
−0.182732 + 0.983163i \(0.558494\pi\)
\(632\) −24.2705 −0.965429
\(633\) 0 0
\(634\) −15.6738 −0.622485
\(635\) −2.79837 −0.111050
\(636\) 0 0
\(637\) −1.00000 −0.0396214
\(638\) 0 0
\(639\) 0 0
\(640\) −4.34752 −0.171851
\(641\) −27.9787 −1.10509 −0.552546 0.833482i \(-0.686344\pi\)
−0.552546 + 0.833482i \(0.686344\pi\)
\(642\) 0 0
\(643\) −16.0000 −0.630978 −0.315489 0.948929i \(-0.602169\pi\)
−0.315489 + 0.948929i \(0.602169\pi\)
\(644\) −5.23607 −0.206330
\(645\) 0 0
\(646\) 0 0
\(647\) −2.34752 −0.0922907 −0.0461453 0.998935i \(-0.514694\pi\)
−0.0461453 + 0.998935i \(0.514694\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 3.00000 0.117670
\(651\) 0 0
\(652\) −9.76393 −0.382385
\(653\) −0.708204 −0.0277142 −0.0138571 0.999904i \(-0.504411\pi\)
−0.0138571 + 0.999904i \(0.504411\pi\)
\(654\) 0 0
\(655\) 1.27051 0.0496429
\(656\) −9.43769 −0.368480
\(657\) 0 0
\(658\) 4.52786 0.176515
\(659\) −41.8328 −1.62958 −0.814788 0.579760i \(-0.803146\pi\)
−0.814788 + 0.579760i \(0.803146\pi\)
\(660\) 0 0
\(661\) −3.00000 −0.116686 −0.0583432 0.998297i \(-0.518582\pi\)
−0.0583432 + 0.998297i \(0.518582\pi\)
\(662\) −9.09017 −0.353299
\(663\) 0 0
\(664\) −13.4164 −0.520658
\(665\) 0 0
\(666\) 0 0
\(667\) −21.7082 −0.840545
\(668\) 15.1803 0.587345
\(669\) 0 0
\(670\) −2.18034 −0.0842339
\(671\) 0 0
\(672\) 0 0
\(673\) −7.58359 −0.292326 −0.146163 0.989261i \(-0.546692\pi\)
−0.146163 + 0.989261i \(0.546692\pi\)
\(674\) 0.798374 0.0307522
\(675\) 0 0
\(676\) 19.4164 0.746785
\(677\) −23.4508 −0.901289 −0.450645 0.892703i \(-0.648806\pi\)
−0.450645 + 0.892703i \(0.648806\pi\)
\(678\) 0 0
\(679\) −17.0000 −0.652400
\(680\) −3.61803 −0.138745
\(681\) 0 0
\(682\) 0 0
\(683\) 32.3050 1.23611 0.618057 0.786133i \(-0.287920\pi\)
0.618057 + 0.786133i \(0.287920\pi\)
\(684\) 0 0
\(685\) 1.16718 0.0445958
\(686\) 0.618034 0.0235966
\(687\) 0 0
\(688\) −1.85410 −0.0706870
\(689\) 7.61803 0.290224
\(690\) 0 0
\(691\) 14.5623 0.553976 0.276988 0.960873i \(-0.410664\pi\)
0.276988 + 0.960873i \(0.410664\pi\)
\(692\) −23.6525 −0.899132
\(693\) 0 0
\(694\) 15.7082 0.596275
\(695\) −6.70820 −0.254457
\(696\) 0 0
\(697\) −21.5623 −0.816731
\(698\) 21.5836 0.816951
\(699\) 0 0
\(700\) 7.85410 0.296857
\(701\) −27.0000 −1.01978 −0.509888 0.860241i \(-0.670313\pi\)
−0.509888 + 0.860241i \(0.670313\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 15.7426 0.592482
\(707\) 4.18034 0.157218
\(708\) 0 0
\(709\) −50.6525 −1.90229 −0.951147 0.308739i \(-0.900093\pi\)
−0.951147 + 0.308739i \(0.900093\pi\)
\(710\) 1.76393 0.0661992
\(711\) 0 0
\(712\) −14.2705 −0.534810
\(713\) −33.1246 −1.24053
\(714\) 0 0
\(715\) 0 0
\(716\) −3.61803 −0.135212
\(717\) 0 0
\(718\) 20.5279 0.766093
\(719\) 8.61803 0.321398 0.160699 0.987003i \(-0.448625\pi\)
0.160699 + 0.987003i \(0.448625\pi\)
\(720\) 0 0
\(721\) −12.7082 −0.473278
\(722\) −11.7426 −0.437016
\(723\) 0 0
\(724\) 0.381966 0.0141957
\(725\) 32.5623 1.20933
\(726\) 0 0
\(727\) 22.1459 0.821346 0.410673 0.911783i \(-0.365294\pi\)
0.410673 + 0.911783i \(0.365294\pi\)
\(728\) 2.23607 0.0828742
\(729\) 0 0
\(730\) 2.72949 0.101023
\(731\) −4.23607 −0.156677
\(732\) 0 0
\(733\) 4.12461 0.152346 0.0761730 0.997095i \(-0.475730\pi\)
0.0761730 + 0.997095i \(0.475730\pi\)
\(734\) 6.97871 0.257589
\(735\) 0 0
\(736\) 18.1803 0.670136
\(737\) 0 0
\(738\) 0 0
\(739\) 42.6869 1.57026 0.785132 0.619329i \(-0.212595\pi\)
0.785132 + 0.619329i \(0.212595\pi\)
\(740\) −4.29180 −0.157770
\(741\) 0 0
\(742\) −4.70820 −0.172844
\(743\) −25.9098 −0.950539 −0.475270 0.879840i \(-0.657650\pi\)
−0.475270 + 0.879840i \(0.657650\pi\)
\(744\) 0 0
\(745\) 5.00000 0.183186
\(746\) 18.6525 0.682916
\(747\) 0 0
\(748\) 0 0
\(749\) −15.7639 −0.576002
\(750\) 0 0
\(751\) −28.8541 −1.05290 −0.526451 0.850206i \(-0.676477\pi\)
−0.526451 + 0.850206i \(0.676477\pi\)
\(752\) 13.5836 0.495343
\(753\) 0 0
\(754\) 4.14590 0.150985
\(755\) −8.05573 −0.293178
\(756\) 0 0
\(757\) 45.2361 1.64413 0.822066 0.569392i \(-0.192821\pi\)
0.822066 + 0.569392i \(0.192821\pi\)
\(758\) −6.70820 −0.243653
\(759\) 0 0
\(760\) 0 0
\(761\) −0.0901699 −0.00326866 −0.00163433 0.999999i \(-0.500520\pi\)
−0.00163433 + 0.999999i \(0.500520\pi\)
\(762\) 0 0
\(763\) −7.56231 −0.273774
\(764\) 15.7984 0.571565
\(765\) 0 0
\(766\) 4.88854 0.176630
\(767\) −4.14590 −0.149700
\(768\) 0 0
\(769\) 44.4721 1.60371 0.801853 0.597521i \(-0.203848\pi\)
0.801853 + 0.597521i \(0.203848\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −8.18034 −0.294417
\(773\) −10.5836 −0.380665 −0.190333 0.981720i \(-0.560957\pi\)
−0.190333 + 0.981720i \(0.560957\pi\)
\(774\) 0 0
\(775\) 49.6869 1.78481
\(776\) 38.0132 1.36459
\(777\) 0 0
\(778\) −12.7639 −0.457609
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 8.47214 0.302963
\(783\) 0 0
\(784\) 1.85410 0.0662179
\(785\) −0.639320 −0.0228183
\(786\) 0 0
\(787\) −32.8541 −1.17112 −0.585561 0.810628i \(-0.699126\pi\)
−0.585561 + 0.810628i \(0.699126\pi\)
\(788\) −14.9443 −0.532368
\(789\) 0 0
\(790\) 2.56231 0.0911628
\(791\) 11.6525 0.414314
\(792\) 0 0
\(793\) 5.76393 0.204683
\(794\) 15.8754 0.563396
\(795\) 0 0
\(796\) 12.2361 0.433696
\(797\) 32.4508 1.14947 0.574734 0.818340i \(-0.305106\pi\)
0.574734 + 0.818340i \(0.305106\pi\)
\(798\) 0 0
\(799\) 31.0344 1.09792
\(800\) −27.2705 −0.964158
\(801\) 0 0
\(802\) −7.21478 −0.254763
\(803\) 0 0
\(804\) 0 0
\(805\) 1.23607 0.0435657
\(806\) 6.32624 0.222832
\(807\) 0 0
\(808\) −9.34752 −0.328845
\(809\) −30.9787 −1.08915 −0.544577 0.838711i \(-0.683310\pi\)
−0.544577 + 0.838711i \(0.683310\pi\)
\(810\) 0 0
\(811\) −23.1246 −0.812015 −0.406007 0.913870i \(-0.633079\pi\)
−0.406007 + 0.913870i \(0.633079\pi\)
\(812\) 10.8541 0.380904
\(813\) 0 0
\(814\) 0 0
\(815\) 2.30495 0.0807389
\(816\) 0 0
\(817\) 0 0
\(818\) −16.3050 −0.570089
\(819\) 0 0
\(820\) 3.14590 0.109860
\(821\) −5.81966 −0.203108 −0.101554 0.994830i \(-0.532381\pi\)
−0.101554 + 0.994830i \(0.532381\pi\)
\(822\) 0 0
\(823\) −26.2492 −0.914990 −0.457495 0.889212i \(-0.651253\pi\)
−0.457495 + 0.889212i \(0.651253\pi\)
\(824\) 28.4164 0.989932
\(825\) 0 0
\(826\) 2.56231 0.0891540
\(827\) −5.11146 −0.177743 −0.0888714 0.996043i \(-0.528326\pi\)
−0.0888714 + 0.996043i \(0.528326\pi\)
\(828\) 0 0
\(829\) 37.6869 1.30892 0.654460 0.756096i \(-0.272896\pi\)
0.654460 + 0.756096i \(0.272896\pi\)
\(830\) 1.41641 0.0491642
\(831\) 0 0
\(832\) 0.236068 0.00818418
\(833\) 4.23607 0.146771
\(834\) 0 0
\(835\) −3.58359 −0.124015
\(836\) 0 0
\(837\) 0 0
\(838\) 9.47214 0.327210
\(839\) −29.0689 −1.00357 −0.501785 0.864993i \(-0.667323\pi\)
−0.501785 + 0.864993i \(0.667323\pi\)
\(840\) 0 0
\(841\) 16.0000 0.551724
\(842\) 1.68692 0.0581350
\(843\) 0 0
\(844\) −8.56231 −0.294727
\(845\) −4.58359 −0.157680
\(846\) 0 0
\(847\) 0 0
\(848\) −14.1246 −0.485041
\(849\) 0 0
\(850\) −12.7082 −0.435888
\(851\) 22.4721 0.770335
\(852\) 0 0
\(853\) 9.20163 0.315058 0.157529 0.987514i \(-0.449647\pi\)
0.157529 + 0.987514i \(0.449647\pi\)
\(854\) −3.56231 −0.121900
\(855\) 0 0
\(856\) 35.2492 1.20479
\(857\) 54.2361 1.85267 0.926334 0.376702i \(-0.122942\pi\)
0.926334 + 0.376702i \(0.122942\pi\)
\(858\) 0 0
\(859\) −41.8328 −1.42732 −0.713659 0.700494i \(-0.752963\pi\)
−0.713659 + 0.700494i \(0.752963\pi\)
\(860\) 0.618034 0.0210748
\(861\) 0 0
\(862\) 23.3607 0.795668
\(863\) −31.3607 −1.06753 −0.533765 0.845633i \(-0.679223\pi\)
−0.533765 + 0.845633i \(0.679223\pi\)
\(864\) 0 0
\(865\) 5.58359 0.189848
\(866\) −1.59675 −0.0542597
\(867\) 0 0
\(868\) 16.5623 0.562161
\(869\) 0 0
\(870\) 0 0
\(871\) 9.23607 0.312952
\(872\) 16.9098 0.572639
\(873\) 0 0
\(874\) 0 0
\(875\) −3.76393 −0.127244
\(876\) 0 0
\(877\) 41.7426 1.40955 0.704774 0.709431i \(-0.251048\pi\)
0.704774 + 0.709431i \(0.251048\pi\)
\(878\) 0.326238 0.0110100
\(879\) 0 0
\(880\) 0 0
\(881\) 11.9443 0.402413 0.201206 0.979549i \(-0.435514\pi\)
0.201206 + 0.979549i \(0.435514\pi\)
\(882\) 0 0
\(883\) −33.0344 −1.11170 −0.555849 0.831283i \(-0.687607\pi\)
−0.555849 + 0.831283i \(0.687607\pi\)
\(884\) 6.85410 0.230528
\(885\) 0 0
\(886\) 22.6525 0.761025
\(887\) 21.4721 0.720964 0.360482 0.932766i \(-0.382612\pi\)
0.360482 + 0.932766i \(0.382612\pi\)
\(888\) 0 0
\(889\) −7.32624 −0.245714
\(890\) 1.50658 0.0505006
\(891\) 0 0
\(892\) 20.5623 0.688477
\(893\) 0 0
\(894\) 0 0
\(895\) 0.854102 0.0285495
\(896\) −11.3820 −0.380245
\(897\) 0 0
\(898\) −9.67376 −0.322818
\(899\) 68.6656 2.29013
\(900\) 0 0
\(901\) −32.2705 −1.07509
\(902\) 0 0
\(903\) 0 0
\(904\) −26.0557 −0.866601
\(905\) −0.0901699 −0.00299735
\(906\) 0 0
\(907\) 18.9787 0.630178 0.315089 0.949062i \(-0.397966\pi\)
0.315089 + 0.949062i \(0.397966\pi\)
\(908\) 30.7082 1.01909
\(909\) 0 0
\(910\) −0.236068 −0.00782558
\(911\) 32.6738 1.08253 0.541265 0.840852i \(-0.317946\pi\)
0.541265 + 0.840852i \(0.317946\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 7.58359 0.250843
\(915\) 0 0
\(916\) 18.9443 0.625936
\(917\) 3.32624 0.109842
\(918\) 0 0
\(919\) −16.5836 −0.547042 −0.273521 0.961866i \(-0.588188\pi\)
−0.273521 + 0.961866i \(0.588188\pi\)
\(920\) −2.76393 −0.0911241
\(921\) 0 0
\(922\) −14.3262 −0.471810
\(923\) −7.47214 −0.245948
\(924\) 0 0
\(925\) −33.7082 −1.10832
\(926\) −22.2016 −0.729591
\(927\) 0 0
\(928\) −37.6869 −1.23713
\(929\) 15.7771 0.517629 0.258815 0.965927i \(-0.416668\pi\)
0.258815 + 0.965927i \(0.416668\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 10.0902 0.330515
\(933\) 0 0
\(934\) −19.7426 −0.645999
\(935\) 0 0
\(936\) 0 0
\(937\) −7.00000 −0.228680 −0.114340 0.993442i \(-0.536475\pi\)
−0.114340 + 0.993442i \(0.536475\pi\)
\(938\) −5.70820 −0.186379
\(939\) 0 0
\(940\) −4.52786 −0.147683
\(941\) 54.1803 1.76623 0.883114 0.469158i \(-0.155442\pi\)
0.883114 + 0.469158i \(0.155442\pi\)
\(942\) 0 0
\(943\) −16.4721 −0.536407
\(944\) 7.68692 0.250188
\(945\) 0 0
\(946\) 0 0
\(947\) 0.618034 0.0200834 0.0100417 0.999950i \(-0.496804\pi\)
0.0100417 + 0.999950i \(0.496804\pi\)
\(948\) 0 0
\(949\) −11.5623 −0.375328
\(950\) 0 0
\(951\) 0 0
\(952\) −9.47214 −0.306994
\(953\) −19.2016 −0.622002 −0.311001 0.950410i \(-0.600664\pi\)
−0.311001 + 0.950410i \(0.600664\pi\)
\(954\) 0 0
\(955\) −3.72949 −0.120683
\(956\) 30.9787 1.00192
\(957\) 0 0
\(958\) −13.2918 −0.429438
\(959\) 3.05573 0.0986746
\(960\) 0 0
\(961\) 73.7771 2.37991
\(962\) −4.29180 −0.138373
\(963\) 0 0
\(964\) 39.9787 1.28763
\(965\) 1.93112 0.0621648
\(966\) 0 0
\(967\) 36.2918 1.16707 0.583533 0.812090i \(-0.301670\pi\)
0.583533 + 0.812090i \(0.301670\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) −4.01316 −0.128855
\(971\) 24.7082 0.792924 0.396462 0.918051i \(-0.370238\pi\)
0.396462 + 0.918051i \(0.370238\pi\)
\(972\) 0 0
\(973\) −17.5623 −0.563022
\(974\) 10.2705 0.329088
\(975\) 0 0
\(976\) −10.6869 −0.342080
\(977\) −33.0000 −1.05576 −0.527882 0.849318i \(-0.677014\pi\)
−0.527882 + 0.849318i \(0.677014\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) −0.618034 −0.0197424
\(981\) 0 0
\(982\) −2.29180 −0.0731342
\(983\) 29.9443 0.955074 0.477537 0.878612i \(-0.341530\pi\)
0.477537 + 0.878612i \(0.341530\pi\)
\(984\) 0 0
\(985\) 3.52786 0.112407
\(986\) −17.5623 −0.559298
\(987\) 0 0
\(988\) 0 0
\(989\) −3.23607 −0.102901
\(990\) 0 0
\(991\) 33.6312 1.06833 0.534165 0.845380i \(-0.320626\pi\)
0.534165 + 0.845380i \(0.320626\pi\)
\(992\) −57.5066 −1.82584
\(993\) 0 0
\(994\) 4.61803 0.146475
\(995\) −2.88854 −0.0915730
\(996\) 0 0
\(997\) 1.41641 0.0448581 0.0224290 0.999748i \(-0.492860\pi\)
0.0224290 + 0.999748i \(0.492860\pi\)
\(998\) −3.09017 −0.0978176
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7623.2.a.ba.1.2 2
3.2 odd 2 2541.2.a.bb.1.1 2
11.5 even 5 693.2.m.b.190.1 4
11.9 even 5 693.2.m.b.631.1 4
11.10 odd 2 7623.2.a.bp.1.1 2
33.5 odd 10 231.2.j.d.190.1 yes 4
33.20 odd 10 231.2.j.d.169.1 4
33.32 even 2 2541.2.a.s.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
231.2.j.d.169.1 4 33.20 odd 10
231.2.j.d.190.1 yes 4 33.5 odd 10
693.2.m.b.190.1 4 11.5 even 5
693.2.m.b.631.1 4 11.9 even 5
2541.2.a.s.1.2 2 33.32 even 2
2541.2.a.bb.1.1 2 3.2 odd 2
7623.2.a.ba.1.2 2 1.1 even 1 trivial
7623.2.a.bp.1.1 2 11.10 odd 2