Properties

Label 693.2.m.b.190.1
Level $693$
Weight $2$
Character 693.190
Analytic conductor $5.534$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [693,2,Mod(64,693)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(693, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 0, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("693.64");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 693 = 3^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 693.m (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.53363286007\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 231)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 190.1
Root \(0.809017 + 0.587785i\) of defining polynomial
Character \(\chi\) \(=\) 693.190
Dual form 693.2.m.b.631.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.363271i) q^{2} +(-0.500000 + 1.53884i) q^{4} +(-0.309017 - 0.224514i) q^{5} +(0.309017 - 0.951057i) q^{7} +(-0.690983 - 2.12663i) q^{8} +0.236068 q^{10} +(-0.309017 - 3.30220i) q^{11} +(0.809017 - 0.587785i) q^{13} +(0.190983 + 0.587785i) q^{14} +(-1.50000 - 1.08981i) q^{16} +(-3.42705 - 2.48990i) q^{17} +(0.500000 - 0.363271i) q^{20} +(1.35410 + 1.53884i) q^{22} +3.23607 q^{23} +(-1.50000 - 4.61653i) q^{25} +(-0.190983 + 0.587785i) q^{26} +(1.30902 + 0.951057i) q^{28} +(-2.07295 + 6.37988i) q^{29} +(8.28115 - 6.01661i) q^{31} +5.61803 q^{32} +2.61803 q^{34} +(-0.309017 + 0.224514i) q^{35} +(2.14590 - 6.60440i) q^{37} +(-0.263932 + 0.812299i) q^{40} +(-1.57295 - 4.84104i) q^{41} -1.00000 q^{43} +(5.23607 + 1.17557i) q^{44} +(-1.61803 + 1.17557i) q^{46} +(2.26393 + 6.96767i) q^{47} +(-0.809017 - 0.587785i) q^{49} +(2.42705 + 1.76336i) q^{50} +(0.500000 + 1.53884i) q^{52} +(6.16312 - 4.47777i) q^{53} +(-0.645898 + 1.08981i) q^{55} -2.23607 q^{56} +(-1.28115 - 3.94298i) q^{58} +(1.28115 - 3.94298i) q^{59} +(4.66312 + 3.38795i) q^{61} +(-1.95492 + 6.01661i) q^{62} +(0.190983 - 0.138757i) q^{64} -0.381966 q^{65} -9.23607 q^{67} +(5.54508 - 4.02874i) q^{68} +(0.0729490 - 0.224514i) q^{70} +(-6.04508 - 4.39201i) q^{71} +(3.57295 - 10.9964i) q^{73} +(1.32624 + 4.08174i) q^{74} +(-3.23607 - 0.726543i) q^{77} +(-8.78115 + 6.37988i) q^{79} +(0.218847 + 0.673542i) q^{80} +(2.54508 + 1.84911i) q^{82} +(-4.85410 - 3.52671i) q^{83} +(0.500000 + 1.53884i) q^{85} +(0.500000 - 0.363271i) q^{86} +(-6.80902 + 2.93893i) q^{88} +6.38197 q^{89} +(-0.309017 - 0.951057i) q^{91} +(-1.61803 + 4.97980i) q^{92} +(-3.66312 - 2.66141i) q^{94} +(13.7533 - 9.99235i) q^{97} +0.618034 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} - 2 q^{4} + q^{5} - q^{7} - 5 q^{8} - 8 q^{10} + q^{11} + q^{13} + 3 q^{14} - 6 q^{16} - 7 q^{17} + 2 q^{20} - 8 q^{22} + 4 q^{23} - 6 q^{25} - 3 q^{26} + 3 q^{28} - 15 q^{29} + 13 q^{31}+ \cdots - 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/693\mathbb{Z}\right)^\times\).

\(n\) \(155\) \(199\) \(442\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{4}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 + 0.363271i −0.353553 + 0.256872i −0.750358 0.661031i \(-0.770119\pi\)
0.396805 + 0.917903i \(0.370119\pi\)
\(3\) 0 0
\(4\) −0.500000 + 1.53884i −0.250000 + 0.769421i
\(5\) −0.309017 0.224514i −0.138197 0.100406i 0.516539 0.856264i \(-0.327220\pi\)
−0.654736 + 0.755858i \(0.727220\pi\)
\(6\) 0 0
\(7\) 0.309017 0.951057i 0.116797 0.359466i
\(8\) −0.690983 2.12663i −0.244299 0.751876i
\(9\) 0 0
\(10\) 0.236068 0.0746512
\(11\) −0.309017 3.30220i −0.0931721 0.995650i
\(12\) 0 0
\(13\) 0.809017 0.587785i 0.224381 0.163022i −0.469916 0.882711i \(-0.655716\pi\)
0.694297 + 0.719689i \(0.255716\pi\)
\(14\) 0.190983 + 0.587785i 0.0510424 + 0.157092i
\(15\) 0 0
\(16\) −1.50000 1.08981i −0.375000 0.272453i
\(17\) −3.42705 2.48990i −0.831182 0.603889i 0.0887115 0.996057i \(-0.471725\pi\)
−0.919893 + 0.392168i \(0.871725\pi\)
\(18\) 0 0
\(19\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(20\) 0.500000 0.363271i 0.111803 0.0812299i
\(21\) 0 0
\(22\) 1.35410 + 1.53884i 0.288696 + 0.328082i
\(23\) 3.23607 0.674767 0.337383 0.941367i \(-0.390458\pi\)
0.337383 + 0.941367i \(0.390458\pi\)
\(24\) 0 0
\(25\) −1.50000 4.61653i −0.300000 0.923305i
\(26\) −0.190983 + 0.587785i −0.0374548 + 0.115274i
\(27\) 0 0
\(28\) 1.30902 + 0.951057i 0.247381 + 0.179733i
\(29\) −2.07295 + 6.37988i −0.384937 + 1.18471i 0.551589 + 0.834116i \(0.314022\pi\)
−0.936526 + 0.350598i \(0.885978\pi\)
\(30\) 0 0
\(31\) 8.28115 6.01661i 1.48734 1.08062i 0.512241 0.858842i \(-0.328816\pi\)
0.975098 0.221773i \(-0.0711844\pi\)
\(32\) 5.61803 0.993137
\(33\) 0 0
\(34\) 2.61803 0.448989
\(35\) −0.309017 + 0.224514i −0.0522334 + 0.0379498i
\(36\) 0 0
\(37\) 2.14590 6.60440i 0.352783 1.08576i −0.604500 0.796605i \(-0.706627\pi\)
0.957284 0.289151i \(-0.0933729\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) −0.263932 + 0.812299i −0.0417313 + 0.128436i
\(41\) −1.57295 4.84104i −0.245653 0.756043i −0.995528 0.0944637i \(-0.969886\pi\)
0.749875 0.661580i \(-0.230114\pi\)
\(42\) 0 0
\(43\) −1.00000 −0.152499 −0.0762493 0.997089i \(-0.524294\pi\)
−0.0762493 + 0.997089i \(0.524294\pi\)
\(44\) 5.23607 + 1.17557i 0.789367 + 0.177224i
\(45\) 0 0
\(46\) −1.61803 + 1.17557i −0.238566 + 0.173328i
\(47\) 2.26393 + 6.96767i 0.330228 + 1.01634i 0.969025 + 0.246963i \(0.0794326\pi\)
−0.638797 + 0.769376i \(0.720567\pi\)
\(48\) 0 0
\(49\) −0.809017 0.587785i −0.115574 0.0839693i
\(50\) 2.42705 + 1.76336i 0.343237 + 0.249376i
\(51\) 0 0
\(52\) 0.500000 + 1.53884i 0.0693375 + 0.213399i
\(53\) 6.16312 4.47777i 0.846569 0.615069i −0.0776285 0.996982i \(-0.524735\pi\)
0.924198 + 0.381914i \(0.124735\pi\)
\(54\) 0 0
\(55\) −0.645898 + 1.08981i −0.0870929 + 0.146950i
\(56\) −2.23607 −0.298807
\(57\) 0 0
\(58\) −1.28115 3.94298i −0.168224 0.517739i
\(59\) 1.28115 3.94298i 0.166792 0.513333i −0.832372 0.554217i \(-0.813018\pi\)
0.999164 + 0.0408847i \(0.0130176\pi\)
\(60\) 0 0
\(61\) 4.66312 + 3.38795i 0.597051 + 0.433783i 0.844831 0.535033i \(-0.179701\pi\)
−0.247780 + 0.968816i \(0.579701\pi\)
\(62\) −1.95492 + 6.01661i −0.248274 + 0.764110i
\(63\) 0 0
\(64\) 0.190983 0.138757i 0.0238729 0.0173447i
\(65\) −0.381966 −0.0473771
\(66\) 0 0
\(67\) −9.23607 −1.12837 −0.564183 0.825650i \(-0.690809\pi\)
−0.564183 + 0.825650i \(0.690809\pi\)
\(68\) 5.54508 4.02874i 0.672440 0.488556i
\(69\) 0 0
\(70\) 0.0729490 0.224514i 0.00871908 0.0268346i
\(71\) −6.04508 4.39201i −0.717420 0.521236i 0.168139 0.985763i \(-0.446224\pi\)
−0.885559 + 0.464527i \(0.846224\pi\)
\(72\) 0 0
\(73\) 3.57295 10.9964i 0.418182 1.28703i −0.491192 0.871052i \(-0.663438\pi\)
0.909374 0.415980i \(-0.136562\pi\)
\(74\) 1.32624 + 4.08174i 0.154172 + 0.474493i
\(75\) 0 0
\(76\) 0 0
\(77\) −3.23607 0.726543i −0.368784 0.0827972i
\(78\) 0 0
\(79\) −8.78115 + 6.37988i −0.987957 + 0.717793i −0.959473 0.281802i \(-0.909068\pi\)
−0.0284842 + 0.999594i \(0.509068\pi\)
\(80\) 0.218847 + 0.673542i 0.0244678 + 0.0753043i
\(81\) 0 0
\(82\) 2.54508 + 1.84911i 0.281058 + 0.204200i
\(83\) −4.85410 3.52671i −0.532807 0.387107i 0.288600 0.957450i \(-0.406810\pi\)
−0.821407 + 0.570343i \(0.806810\pi\)
\(84\) 0 0
\(85\) 0.500000 + 1.53884i 0.0542326 + 0.166911i
\(86\) 0.500000 0.363271i 0.0539164 0.0391725i
\(87\) 0 0
\(88\) −6.80902 + 2.93893i −0.725844 + 0.313291i
\(89\) 6.38197 0.676487 0.338244 0.941059i \(-0.390167\pi\)
0.338244 + 0.941059i \(0.390167\pi\)
\(90\) 0 0
\(91\) −0.309017 0.951057i −0.0323938 0.0996978i
\(92\) −1.61803 + 4.97980i −0.168692 + 0.519180i
\(93\) 0 0
\(94\) −3.66312 2.66141i −0.377822 0.274504i
\(95\) 0 0
\(96\) 0 0
\(97\) 13.7533 9.99235i 1.39643 1.01457i 0.401310 0.915942i \(-0.368555\pi\)
0.995124 0.0986273i \(-0.0314452\pi\)
\(98\) 0.618034 0.0624309
\(99\) 0 0
\(100\) 7.85410 0.785410
\(101\) −3.38197 + 2.45714i −0.336518 + 0.244495i −0.743191 0.669079i \(-0.766689\pi\)
0.406673 + 0.913574i \(0.366689\pi\)
\(102\) 0 0
\(103\) −3.92705 + 12.0862i −0.386944 + 1.19089i 0.548116 + 0.836402i \(0.315345\pi\)
−0.935060 + 0.354489i \(0.884655\pi\)
\(104\) −1.80902 1.31433i −0.177389 0.128880i
\(105\) 0 0
\(106\) −1.45492 + 4.47777i −0.141314 + 0.434919i
\(107\) −4.87132 14.9924i −0.470929 1.44937i −0.851371 0.524564i \(-0.824228\pi\)
0.380442 0.924805i \(-0.375772\pi\)
\(108\) 0 0
\(109\) −7.56231 −0.724338 −0.362169 0.932113i \(-0.617964\pi\)
−0.362169 + 0.932113i \(0.617964\pi\)
\(110\) −0.0729490 0.779543i −0.00695542 0.0743265i
\(111\) 0 0
\(112\) −1.50000 + 1.08981i −0.141737 + 0.102978i
\(113\) 3.60081 + 11.0822i 0.338736 + 1.04252i 0.964852 + 0.262793i \(0.0846435\pi\)
−0.626116 + 0.779730i \(0.715357\pi\)
\(114\) 0 0
\(115\) −1.00000 0.726543i −0.0932505 0.0677504i
\(116\) −8.78115 6.37988i −0.815310 0.592357i
\(117\) 0 0
\(118\) 0.791796 + 2.43690i 0.0728907 + 0.224335i
\(119\) −3.42705 + 2.48990i −0.314157 + 0.228249i
\(120\) 0 0
\(121\) −10.8090 + 2.04087i −0.982638 + 0.185534i
\(122\) −3.56231 −0.322516
\(123\) 0 0
\(124\) 5.11803 + 15.7517i 0.459613 + 1.41454i
\(125\) −1.16312 + 3.57971i −0.104033 + 0.320179i
\(126\) 0 0
\(127\) 5.92705 + 4.30625i 0.525941 + 0.382118i 0.818837 0.574026i \(-0.194619\pi\)
−0.292896 + 0.956144i \(0.594619\pi\)
\(128\) −3.51722 + 10.8249i −0.310881 + 0.956794i
\(129\) 0 0
\(130\) 0.190983 0.138757i 0.0167503 0.0121698i
\(131\) 3.32624 0.290615 0.145307 0.989387i \(-0.453583\pi\)
0.145307 + 0.989387i \(0.453583\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 4.61803 3.35520i 0.398937 0.289845i
\(135\) 0 0
\(136\) −2.92705 + 9.00854i −0.250993 + 0.772476i
\(137\) −2.47214 1.79611i −0.211209 0.153452i 0.477152 0.878821i \(-0.341669\pi\)
−0.688360 + 0.725369i \(0.741669\pi\)
\(138\) 0 0
\(139\) −5.42705 + 16.7027i −0.460316 + 1.41671i 0.404462 + 0.914555i \(0.367459\pi\)
−0.864778 + 0.502154i \(0.832541\pi\)
\(140\) −0.190983 0.587785i −0.0161410 0.0496769i
\(141\) 0 0
\(142\) 4.61803 0.387537
\(143\) −2.19098 2.48990i −0.183219 0.208216i
\(144\) 0 0
\(145\) 2.07295 1.50609i 0.172149 0.125074i
\(146\) 2.20820 + 6.79615i 0.182752 + 0.562454i
\(147\) 0 0
\(148\) 9.09017 + 6.60440i 0.747207 + 0.542878i
\(149\) −10.5902 7.69421i −0.867581 0.630334i 0.0623561 0.998054i \(-0.480139\pi\)
−0.929937 + 0.367720i \(0.880139\pi\)
\(150\) 0 0
\(151\) −6.51722 20.0579i −0.530364 1.63229i −0.753458 0.657495i \(-0.771616\pi\)
0.223095 0.974797i \(-0.428384\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 1.88197 0.812299i 0.151653 0.0654569i
\(155\) −3.90983 −0.314045
\(156\) 0 0
\(157\) −0.517221 1.59184i −0.0412787 0.127043i 0.928293 0.371848i \(-0.121276\pi\)
−0.969572 + 0.244806i \(0.921276\pi\)
\(158\) 2.07295 6.37988i 0.164915 0.507556i
\(159\) 0 0
\(160\) −1.73607 1.26133i −0.137248 0.0997167i
\(161\) 1.00000 3.07768i 0.0788110 0.242555i
\(162\) 0 0
\(163\) −4.88197 + 3.54696i −0.382385 + 0.277819i −0.762328 0.647191i \(-0.775944\pi\)
0.379943 + 0.925010i \(0.375944\pi\)
\(164\) 8.23607 0.643129
\(165\) 0 0
\(166\) 3.70820 0.287812
\(167\) 7.59017 5.51458i 0.587345 0.426731i −0.254020 0.967199i \(-0.581753\pi\)
0.841365 + 0.540468i \(0.181753\pi\)
\(168\) 0 0
\(169\) −3.70820 + 11.4127i −0.285246 + 0.877898i
\(170\) −0.809017 0.587785i −0.0620488 0.0450811i
\(171\) 0 0
\(172\) 0.500000 1.53884i 0.0381246 0.117336i
\(173\) 4.51722 + 13.9026i 0.343438 + 1.05699i 0.962415 + 0.271584i \(0.0875475\pi\)
−0.618977 + 0.785409i \(0.712453\pi\)
\(174\) 0 0
\(175\) −4.85410 −0.366936
\(176\) −3.13525 + 5.29007i −0.236329 + 0.398754i
\(177\) 0 0
\(178\) −3.19098 + 2.31838i −0.239174 + 0.173770i
\(179\) 0.690983 + 2.12663i 0.0516465 + 0.158952i 0.973553 0.228460i \(-0.0733691\pi\)
−0.921907 + 0.387412i \(0.873369\pi\)
\(180\) 0 0
\(181\) 0.190983 + 0.138757i 0.0141957 + 0.0103137i 0.594860 0.803829i \(-0.297207\pi\)
−0.580665 + 0.814143i \(0.697207\pi\)
\(182\) 0.500000 + 0.363271i 0.0370625 + 0.0269275i
\(183\) 0 0
\(184\) −2.23607 6.88191i −0.164845 0.507341i
\(185\) −2.14590 + 1.55909i −0.157770 + 0.114626i
\(186\) 0 0
\(187\) −7.16312 + 12.0862i −0.523819 + 0.883832i
\(188\) −11.8541 −0.864549
\(189\) 0 0
\(190\) 0 0
\(191\) −3.01722 + 9.28605i −0.218318 + 0.671915i 0.780583 + 0.625052i \(0.214922\pi\)
−0.998901 + 0.0468628i \(0.985078\pi\)
\(192\) 0 0
\(193\) −4.09017 2.97168i −0.294417 0.213906i 0.430764 0.902464i \(-0.358244\pi\)
−0.725181 + 0.688558i \(0.758244\pi\)
\(194\) −3.24671 + 9.99235i −0.233100 + 0.717409i
\(195\) 0 0
\(196\) 1.30902 0.951057i 0.0935012 0.0679326i
\(197\) 9.23607 0.658043 0.329021 0.944323i \(-0.393281\pi\)
0.329021 + 0.944323i \(0.393281\pi\)
\(198\) 0 0
\(199\) −7.56231 −0.536078 −0.268039 0.963408i \(-0.586376\pi\)
−0.268039 + 0.963408i \(0.586376\pi\)
\(200\) −8.78115 + 6.37988i −0.620921 + 0.451126i
\(201\) 0 0
\(202\) 0.798374 2.45714i 0.0561734 0.172884i
\(203\) 5.42705 + 3.94298i 0.380904 + 0.276743i
\(204\) 0 0
\(205\) −0.600813 + 1.84911i −0.0419626 + 0.129148i
\(206\) −2.42705 7.46969i −0.169101 0.520438i
\(207\) 0 0
\(208\) −1.85410 −0.128559
\(209\) 0 0
\(210\) 0 0
\(211\) −4.28115 + 3.11044i −0.294727 + 0.214131i −0.725315 0.688417i \(-0.758306\pi\)
0.430589 + 0.902548i \(0.358306\pi\)
\(212\) 3.80902 + 11.7229i 0.261604 + 0.805135i
\(213\) 0 0
\(214\) 7.88197 + 5.72658i 0.538800 + 0.391461i
\(215\) 0.309017 + 0.224514i 0.0210748 + 0.0153117i
\(216\) 0 0
\(217\) −3.16312 9.73508i −0.214727 0.660860i
\(218\) 3.78115 2.74717i 0.256092 0.186062i
\(219\) 0 0
\(220\) −1.35410 1.53884i −0.0912935 0.103749i
\(221\) −4.23607 −0.284949
\(222\) 0 0
\(223\) −3.92705 12.0862i −0.262975 0.809353i −0.992153 0.125029i \(-0.960097\pi\)
0.729178 0.684324i \(-0.239903\pi\)
\(224\) 1.73607 5.34307i 0.115996 0.356999i
\(225\) 0 0
\(226\) −5.82624 4.23301i −0.387556 0.281576i
\(227\) −5.86475 + 18.0498i −0.389257 + 1.19801i 0.544088 + 0.839028i \(0.316876\pi\)
−0.933345 + 0.358981i \(0.883124\pi\)
\(228\) 0 0
\(229\) 9.47214 6.88191i 0.625936 0.454769i −0.229054 0.973414i \(-0.573563\pi\)
0.854990 + 0.518644i \(0.173563\pi\)
\(230\) 0.763932 0.0503722
\(231\) 0 0
\(232\) 15.0000 0.984798
\(233\) 5.04508 3.66547i 0.330515 0.240133i −0.410134 0.912025i \(-0.634518\pi\)
0.740649 + 0.671892i \(0.234518\pi\)
\(234\) 0 0
\(235\) 0.864745 2.66141i 0.0564097 0.173611i
\(236\) 5.42705 + 3.94298i 0.353271 + 0.256666i
\(237\) 0 0
\(238\) 0.809017 2.48990i 0.0524408 0.161396i
\(239\) −5.91641 18.2088i −0.382701 1.17783i −0.938135 0.346271i \(-0.887448\pi\)
0.555434 0.831561i \(-0.312552\pi\)
\(240\) 0 0
\(241\) −24.7082 −1.59160 −0.795798 0.605563i \(-0.792948\pi\)
−0.795798 + 0.605563i \(0.792948\pi\)
\(242\) 4.66312 4.94704i 0.299757 0.318008i
\(243\) 0 0
\(244\) −7.54508 + 5.48183i −0.483025 + 0.350938i
\(245\) 0.118034 + 0.363271i 0.00754091 + 0.0232085i
\(246\) 0 0
\(247\) 0 0
\(248\) −18.5172 13.4535i −1.17584 0.854301i
\(249\) 0 0
\(250\) −0.718847 2.21238i −0.0454639 0.139923i
\(251\) 21.5172 15.6332i 1.35815 0.986757i 0.359595 0.933108i \(-0.382915\pi\)
0.998560 0.0536489i \(-0.0170852\pi\)
\(252\) 0 0
\(253\) −1.00000 10.6861i −0.0628695 0.671832i
\(254\) −4.52786 −0.284103
\(255\) 0 0
\(256\) −2.02786 6.24112i −0.126742 0.390070i
\(257\) −8.32624 + 25.6255i −0.519376 + 1.59848i 0.255799 + 0.966730i \(0.417662\pi\)
−0.775175 + 0.631746i \(0.782338\pi\)
\(258\) 0 0
\(259\) −5.61803 4.08174i −0.349088 0.253627i
\(260\) 0.190983 0.587785i 0.0118443 0.0364529i
\(261\) 0 0
\(262\) −1.66312 + 1.20833i −0.102748 + 0.0746507i
\(263\) −0.708204 −0.0436697 −0.0218349 0.999762i \(-0.506951\pi\)
−0.0218349 + 0.999762i \(0.506951\pi\)
\(264\) 0 0
\(265\) −2.90983 −0.178749
\(266\) 0 0
\(267\) 0 0
\(268\) 4.61803 14.2128i 0.282091 0.868188i
\(269\) 19.3713 + 14.0741i 1.18109 + 0.858112i 0.992294 0.123904i \(-0.0395415\pi\)
0.188796 + 0.982016i \(0.439541\pi\)
\(270\) 0 0
\(271\) −1.98278 + 6.10237i −0.120445 + 0.370692i −0.993044 0.117746i \(-0.962433\pi\)
0.872599 + 0.488438i \(0.162433\pi\)
\(272\) 2.42705 + 7.46969i 0.147162 + 0.452917i
\(273\) 0 0
\(274\) 1.88854 0.114091
\(275\) −14.7812 + 6.37988i −0.891337 + 0.384721i
\(276\) 0 0
\(277\) 20.5623 14.9394i 1.23547 0.897621i 0.238181 0.971221i \(-0.423449\pi\)
0.997288 + 0.0735998i \(0.0234487\pi\)
\(278\) −3.35410 10.3229i −0.201166 0.619124i
\(279\) 0 0
\(280\) 0.690983 + 0.502029i 0.0412941 + 0.0300019i
\(281\) 12.6353 + 9.18005i 0.753756 + 0.547636i 0.896989 0.442053i \(-0.145750\pi\)
−0.143233 + 0.989689i \(0.545750\pi\)
\(282\) 0 0
\(283\) 2.25329 + 6.93491i 0.133944 + 0.412238i 0.995424 0.0955536i \(-0.0304621\pi\)
−0.861480 + 0.507791i \(0.830462\pi\)
\(284\) 9.78115 7.10642i 0.580405 0.421689i
\(285\) 0 0
\(286\) 2.00000 + 0.449028i 0.118262 + 0.0265516i
\(287\) −5.09017 −0.300463
\(288\) 0 0
\(289\) 0.291796 + 0.898056i 0.0171645 + 0.0528268i
\(290\) −0.489357 + 1.50609i −0.0287360 + 0.0884404i
\(291\) 0 0
\(292\) 15.1353 + 10.9964i 0.885724 + 0.643516i
\(293\) 4.09017 12.5882i 0.238950 0.735413i −0.757623 0.652693i \(-0.773639\pi\)
0.996573 0.0827204i \(-0.0263608\pi\)
\(294\) 0 0
\(295\) −1.28115 + 0.930812i −0.0745916 + 0.0541940i
\(296\) −15.5279 −0.902539
\(297\) 0 0
\(298\) 8.09017 0.468651
\(299\) 2.61803 1.90211i 0.151405 0.110002i
\(300\) 0 0
\(301\) −0.309017 + 0.951057i −0.0178114 + 0.0548180i
\(302\) 10.5451 + 7.66145i 0.606801 + 0.440867i
\(303\) 0 0
\(304\) 0 0
\(305\) −0.680340 2.09387i −0.0389561 0.119895i
\(306\) 0 0
\(307\) 19.1803 1.09468 0.547340 0.836910i \(-0.315640\pi\)
0.547340 + 0.836910i \(0.315640\pi\)
\(308\) 2.73607 4.61653i 0.155902 0.263051i
\(309\) 0 0
\(310\) 1.95492 1.42033i 0.111032 0.0806693i
\(311\) −5.19098 15.9762i −0.294354 0.905927i −0.983438 0.181246i \(-0.941987\pi\)
0.689084 0.724681i \(-0.258013\pi\)
\(312\) 0 0
\(313\) 12.7812 + 9.28605i 0.722433 + 0.524879i 0.887161 0.461461i \(-0.152674\pi\)
−0.164727 + 0.986339i \(0.552674\pi\)
\(314\) 0.836881 + 0.608030i 0.0472279 + 0.0343131i
\(315\) 0 0
\(316\) −5.42705 16.7027i −0.305295 0.939603i
\(317\) 20.5172 14.9066i 1.15236 0.837240i 0.163569 0.986532i \(-0.447699\pi\)
0.988793 + 0.149292i \(0.0476994\pi\)
\(318\) 0 0
\(319\) 21.7082 + 4.87380i 1.21543 + 0.272880i
\(320\) −0.0901699 −0.00504065
\(321\) 0 0
\(322\) 0.618034 + 1.90211i 0.0344417 + 0.106001i
\(323\) 0 0
\(324\) 0 0
\(325\) −3.92705 2.85317i −0.217834 0.158265i
\(326\) 1.15248 3.54696i 0.0638297 0.196448i
\(327\) 0 0
\(328\) −9.20820 + 6.69015i −0.508438 + 0.369402i
\(329\) 7.32624 0.403909
\(330\) 0 0
\(331\) −14.7082 −0.808436 −0.404218 0.914663i \(-0.632456\pi\)
−0.404218 + 0.914663i \(0.632456\pi\)
\(332\) 7.85410 5.70634i 0.431050 0.313176i
\(333\) 0 0
\(334\) −1.79180 + 5.51458i −0.0980427 + 0.301744i
\(335\) 2.85410 + 2.07363i 0.155936 + 0.113294i
\(336\) 0 0
\(337\) 0.399187 1.22857i 0.0217451 0.0669245i −0.939595 0.342288i \(-0.888798\pi\)
0.961340 + 0.275363i \(0.0887982\pi\)
\(338\) −2.29180 7.05342i −0.124657 0.383656i
\(339\) 0 0
\(340\) −2.61803 −0.141983
\(341\) −22.4271 25.4868i −1.21449 1.38019i
\(342\) 0 0
\(343\) −0.809017 + 0.587785i −0.0436828 + 0.0317374i
\(344\) 0.690983 + 2.12663i 0.0372553 + 0.114660i
\(345\) 0 0
\(346\) −7.30902 5.31031i −0.392935 0.285484i
\(347\) −20.5623 14.9394i −1.10384 0.801988i −0.122159 0.992510i \(-0.538982\pi\)
−0.981683 + 0.190522i \(0.938982\pi\)
\(348\) 0 0
\(349\) 10.7918 + 33.2137i 0.577672 + 1.77789i 0.626896 + 0.779103i \(0.284325\pi\)
−0.0492248 + 0.998788i \(0.515675\pi\)
\(350\) 2.42705 1.76336i 0.129731 0.0942553i
\(351\) 0 0
\(352\) −1.73607 18.5519i −0.0925327 0.988817i
\(353\) 25.4721 1.35574 0.677872 0.735179i \(-0.262902\pi\)
0.677872 + 0.735179i \(0.262902\pi\)
\(354\) 0 0
\(355\) 0.881966 + 2.71441i 0.0468099 + 0.144066i
\(356\) −3.19098 + 9.82084i −0.169122 + 0.520503i
\(357\) 0 0
\(358\) −1.11803 0.812299i −0.0590899 0.0429313i
\(359\) 10.2639 31.5891i 0.541710 1.66721i −0.186978 0.982364i \(-0.559869\pi\)
0.728687 0.684847i \(-0.240131\pi\)
\(360\) 0 0
\(361\) 15.3713 11.1679i 0.809017 0.587785i
\(362\) −0.145898 −0.00766823
\(363\) 0 0
\(364\) 1.61803 0.0848080
\(365\) −3.57295 + 2.59590i −0.187017 + 0.135876i
\(366\) 0 0
\(367\) 3.48936 10.7391i 0.182143 0.560578i −0.817745 0.575581i \(-0.804776\pi\)
0.999887 + 0.0150030i \(0.00477579\pi\)
\(368\) −4.85410 3.52671i −0.253038 0.183843i
\(369\) 0 0
\(370\) 0.506578 1.55909i 0.0263357 0.0810530i
\(371\) −2.35410 7.24518i −0.122219 0.376151i
\(372\) 0 0
\(373\) 30.1803 1.56268 0.781339 0.624106i \(-0.214537\pi\)
0.781339 + 0.624106i \(0.214537\pi\)
\(374\) −0.809017 8.64527i −0.0418333 0.447036i
\(375\) 0 0
\(376\) 13.2533 9.62908i 0.683486 0.496582i
\(377\) 2.07295 + 6.37988i 0.106762 + 0.328581i
\(378\) 0 0
\(379\) 8.78115 + 6.37988i 0.451058 + 0.327712i 0.790013 0.613090i \(-0.210074\pi\)
−0.338956 + 0.940802i \(0.610074\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −1.86475 5.73910i −0.0954087 0.293638i
\(383\) −6.39919 + 4.64928i −0.326983 + 0.237567i −0.739149 0.673541i \(-0.764772\pi\)
0.412166 + 0.911109i \(0.364772\pi\)
\(384\) 0 0
\(385\) 0.836881 + 0.951057i 0.0426514 + 0.0484703i
\(386\) 3.12461 0.159039
\(387\) 0 0
\(388\) 8.50000 + 26.1603i 0.431522 + 1.32809i
\(389\) −6.38197 + 19.6417i −0.323579 + 0.995872i 0.648500 + 0.761215i \(0.275397\pi\)
−0.972078 + 0.234657i \(0.924603\pi\)
\(390\) 0 0
\(391\) −11.0902 8.05748i −0.560854 0.407484i
\(392\) −0.690983 + 2.12663i −0.0348999 + 0.107411i
\(393\) 0 0
\(394\) −4.61803 + 3.35520i −0.232653 + 0.169032i
\(395\) 4.14590 0.208603
\(396\) 0 0
\(397\) 25.6869 1.28919 0.644595 0.764524i \(-0.277026\pi\)
0.644595 + 0.764524i \(0.277026\pi\)
\(398\) 3.78115 2.74717i 0.189532 0.137703i
\(399\) 0 0
\(400\) −2.78115 + 8.55951i −0.139058 + 0.427975i
\(401\) 9.44427 + 6.86167i 0.471624 + 0.342655i 0.798074 0.602559i \(-0.205852\pi\)
−0.326450 + 0.945215i \(0.605852\pi\)
\(402\) 0 0
\(403\) 3.16312 9.73508i 0.157566 0.484939i
\(404\) −2.09017 6.43288i −0.103990 0.320048i
\(405\) 0 0
\(406\) −4.14590 −0.205757
\(407\) −22.4721 5.04531i −1.11390 0.250087i
\(408\) 0 0
\(409\) 21.3435 15.5069i 1.05537 0.766768i 0.0821406 0.996621i \(-0.473824\pi\)
0.973226 + 0.229852i \(0.0738243\pi\)
\(410\) −0.371323 1.14281i −0.0183383 0.0564396i
\(411\) 0 0
\(412\) −16.6353 12.0862i −0.819560 0.595445i
\(413\) −3.35410 2.43690i −0.165045 0.119912i
\(414\) 0 0
\(415\) 0.708204 + 2.17963i 0.0347644 + 0.106994i
\(416\) 4.54508 3.30220i 0.222841 0.161904i
\(417\) 0 0
\(418\) 0 0
\(419\) 15.3262 0.748736 0.374368 0.927280i \(-0.377860\pi\)
0.374368 + 0.927280i \(0.377860\pi\)
\(420\) 0 0
\(421\) 0.843459 + 2.59590i 0.0411077 + 0.126516i 0.969504 0.245074i \(-0.0788124\pi\)
−0.928397 + 0.371591i \(0.878812\pi\)
\(422\) 1.01064 3.11044i 0.0491973 0.151414i
\(423\) 0 0
\(424\) −13.7812 10.0126i −0.669272 0.486255i
\(425\) −6.35410 + 19.5559i −0.308219 + 0.948601i
\(426\) 0 0
\(427\) 4.66312 3.38795i 0.225664 0.163955i
\(428\) 25.5066 1.23291
\(429\) 0 0
\(430\) −0.236068 −0.0113842
\(431\) −30.5795 + 22.2173i −1.47296 + 1.07017i −0.493223 + 0.869903i \(0.664181\pi\)
−0.979741 + 0.200268i \(0.935819\pi\)
\(432\) 0 0
\(433\) −0.798374 + 2.45714i −0.0383674 + 0.118083i −0.968406 0.249380i \(-0.919773\pi\)
0.930038 + 0.367462i \(0.119773\pi\)
\(434\) 5.11803 + 3.71847i 0.245673 + 0.178492i
\(435\) 0 0
\(436\) 3.78115 11.6372i 0.181084 0.557320i
\(437\) 0 0
\(438\) 0 0
\(439\) 0.527864 0.0251936 0.0125968 0.999921i \(-0.495990\pi\)
0.0125968 + 0.999921i \(0.495990\pi\)
\(440\) 2.76393 + 0.620541i 0.131765 + 0.0295832i
\(441\) 0 0
\(442\) 2.11803 1.53884i 0.100745 0.0731952i
\(443\) 11.3262 + 34.8586i 0.538126 + 1.65618i 0.736796 + 0.676115i \(0.236338\pi\)
−0.198671 + 0.980066i \(0.563662\pi\)
\(444\) 0 0
\(445\) −1.97214 1.43284i −0.0934882 0.0679232i
\(446\) 6.35410 + 4.61653i 0.300875 + 0.218599i
\(447\) 0 0
\(448\) −0.0729490 0.224514i −0.00344652 0.0106073i
\(449\) 12.6631 9.20029i 0.597610 0.434189i −0.247420 0.968908i \(-0.579583\pi\)
0.845030 + 0.534720i \(0.179583\pi\)
\(450\) 0 0
\(451\) −15.5000 + 6.69015i −0.729866 + 0.315027i
\(452\) −18.8541 −0.886822
\(453\) 0 0
\(454\) −3.62461 11.1554i −0.170111 0.523549i
\(455\) −0.118034 + 0.363271i −0.00553352 + 0.0170304i
\(456\) 0 0
\(457\) −9.92705 7.21242i −0.464368 0.337383i 0.330874 0.943675i \(-0.392656\pi\)
−0.795242 + 0.606292i \(0.792656\pi\)
\(458\) −2.23607 + 6.88191i −0.104485 + 0.321571i
\(459\) 0 0
\(460\) 1.61803 1.17557i 0.0754412 0.0548113i
\(461\) −23.1803 −1.07962 −0.539808 0.841788i \(-0.681503\pi\)
−0.539808 + 0.841788i \(0.681503\pi\)
\(462\) 0 0
\(463\) −35.9230 −1.66948 −0.834741 0.550642i \(-0.814383\pi\)
−0.834741 + 0.550642i \(0.814383\pi\)
\(464\) 10.0623 7.31069i 0.467131 0.339390i
\(465\) 0 0
\(466\) −1.19098 + 3.66547i −0.0551712 + 0.169800i
\(467\) 25.8435 + 18.7764i 1.19589 + 0.868867i 0.993874 0.110515i \(-0.0352500\pi\)
0.202018 + 0.979382i \(0.435250\pi\)
\(468\) 0 0
\(469\) −2.85410 + 8.78402i −0.131790 + 0.405608i
\(470\) 0.534442 + 1.64484i 0.0246520 + 0.0758709i
\(471\) 0 0
\(472\) −9.27051 −0.426710
\(473\) 0.309017 + 3.30220i 0.0142086 + 0.151835i
\(474\) 0 0
\(475\) 0 0
\(476\) −2.11803 6.51864i −0.0970799 0.298781i
\(477\) 0 0
\(478\) 9.57295 + 6.95515i 0.437856 + 0.318121i
\(479\) 17.3992 + 12.6412i 0.794989 + 0.577593i 0.909440 0.415836i \(-0.136511\pi\)
−0.114451 + 0.993429i \(0.536511\pi\)
\(480\) 0 0
\(481\) −2.14590 6.60440i −0.0978445 0.301134i
\(482\) 12.3541 8.97578i 0.562714 0.408836i
\(483\) 0 0
\(484\) 2.26393 17.6538i 0.102906 0.802446i
\(485\) −6.49342 −0.294851
\(486\) 0 0
\(487\) 5.13525 + 15.8047i 0.232701 + 0.716179i 0.997418 + 0.0718131i \(0.0228785\pi\)
−0.764717 + 0.644366i \(0.777121\pi\)
\(488\) 3.98278 12.2577i 0.180292 0.554882i
\(489\) 0 0
\(490\) −0.190983 0.138757i −0.00862773 0.00626841i
\(491\) −1.14590 + 3.52671i −0.0517137 + 0.159158i −0.973578 0.228354i \(-0.926666\pi\)
0.921864 + 0.387512i \(0.126666\pi\)
\(492\) 0 0
\(493\) 22.9894 16.7027i 1.03539 0.752254i
\(494\) 0 0
\(495\) 0 0
\(496\) −18.9787 −0.852169
\(497\) −6.04508 + 4.39201i −0.271159 + 0.197009i
\(498\) 0 0
\(499\) −1.54508 + 4.75528i −0.0691675 + 0.212876i −0.979665 0.200638i \(-0.935699\pi\)
0.910498 + 0.413514i \(0.135699\pi\)
\(500\) −4.92705 3.57971i −0.220344 0.160090i
\(501\) 0 0
\(502\) −5.07953 + 15.6332i −0.226710 + 0.697743i
\(503\) 9.98278 + 30.7238i 0.445110 + 1.36991i 0.882363 + 0.470569i \(0.155951\pi\)
−0.437253 + 0.899339i \(0.644049\pi\)
\(504\) 0 0
\(505\) 1.59675 0.0710543
\(506\) 4.38197 + 4.97980i 0.194802 + 0.221379i
\(507\) 0 0
\(508\) −9.59017 + 6.96767i −0.425495 + 0.309140i
\(509\) −12.9271 39.7854i −0.572981 1.76346i −0.642952 0.765907i \(-0.722291\pi\)
0.0699705 0.997549i \(-0.477709\pi\)
\(510\) 0 0
\(511\) −9.35410 6.79615i −0.413801 0.300644i
\(512\) −15.1353 10.9964i −0.668890 0.485977i
\(513\) 0 0
\(514\) −5.14590 15.8374i −0.226976 0.698560i
\(515\) 3.92705 2.85317i 0.173047 0.125726i
\(516\) 0 0
\(517\) 22.3090 9.62908i 0.981149 0.423486i
\(518\) 4.29180 0.188571
\(519\) 0 0
\(520\) 0.263932 + 0.812299i 0.0115742 + 0.0356217i
\(521\) 5.92705 18.2416i 0.259669 0.799178i −0.733205 0.680008i \(-0.761976\pi\)
0.992874 0.119171i \(-0.0380236\pi\)
\(522\) 0 0
\(523\) −16.4271 11.9350i −0.718305 0.521879i 0.167537 0.985866i \(-0.446419\pi\)
−0.885842 + 0.463987i \(0.846419\pi\)
\(524\) −1.66312 + 5.11855i −0.0726537 + 0.223605i
\(525\) 0 0
\(526\) 0.354102 0.257270i 0.0154396 0.0112175i
\(527\) −43.3607 −1.88882
\(528\) 0 0
\(529\) −12.5279 −0.544690
\(530\) 1.45492 1.05706i 0.0631975 0.0459156i
\(531\) 0 0
\(532\) 0 0
\(533\) −4.11803 2.99193i −0.178372 0.129595i
\(534\) 0 0
\(535\) −1.86068 + 5.72658i −0.0804442 + 0.247582i
\(536\) 6.38197 + 19.6417i 0.275659 + 0.848391i
\(537\) 0 0
\(538\) −14.7984 −0.638003
\(539\) −1.69098 + 2.85317i −0.0728358 + 0.122895i
\(540\) 0 0
\(541\) −16.2533 + 11.8087i −0.698783 + 0.507696i −0.879536 0.475833i \(-0.842147\pi\)
0.180752 + 0.983529i \(0.442147\pi\)
\(542\) −1.22542 3.77147i −0.0526365 0.161999i
\(543\) 0 0
\(544\) −19.2533 13.9883i −0.825478 0.599745i
\(545\) 2.33688 + 1.69784i 0.100101 + 0.0727276i
\(546\) 0 0
\(547\) 6.98278 + 21.4908i 0.298562 + 0.918880i 0.982002 + 0.188872i \(0.0604833\pi\)
−0.683440 + 0.730007i \(0.739517\pi\)
\(548\) 4.00000 2.90617i 0.170872 0.124145i
\(549\) 0 0
\(550\) 5.07295 8.55951i 0.216311 0.364979i
\(551\) 0 0
\(552\) 0 0
\(553\) 3.35410 + 10.3229i 0.142631 + 0.438973i
\(554\) −4.85410 + 14.9394i −0.206231 + 0.634714i
\(555\) 0 0
\(556\) −22.9894 16.7027i −0.974966 0.708354i
\(557\) −0.236068 + 0.726543i −0.0100025 + 0.0307846i −0.955933 0.293584i \(-0.905152\pi\)
0.945931 + 0.324369i \(0.105152\pi\)
\(558\) 0 0
\(559\) −0.809017 + 0.587785i −0.0342178 + 0.0248607i
\(560\) 0.708204 0.0299271
\(561\) 0 0
\(562\) −9.65248 −0.407165
\(563\) −36.4615 + 26.4908i −1.53667 + 1.11646i −0.584287 + 0.811547i \(0.698626\pi\)
−0.952382 + 0.304908i \(0.901374\pi\)
\(564\) 0 0
\(565\) 1.37539 4.23301i 0.0578630 0.178084i
\(566\) −3.64590 2.64890i −0.153249 0.111342i
\(567\) 0 0
\(568\) −5.16312 + 15.8904i −0.216640 + 0.666748i
\(569\) −12.0729 37.1567i −0.506124 1.55769i −0.798872 0.601501i \(-0.794570\pi\)
0.292748 0.956190i \(-0.405430\pi\)
\(570\) 0 0
\(571\) 7.00000 0.292941 0.146470 0.989215i \(-0.453209\pi\)
0.146470 + 0.989215i \(0.453209\pi\)
\(572\) 4.92705 2.12663i 0.206010 0.0889187i
\(573\) 0 0
\(574\) 2.54508 1.84911i 0.106230 0.0771805i
\(575\) −4.85410 14.9394i −0.202430 0.623016i
\(576\) 0 0
\(577\) 7.63525 + 5.54734i 0.317860 + 0.230939i 0.735262 0.677783i \(-0.237059\pi\)
−0.417402 + 0.908722i \(0.637059\pi\)
\(578\) −0.472136 0.343027i −0.0196383 0.0142680i
\(579\) 0 0
\(580\) 1.28115 + 3.94298i 0.0531970 + 0.163723i
\(581\) −4.85410 + 3.52671i −0.201382 + 0.146313i
\(582\) 0 0
\(583\) −16.6910 18.9681i −0.691270 0.785580i
\(584\) −25.8541 −1.06985
\(585\) 0 0
\(586\) 2.52786 + 7.77997i 0.104425 + 0.321387i
\(587\) −11.0902 + 34.1320i −0.457740 + 1.40878i 0.410147 + 0.912019i \(0.365477\pi\)
−0.867888 + 0.496761i \(0.834523\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0.302439 0.930812i 0.0124512 0.0383209i
\(591\) 0 0
\(592\) −10.4164 + 7.56796i −0.428112 + 0.311041i
\(593\) 23.8885 0.980985 0.490492 0.871445i \(-0.336817\pi\)
0.490492 + 0.871445i \(0.336817\pi\)
\(594\) 0 0
\(595\) 1.61803 0.0663329
\(596\) 17.1353 12.4495i 0.701887 0.509951i
\(597\) 0 0
\(598\) −0.618034 + 1.90211i −0.0252733 + 0.0777832i
\(599\) 25.4894 + 18.5191i 1.04147 + 0.756670i 0.970571 0.240814i \(-0.0774143\pi\)
0.0708955 + 0.997484i \(0.477414\pi\)
\(600\) 0 0
\(601\) −4.58359 + 14.1068i −0.186969 + 0.575430i −0.999977 0.00682211i \(-0.997828\pi\)
0.813008 + 0.582252i \(0.197828\pi\)
\(602\) −0.190983 0.587785i −0.00778389 0.0239563i
\(603\) 0 0
\(604\) 34.1246 1.38851
\(605\) 3.79837 + 1.79611i 0.154426 + 0.0730223i
\(606\) 0 0
\(607\) 13.0623 9.49032i 0.530183 0.385200i −0.290243 0.956953i \(-0.593736\pi\)
0.820426 + 0.571753i \(0.193736\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 1.10081 + 0.799788i 0.0445706 + 0.0323824i
\(611\) 5.92705 + 4.30625i 0.239783 + 0.174212i
\(612\) 0 0
\(613\) 10.6459 + 32.7647i 0.429984 + 1.32335i 0.898141 + 0.439709i \(0.144918\pi\)
−0.468157 + 0.883645i \(0.655082\pi\)
\(614\) −9.59017 + 6.96767i −0.387028 + 0.281192i
\(615\) 0 0
\(616\) 0.690983 + 7.38394i 0.0278405 + 0.297507i
\(617\) 10.0902 0.406215 0.203107 0.979156i \(-0.434896\pi\)
0.203107 + 0.979156i \(0.434896\pi\)
\(618\) 0 0
\(619\) 10.8541 + 33.4055i 0.436263 + 1.34268i 0.891787 + 0.452456i \(0.149452\pi\)
−0.455523 + 0.890224i \(0.650548\pi\)
\(620\) 1.95492 6.01661i 0.0785113 0.241633i
\(621\) 0 0
\(622\) 8.39919 + 6.10237i 0.336777 + 0.244683i
\(623\) 1.97214 6.06961i 0.0790120 0.243174i
\(624\) 0 0
\(625\) −18.4721 + 13.4208i −0.738885 + 0.536832i
\(626\) −9.76393 −0.390245
\(627\) 0 0
\(628\) 2.70820 0.108069
\(629\) −23.7984 + 17.2905i −0.948903 + 0.689419i
\(630\) 0 0
\(631\) −2.83688 + 8.73102i −0.112934 + 0.347577i −0.991511 0.130026i \(-0.958494\pi\)
0.878576 + 0.477602i \(0.158494\pi\)
\(632\) 19.6353 + 14.2658i 0.781049 + 0.567465i
\(633\) 0 0
\(634\) −4.84346 + 14.9066i −0.192358 + 0.592018i
\(635\) −0.864745 2.66141i −0.0343164 0.105615i
\(636\) 0 0
\(637\) −1.00000 −0.0396214
\(638\) −12.6246 + 5.44907i −0.499813 + 0.215731i
\(639\) 0 0
\(640\) 3.51722 2.55541i 0.139030 0.101011i
\(641\) −8.64590 26.6093i −0.341492 1.05101i −0.963435 0.267943i \(-0.913656\pi\)
0.621942 0.783063i \(-0.286344\pi\)
\(642\) 0 0
\(643\) 12.9443 + 9.40456i 0.510472 + 0.370880i 0.813003 0.582260i \(-0.197831\pi\)
−0.302530 + 0.953140i \(0.597831\pi\)
\(644\) 4.23607 + 3.07768i 0.166924 + 0.121278i
\(645\) 0 0
\(646\) 0 0
\(647\) 1.89919 1.37984i 0.0746647 0.0542471i −0.549827 0.835279i \(-0.685306\pi\)
0.624491 + 0.781032i \(0.285306\pi\)
\(648\) 0 0
\(649\) −13.4164 3.01217i −0.526640 0.118238i
\(650\) 3.00000 0.117670
\(651\) 0 0
\(652\) −3.01722 9.28605i −0.118163 0.363670i
\(653\) −0.218847 + 0.673542i −0.00856415 + 0.0263577i −0.955247 0.295808i \(-0.904411\pi\)
0.946683 + 0.322166i \(0.104411\pi\)
\(654\) 0 0
\(655\) −1.02786 0.746787i −0.0401620 0.0291794i
\(656\) −2.91641 + 8.97578i −0.113867 + 0.350445i
\(657\) 0 0
\(658\) −3.66312 + 2.66141i −0.142803 + 0.103753i
\(659\) −41.8328 −1.62958 −0.814788 0.579760i \(-0.803146\pi\)
−0.814788 + 0.579760i \(0.803146\pi\)
\(660\) 0 0
\(661\) −3.00000 −0.116686 −0.0583432 0.998297i \(-0.518582\pi\)
−0.0583432 + 0.998297i \(0.518582\pi\)
\(662\) 7.35410 5.34307i 0.285825 0.207664i
\(663\) 0 0
\(664\) −4.14590 + 12.7598i −0.160892 + 0.495175i
\(665\) 0 0
\(666\) 0 0
\(667\) −6.70820 + 20.6457i −0.259743 + 0.799406i
\(668\) 4.69098 + 14.4374i 0.181500 + 0.558598i
\(669\) 0 0
\(670\) −2.18034 −0.0842339
\(671\) 9.74671 16.4455i 0.376268 0.634871i
\(672\) 0 0
\(673\) 6.13525 4.45752i 0.236497 0.171825i −0.463224 0.886241i \(-0.653308\pi\)
0.699721 + 0.714416i \(0.253308\pi\)
\(674\) 0.246711 + 0.759299i 0.00950296 + 0.0292471i
\(675\) 0 0
\(676\) −15.7082 11.4127i −0.604162 0.438949i
\(677\) 18.9721 + 13.7841i 0.729158 + 0.529765i 0.889297 0.457330i \(-0.151194\pi\)
−0.160139 + 0.987095i \(0.551194\pi\)
\(678\) 0 0
\(679\) −5.25329 16.1680i −0.201603 0.620469i
\(680\) 2.92705 2.12663i 0.112247 0.0815524i
\(681\) 0 0
\(682\) 20.4721 + 4.59628i 0.783919 + 0.176001i
\(683\) 32.3050 1.23611 0.618057 0.786133i \(-0.287920\pi\)
0.618057 + 0.786133i \(0.287920\pi\)
\(684\) 0 0
\(685\) 0.360680 + 1.11006i 0.0137809 + 0.0424131i
\(686\) 0.190983 0.587785i 0.00729177 0.0224417i
\(687\) 0 0
\(688\) 1.50000 + 1.08981i 0.0571870 + 0.0415488i
\(689\) 2.35410 7.24518i 0.0896841 0.276019i
\(690\) 0 0
\(691\) −11.7812 + 8.55951i −0.448176 + 0.325619i −0.788875 0.614553i \(-0.789336\pi\)
0.340699 + 0.940172i \(0.389336\pi\)
\(692\) −23.6525 −0.899132
\(693\) 0 0
\(694\) 15.7082 0.596275
\(695\) 5.42705 3.94298i 0.205860 0.149566i
\(696\) 0 0
\(697\) −6.66312 + 20.5070i −0.252384 + 0.776757i
\(698\) −17.4615 12.6865i −0.660927 0.480192i
\(699\) 0 0
\(700\) 2.42705 7.46969i 0.0917339 0.282328i
\(701\) −8.34346 25.6785i −0.315128 0.969865i −0.975702 0.219103i \(-0.929687\pi\)
0.660574 0.750761i \(-0.270313\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) −0.517221 0.587785i −0.0194935 0.0221530i
\(705\) 0 0
\(706\) −12.7361 + 9.25330i −0.479328 + 0.348252i
\(707\) 1.29180 + 3.97574i 0.0485830 + 0.149523i
\(708\) 0 0
\(709\) 40.9787 + 29.7728i 1.53899 + 1.11814i 0.950966 + 0.309295i \(0.100093\pi\)
0.588022 + 0.808845i \(0.299907\pi\)
\(710\) −1.42705 1.03681i −0.0535563 0.0389109i
\(711\) 0 0
\(712\) −4.40983 13.5721i −0.165265 0.508635i
\(713\) 26.7984 19.4702i 1.00361 0.729163i
\(714\) 0 0
\(715\) 0.118034 + 1.26133i 0.00441422 + 0.0471710i
\(716\) −3.61803 −0.135212
\(717\) 0 0
\(718\) 6.34346 + 19.5232i 0.236736 + 0.728598i
\(719\) 2.66312 8.19624i 0.0993176 0.305668i −0.889037 0.457835i \(-0.848625\pi\)
0.988355 + 0.152167i \(0.0486251\pi\)
\(720\) 0 0
\(721\) 10.2812 + 7.46969i 0.382890 + 0.278186i
\(722\) −3.62868 + 11.1679i −0.135045 + 0.415627i
\(723\) 0 0
\(724\) −0.309017 + 0.224514i −0.0114845 + 0.00834400i
\(725\) 32.5623 1.20933
\(726\) 0 0
\(727\) 22.1459 0.821346 0.410673 0.911783i \(-0.365294\pi\)
0.410673 + 0.911783i \(0.365294\pi\)
\(728\) −1.80902 + 1.31433i −0.0670466 + 0.0487122i
\(729\) 0 0
\(730\) 0.843459 2.59590i 0.0312178 0.0960785i
\(731\) 3.42705 + 2.48990i 0.126754 + 0.0920922i
\(732\) 0 0
\(733\) 1.27458 3.92274i 0.0470775 0.144890i −0.924755 0.380564i \(-0.875730\pi\)
0.971832 + 0.235674i \(0.0757299\pi\)
\(734\) 2.15654 + 6.63715i 0.0795994 + 0.244982i
\(735\) 0 0
\(736\) 18.1803 0.670136
\(737\) 2.85410 + 30.4993i 0.105132 + 1.12346i
\(738\) 0 0
\(739\) −34.5344 + 25.0907i −1.27037 + 0.922978i −0.999217 0.0395585i \(-0.987405\pi\)
−0.271153 + 0.962536i \(0.587405\pi\)
\(740\) −1.32624 4.08174i −0.0487535 0.150048i
\(741\) 0 0
\(742\) 3.80902 + 2.76741i 0.139833 + 0.101595i
\(743\) 20.9615 + 15.2294i 0.769003 + 0.558713i 0.901658 0.432449i \(-0.142350\pi\)
−0.132656 + 0.991162i \(0.542350\pi\)
\(744\) 0 0
\(745\) 1.54508 + 4.75528i 0.0566075 + 0.174220i
\(746\) −15.0902 + 10.9637i −0.552490 + 0.401408i
\(747\) 0 0
\(748\) −15.0172 17.0660i −0.549084 0.623995i
\(749\) −15.7639 −0.576002
\(750\) 0 0
\(751\) −8.91641 27.4419i −0.325364 1.00137i −0.971276 0.237956i \(-0.923523\pi\)
0.645912 0.763412i \(-0.276477\pi\)
\(752\) 4.19756 12.9188i 0.153069 0.471099i
\(753\) 0 0
\(754\) −3.35410 2.43690i −0.122149 0.0887466i
\(755\) −2.48936 + 7.66145i −0.0905970 + 0.278829i
\(756\) 0 0
\(757\) −36.5967 + 26.5891i −1.33013 + 0.966397i −0.330386 + 0.943846i \(0.607179\pi\)
−0.999746 + 0.0225510i \(0.992821\pi\)
\(758\) −6.70820 −0.243653
\(759\) 0 0
\(760\) 0 0
\(761\) 0.0729490 0.0530006i 0.00264440 0.00192127i −0.586462 0.809977i \(-0.699480\pi\)
0.589107 + 0.808055i \(0.299480\pi\)
\(762\) 0 0
\(763\) −2.33688 + 7.19218i −0.0846008 + 0.260374i
\(764\) −12.7812 9.28605i −0.462406 0.335958i
\(765\) 0 0
\(766\) 1.51064 4.64928i 0.0545818 0.167985i
\(767\) −1.28115 3.94298i −0.0462598 0.142373i
\(768\) 0 0
\(769\) 44.4721 1.60371 0.801853 0.597521i \(-0.203848\pi\)
0.801853 + 0.597521i \(0.203848\pi\)
\(770\) −0.763932 0.171513i −0.0275302 0.00618091i
\(771\) 0 0
\(772\) 6.61803 4.80828i 0.238188 0.173054i
\(773\) −3.27051 10.0656i −0.117632 0.362034i 0.874855 0.484385i \(-0.160957\pi\)
−0.992487 + 0.122351i \(0.960957\pi\)
\(774\) 0 0
\(775\) −40.1976 29.2052i −1.44394 1.04908i
\(776\) −30.7533 22.3436i −1.10398 0.802088i
\(777\) 0 0
\(778\) −3.94427 12.1392i −0.141409 0.435212i
\(779\) 0 0
\(780\) 0 0
\(781\) −12.6353 + 21.3193i −0.452125 + 0.762863i
\(782\) 8.47214 0.302963
\(783\) 0 0
\(784\) 0.572949 + 1.76336i 0.0204625 + 0.0629770i
\(785\) −0.197561 + 0.608030i −0.00705125 + 0.0217015i
\(786\) 0 0
\(787\) 26.5795 + 19.3112i 0.947458 + 0.688368i 0.950204 0.311628i \(-0.100874\pi\)
−0.00274643 + 0.999996i \(0.500874\pi\)
\(788\) −4.61803 + 14.2128i −0.164511 + 0.506312i
\(789\) 0 0
\(790\) −2.07295 + 1.50609i −0.0737522 + 0.0535841i
\(791\) 11.6525 0.414314
\(792\) 0 0
\(793\) 5.76393 0.204683
\(794\) −12.8435 + 9.33132i −0.455797 + 0.331156i
\(795\) 0 0
\(796\) 3.78115 11.6372i 0.134019 0.412469i
\(797\) −26.2533 19.0741i −0.929939 0.675640i 0.0160387 0.999871i \(-0.494894\pi\)
−0.945978 + 0.324231i \(0.894894\pi\)
\(798\) 0 0
\(799\) 9.59017 29.5155i 0.339276 1.04418i
\(800\) −8.42705 25.9358i −0.297941 0.916969i
\(801\) 0 0
\(802\) −7.21478 −0.254763
\(803\) −37.4164 8.40051i −1.32040 0.296447i
\(804\) 0 0
\(805\) −1.00000 + 0.726543i −0.0352454 + 0.0256073i
\(806\) 1.95492 + 6.01661i 0.0688589 + 0.211926i
\(807\) 0 0
\(808\) 7.56231 + 5.49434i 0.266041 + 0.193290i
\(809\) 25.0623 + 18.2088i 0.881144 + 0.640188i 0.933554 0.358437i \(-0.116690\pi\)
−0.0524101 + 0.998626i \(0.516690\pi\)
\(810\) 0 0
\(811\) −7.14590 21.9928i −0.250926 0.772272i −0.994605 0.103735i \(-0.966921\pi\)
0.743679 0.668537i \(-0.233079\pi\)
\(812\) −8.78115 + 6.37988i −0.308158 + 0.223890i
\(813\) 0 0
\(814\) 13.0689 5.64083i 0.458064 0.197711i
\(815\) 2.30495 0.0807389
\(816\) 0 0
\(817\) 0 0
\(818\) −5.03851 + 15.5069i −0.176167 + 0.542187i
\(819\) 0 0
\(820\) −2.54508 1.84911i −0.0888782 0.0645738i
\(821\) −1.79837 + 5.53483i −0.0627637 + 0.193167i −0.977521 0.210836i \(-0.932381\pi\)
0.914758 + 0.404003i \(0.132381\pi\)
\(822\) 0 0
\(823\) 21.2361 15.4289i 0.740243 0.537818i −0.152544 0.988297i \(-0.548747\pi\)
0.892787 + 0.450479i \(0.148747\pi\)
\(824\) 28.4164 0.989932
\(825\) 0 0
\(826\) 2.56231 0.0891540
\(827\) 4.13525 3.00444i 0.143797 0.104475i −0.513561 0.858053i \(-0.671674\pi\)
0.657358 + 0.753579i \(0.271674\pi\)
\(828\) 0 0
\(829\) 11.6459 35.8424i 0.404479 1.24486i −0.516851 0.856075i \(-0.672896\pi\)
0.921330 0.388782i \(-0.127104\pi\)
\(830\) −1.14590 0.832544i −0.0397747 0.0288980i
\(831\) 0 0
\(832\) 0.0729490 0.224514i 0.00252905 0.00778362i
\(833\) 1.30902 + 4.02874i 0.0453548 + 0.139588i
\(834\) 0 0
\(835\) −3.58359 −0.124015
\(836\) 0 0
\(837\) 0 0
\(838\) −7.66312 + 5.56758i −0.264718 + 0.192329i
\(839\) −8.98278 27.6462i −0.310120 0.954451i −0.977717 0.209928i \(-0.932677\pi\)
0.667597 0.744523i \(-0.267323\pi\)
\(840\) 0 0
\(841\) −12.9443 9.40456i −0.446354 0.324295i
\(842\) −1.36475 0.991545i −0.0470322 0.0341709i
\(843\) 0 0
\(844\) −2.64590 8.14324i −0.0910756 0.280302i
\(845\) 3.70820 2.69417i 0.127566 0.0926822i
\(846\) 0 0
\(847\) −1.39919 + 10.9106i −0.0480766 + 0.374894i
\(848\) −14.1246 −0.485041
\(849\) 0 0
\(850\) −3.92705 12.0862i −0.134697 0.414554i
\(851\) 6.94427 21.3723i 0.238047 0.732632i
\(852\) 0 0
\(853\) −7.44427 5.40858i −0.254887 0.185186i 0.453003 0.891509i \(-0.350353\pi\)
−0.707890 + 0.706323i \(0.750353\pi\)
\(854\) −1.10081 + 3.38795i −0.0376690 + 0.115933i
\(855\) 0 0
\(856\) −28.5172 + 20.7190i −0.974699 + 0.708160i
\(857\) 54.2361 1.85267 0.926334 0.376702i \(-0.122942\pi\)
0.926334 + 0.376702i \(0.122942\pi\)
\(858\) 0 0
\(859\) −41.8328 −1.42732 −0.713659 0.700494i \(-0.752963\pi\)
−0.713659 + 0.700494i \(0.752963\pi\)
\(860\) −0.500000 + 0.363271i −0.0170499 + 0.0123874i
\(861\) 0 0
\(862\) 7.21885 22.2173i 0.245875 0.756725i
\(863\) 25.3713 + 18.4333i 0.863650 + 0.627478i 0.928875 0.370392i \(-0.120777\pi\)
−0.0652256 + 0.997871i \(0.520777\pi\)
\(864\) 0 0
\(865\) 1.72542 5.31031i 0.0586662 0.180556i
\(866\) −0.493422 1.51860i −0.0167672 0.0516040i
\(867\) 0 0
\(868\) 16.5623 0.562161
\(869\) 23.7812 + 27.0256i 0.806720 + 0.916781i
\(870\) 0 0
\(871\) −7.47214 + 5.42882i −0.253184 + 0.183949i
\(872\) 5.22542 + 16.0822i 0.176955 + 0.544612i
\(873\) 0 0
\(874\) 0 0
\(875\) 3.04508 + 2.21238i 0.102943 + 0.0747922i
\(876\) 0 0
\(877\) 12.8992 + 39.6996i 0.435575 + 1.34056i 0.892497 + 0.451054i \(0.148952\pi\)
−0.456922 + 0.889507i \(0.651048\pi\)
\(878\) −0.263932 + 0.191758i −0.00890727 + 0.00647151i
\(879\) 0 0
\(880\) 2.15654 0.930812i 0.0726970 0.0313777i
\(881\) 11.9443 0.402413 0.201206 0.979549i \(-0.435514\pi\)
0.201206 + 0.979549i \(0.435514\pi\)
\(882\) 0 0
\(883\) −10.2082 31.4176i −0.343533 1.05729i −0.962364 0.271763i \(-0.912393\pi\)
0.618831 0.785524i \(-0.287607\pi\)
\(884\) 2.11803 6.51864i 0.0712372 0.219246i
\(885\) 0 0
\(886\) −18.3262 13.3148i −0.615682 0.447319i
\(887\) 6.63525 20.4212i 0.222790 0.685677i −0.775718 0.631079i \(-0.782612\pi\)
0.998508 0.0545980i \(-0.0173877\pi\)
\(888\) 0 0
\(889\) 5.92705 4.30625i 0.198787 0.144427i
\(890\) 1.50658 0.0505006
\(891\) 0 0
\(892\) 20.5623 0.688477
\(893\) 0 0
\(894\) 0 0
\(895\) 0.263932 0.812299i 0.00882227 0.0271522i
\(896\) 9.20820 + 6.69015i 0.307625 + 0.223502i
\(897\) 0 0
\(898\) −2.98936 + 9.20029i −0.0997561 + 0.307018i
\(899\) 21.2188 + 65.3049i 0.707688 + 2.17804i
\(900\) 0 0
\(901\) −32.2705 −1.07509
\(902\) 5.31966 8.97578i 0.177125 0.298861i
\(903\) 0 0
\(904\) 21.0795 15.3152i 0.701095 0.509375i
\(905\) −0.0278640 0.0857567i −0.000926232 0.00285065i
\(906\) 0 0
\(907\) −15.3541 11.1554i −0.509825 0.370409i 0.302932 0.953012i \(-0.402034\pi\)
−0.812757 + 0.582603i \(0.802034\pi\)
\(908\) −24.8435 18.0498i −0.824459 0.599005i
\(909\) 0 0
\(910\) −0.0729490 0.224514i −0.00241824 0.00744257i
\(911\) −26.4336 + 19.2052i −0.875785 + 0.636295i −0.932133 0.362116i \(-0.882054\pi\)
0.0563478 + 0.998411i \(0.482054\pi\)
\(912\) 0 0
\(913\) −10.1459 + 17.1190i −0.335780 + 0.566557i
\(914\) 7.58359 0.250843
\(915\) 0 0
\(916\) 5.85410 + 18.0171i 0.193425 + 0.595301i
\(917\) 1.02786 3.16344i 0.0339431 0.104466i
\(918\) 0 0
\(919\) 13.4164 + 9.74759i 0.442566 + 0.321543i 0.786654 0.617394i \(-0.211812\pi\)
−0.344087 + 0.938938i \(0.611812\pi\)
\(920\) −0.854102 + 2.62866i −0.0281589 + 0.0866642i
\(921\) 0 0
\(922\) 11.5902 8.42075i 0.381702 0.277323i
\(923\) −7.47214 −0.245948
\(924\) 0 0
\(925\) −33.7082 −1.10832
\(926\) 17.9615 13.0498i 0.590251 0.428843i
\(927\) 0 0
\(928\) −11.6459 + 35.8424i −0.382295 + 1.17658i
\(929\) −12.7639 9.27354i −0.418771 0.304255i 0.358372 0.933579i \(-0.383332\pi\)
−0.777143 + 0.629324i \(0.783332\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 3.11803 + 9.59632i 0.102135 + 0.314338i
\(933\) 0 0
\(934\) −19.7426 −0.645999
\(935\) 4.92705 2.12663i 0.161132 0.0695481i
\(936\) 0 0
\(937\) 5.66312 4.11450i 0.185006 0.134415i −0.491427 0.870919i \(-0.663525\pi\)
0.676433 + 0.736504i \(0.263525\pi\)
\(938\) −1.76393 5.42882i −0.0575944 0.177257i
\(939\) 0 0
\(940\) 3.66312 + 2.66141i 0.119478 + 0.0868057i
\(941\) −43.8328 31.8464i −1.42891 1.03816i −0.990219 0.139525i \(-0.955442\pi\)
−0.438690 0.898638i \(-0.644558\pi\)
\(942\) 0 0
\(943\) −5.09017 15.6659i −0.165759 0.510153i
\(944\) −6.21885 + 4.51826i −0.202406 + 0.147057i
\(945\) 0 0
\(946\) −1.35410 1.53884i −0.0440257 0.0500321i
\(947\) 0.618034 0.0200834 0.0100417 0.999950i \(-0.496804\pi\)
0.0100417 + 0.999950i \(0.496804\pi\)
\(948\) 0 0
\(949\) −3.57295 10.9964i −0.115983 0.356958i
\(950\) 0 0
\(951\) 0 0
\(952\) 7.66312 + 5.56758i 0.248363 + 0.180446i
\(953\) −5.93363 + 18.2618i −0.192209 + 0.591559i 0.807789 + 0.589472i \(0.200664\pi\)
−0.999998 + 0.00208665i \(0.999336\pi\)
\(954\) 0 0
\(955\) 3.01722 2.19214i 0.0976350 0.0709360i
\(956\) 30.9787 1.00192
\(957\) 0 0
\(958\) −13.2918 −0.429438
\(959\) −2.47214 + 1.79611i −0.0798294 + 0.0579995i
\(960\) 0 0
\(961\) 22.7984 70.1662i 0.735431 2.26343i
\(962\) 3.47214 + 2.52265i 0.111946 + 0.0813336i
\(963\) 0 0
\(964\) 12.3541 38.0220i 0.397899 1.22461i
\(965\) 0.596748 + 1.83660i 0.0192100 + 0.0591223i
\(966\) 0 0
\(967\) 36.2918 1.16707 0.583533 0.812090i \(-0.301670\pi\)
0.583533 + 0.812090i \(0.301670\pi\)
\(968\) 11.8090 + 21.5765i 0.379556 + 0.693496i
\(969\) 0 0
\(970\) 3.24671 2.35887i 0.104246 0.0757389i
\(971\) 7.63525 + 23.4989i 0.245027 + 0.754116i 0.995632 + 0.0933644i \(0.0297621\pi\)
−0.750605 + 0.660751i \(0.770238\pi\)
\(972\) 0 0
\(973\) 14.2082 + 10.3229i 0.455494 + 0.330936i
\(974\) −8.30902 6.03685i −0.266238 0.193433i
\(975\) 0 0
\(976\) −3.30244 10.1639i −0.105709 0.325337i
\(977\) 26.6976 19.3969i 0.854131 0.620562i −0.0721512 0.997394i \(-0.522986\pi\)
0.926282 + 0.376831i \(0.122986\pi\)
\(978\) 0 0
\(979\) −1.97214 21.0745i −0.0630297 0.673544i
\(980\) −0.618034 −0.0197424
\(981\) 0 0
\(982\) −0.708204 2.17963i −0.0225997 0.0695547i
\(983\) 9.25329 28.4787i 0.295134 0.908329i −0.688042 0.725671i \(-0.741530\pi\)
0.983176 0.182659i \(-0.0584703\pi\)
\(984\) 0 0
\(985\) −2.85410 2.07363i −0.0909393 0.0660712i
\(986\) −5.42705 + 16.7027i −0.172833 + 0.531924i
\(987\) 0 0
\(988\) 0 0
\(989\) −3.23607 −0.102901
\(990\) 0 0
\(991\) 33.6312 1.06833 0.534165 0.845380i \(-0.320626\pi\)
0.534165 + 0.845380i \(0.320626\pi\)
\(992\) 46.5238 33.8015i 1.47713 1.07320i
\(993\) 0 0
\(994\) 1.42705 4.39201i 0.0452633 0.139306i
\(995\) 2.33688 + 1.69784i 0.0740841 + 0.0538253i
\(996\) 0 0
\(997\) 0.437694 1.34708i 0.0138619 0.0426626i −0.943886 0.330271i \(-0.892860\pi\)
0.957748 + 0.287608i \(0.0928600\pi\)
\(998\) −0.954915 2.93893i −0.0302273 0.0930301i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 693.2.m.b.190.1 4
3.2 odd 2 231.2.j.d.190.1 yes 4
11.2 odd 10 7623.2.a.bp.1.1 2
11.4 even 5 inner 693.2.m.b.631.1 4
11.9 even 5 7623.2.a.ba.1.2 2
33.2 even 10 2541.2.a.s.1.2 2
33.20 odd 10 2541.2.a.bb.1.1 2
33.26 odd 10 231.2.j.d.169.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
231.2.j.d.169.1 4 33.26 odd 10
231.2.j.d.190.1 yes 4 3.2 odd 2
693.2.m.b.190.1 4 1.1 even 1 trivial
693.2.m.b.631.1 4 11.4 even 5 inner
2541.2.a.s.1.2 2 33.2 even 10
2541.2.a.bb.1.1 2 33.20 odd 10
7623.2.a.ba.1.2 2 11.9 even 5
7623.2.a.bp.1.1 2 11.2 odd 10