Properties

Label 765.2.a.l
Level $765$
Weight $2$
Character orbit 765.a
Self dual yes
Analytic conductor $6.109$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [765,2,Mod(1,765)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(765, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("765.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 765 = 3^{2} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 765.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(6.10855575463\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.621.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 6x - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} + (\beta_{2} + \beta_1 + 2) q^{4} + q^{5} + \beta_{2} q^{7} + ( - 2 \beta_1 - 3) q^{8} - \beta_1 q^{10} + ( - \beta_{2} + 2) q^{11} + 2 q^{13} + (\beta_{2} - \beta_1 + 1) q^{14} + (3 \beta_1 + 4) q^{16}+ \cdots + (\beta_{2} + 4 \beta_1 + 7) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 6 q^{4} + 3 q^{5} - 9 q^{8} + 6 q^{11} + 6 q^{13} + 3 q^{14} + 12 q^{16} - 3 q^{17} + 12 q^{19} + 6 q^{20} - 3 q^{22} + 3 q^{25} + 15 q^{28} + 12 q^{29} - 18 q^{32} - 6 q^{37} - 3 q^{38} - 9 q^{40}+ \cdots + 21 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - 6x - 3 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 4 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 4 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.66908
−0.523976
−2.14510
−2.66908 0 5.12398 1.00000 0 0.454904 −8.33816 0 −2.66908
1.2 0.523976 0 −1.72545 1.00000 0 −3.20147 −1.95205 0 0.523976
1.3 2.14510 0 2.60147 1.00000 0 2.74657 1.29021 0 2.14510
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(5\) \( -1 \)
\(17\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 765.2.a.l yes 3
3.b odd 2 1 765.2.a.k 3
5.b even 2 1 3825.2.a.bf 3
15.d odd 2 1 3825.2.a.be 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
765.2.a.k 3 3.b odd 2 1
765.2.a.l yes 3 1.a even 1 1 trivial
3825.2.a.be 3 15.d odd 2 1
3825.2.a.bf 3 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(765))\):

\( T_{2}^{3} - 6T_{2} + 3 \) Copy content Toggle raw display
\( T_{7}^{3} - 9T_{7} + 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} - 6T + 3 \) Copy content Toggle raw display
$3$ \( T^{3} \) Copy content Toggle raw display
$5$ \( (T - 1)^{3} \) Copy content Toggle raw display
$7$ \( T^{3} - 9T + 4 \) Copy content Toggle raw display
$11$ \( T^{3} - 6 T^{2} + \cdots + 6 \) Copy content Toggle raw display
$13$ \( (T - 2)^{3} \) Copy content Toggle raw display
$17$ \( (T + 1)^{3} \) Copy content Toggle raw display
$19$ \( T^{3} - 12 T^{2} + \cdots - 32 \) Copy content Toggle raw display
$23$ \( T^{3} \) Copy content Toggle raw display
$29$ \( T^{3} - 12 T^{2} + \cdots + 6 \) Copy content Toggle raw display
$31$ \( T^{3} - 36T - 32 \) Copy content Toggle raw display
$37$ \( T^{3} + 6 T^{2} + \cdots - 8 \) Copy content Toggle raw display
$41$ \( T^{3} - 87T - 282 \) Copy content Toggle raw display
$43$ \( T^{3} - 6 T^{2} + \cdots + 376 \) Copy content Toggle raw display
$47$ \( T^{3} - 141T - 48 \) Copy content Toggle raw display
$53$ \( T^{3} + 12 T^{2} + \cdots - 18 \) Copy content Toggle raw display
$59$ \( T^{3} + 12 T^{2} + \cdots - 48 \) Copy content Toggle raw display
$61$ \( T^{3} + 6 T^{2} + \cdots - 512 \) Copy content Toggle raw display
$67$ \( T^{3} - 18 T^{2} + \cdots + 1312 \) Copy content Toggle raw display
$71$ \( T^{3} - 6 T^{2} + \cdots - 96 \) Copy content Toggle raw display
$73$ \( T^{3} - 18 T^{2} + \cdots - 56 \) Copy content Toggle raw display
$79$ \( (T - 8)^{3} \) Copy content Toggle raw display
$83$ \( T^{3} + 12 T^{2} + \cdots - 768 \) Copy content Toggle raw display
$89$ \( T^{3} - 12 T^{2} + \cdots + 1152 \) Copy content Toggle raw display
$97$ \( T^{3} - 12 T^{2} + \cdots + 64 \) Copy content Toggle raw display
show more
show less