Properties

Label 2-765-1.1-c1-0-7
Degree $2$
Conductor $765$
Sign $1$
Analytic cond. $6.10855$
Root an. cond. $2.47154$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.523·2-s − 1.72·4-s + 5-s − 3.20·7-s − 1.95·8-s + 0.523·10-s + 5.20·11-s + 2·13-s − 1.67·14-s + 2.42·16-s − 17-s + 7.20·19-s − 1.72·20-s + 2.72·22-s + 25-s + 1.04·26-s + 5.52·28-s − 0.249·29-s + 6.40·31-s + 5.17·32-s − 0.523·34-s − 3.20·35-s + 2.24·37-s + 3.77·38-s − 1.95·40-s + 10.6·41-s + 4.09·43-s + ⋯
L(s)  = 1  + 0.370·2-s − 0.862·4-s + 0.447·5-s − 1.21·7-s − 0.690·8-s + 0.165·10-s + 1.56·11-s + 0.554·13-s − 0.448·14-s + 0.607·16-s − 0.242·17-s + 1.65·19-s − 0.385·20-s + 0.581·22-s + 0.200·25-s + 0.205·26-s + 1.04·28-s − 0.0463·29-s + 1.15·31-s + 0.915·32-s − 0.0898·34-s − 0.541·35-s + 0.369·37-s + 0.612·38-s − 0.308·40-s + 1.66·41-s + 0.624·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 765 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 765 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(765\)    =    \(3^{2} \cdot 5 \cdot 17\)
Sign: $1$
Analytic conductor: \(6.10855\)
Root analytic conductor: \(2.47154\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 765,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.553034565\)
\(L(\frac12)\) \(\approx\) \(1.553034565\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 - T \)
17 \( 1 + T \)
good2 \( 1 - 0.523T + 2T^{2} \)
7 \( 1 + 3.20T + 7T^{2} \)
11 \( 1 - 5.20T + 11T^{2} \)
13 \( 1 - 2T + 13T^{2} \)
19 \( 1 - 7.20T + 19T^{2} \)
23 \( 1 + 23T^{2} \)
29 \( 1 + 0.249T + 29T^{2} \)
31 \( 1 - 6.40T + 31T^{2} \)
37 \( 1 - 2.24T + 37T^{2} \)
41 \( 1 - 10.6T + 41T^{2} \)
43 \( 1 - 4.09T + 43T^{2} \)
47 \( 1 + 11.7T + 47T^{2} \)
53 \( 1 + 1.84T + 53T^{2} \)
59 \( 1 + 10.4T + 59T^{2} \)
61 \( 1 + 10.4T + 61T^{2} \)
67 \( 1 - 10.3T + 67T^{2} \)
71 \( 1 + 6.49T + 71T^{2} \)
73 \( 1 - 3.84T + 73T^{2} \)
79 \( 1 - 8T + 79T^{2} \)
83 \( 1 - 8.80T + 83T^{2} \)
89 \( 1 - 8.30T + 89T^{2} \)
97 \( 1 + 4.49T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.996507636681585870196186158671, −9.380629891877635518562152066488, −9.033196747275986115057555718453, −7.75542974267860849815779665646, −6.42448569754507790529843127470, −6.08923928799591751993798628327, −4.84908123140523207157713403509, −3.80592726158348554010999093982, −3.05027514386693319965995463758, −1.04776292674763783584521470963, 1.04776292674763783584521470963, 3.05027514386693319965995463758, 3.80592726158348554010999093982, 4.84908123140523207157713403509, 6.08923928799591751993798628327, 6.42448569754507790529843127470, 7.75542974267860849815779665646, 9.033196747275986115057555718453, 9.380629891877635518562152066488, 9.996507636681585870196186158671

Graph of the $Z$-function along the critical line