Properties

Label 2-7650-1.1-c1-0-79
Degree $2$
Conductor $7650$
Sign $-1$
Analytic cond. $61.0855$
Root an. cond. $7.81572$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 1.23·7-s − 8-s − 2·11-s + 5.23·13-s + 1.23·14-s + 16-s − 17-s − 6.47·19-s + 2·22-s − 4·23-s − 5.23·26-s − 1.23·28-s + 4·29-s + 2.47·31-s − 32-s + 34-s + 2·37-s + 6.47·38-s + 7.70·41-s + 12.1·43-s − 2·44-s + 4·46-s − 10.4·47-s − 5.47·49-s + 5.23·52-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.5·4-s − 0.467·7-s − 0.353·8-s − 0.603·11-s + 1.45·13-s + 0.330·14-s + 0.250·16-s − 0.242·17-s − 1.48·19-s + 0.426·22-s − 0.834·23-s − 1.02·26-s − 0.233·28-s + 0.742·29-s + 0.444·31-s − 0.176·32-s + 0.171·34-s + 0.328·37-s + 1.04·38-s + 1.20·41-s + 1.85·43-s − 0.301·44-s + 0.589·46-s − 1.52·47-s − 0.781·49-s + 0.726·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7650 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7650\)    =    \(2 \cdot 3^{2} \cdot 5^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(61.0855\)
Root analytic conductor: \(7.81572\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 7650,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 \)
17 \( 1 + T \)
good7 \( 1 + 1.23T + 7T^{2} \)
11 \( 1 + 2T + 11T^{2} \)
13 \( 1 - 5.23T + 13T^{2} \)
19 \( 1 + 6.47T + 19T^{2} \)
23 \( 1 + 4T + 23T^{2} \)
29 \( 1 - 4T + 29T^{2} \)
31 \( 1 - 2.47T + 31T^{2} \)
37 \( 1 - 2T + 37T^{2} \)
41 \( 1 - 7.70T + 41T^{2} \)
43 \( 1 - 12.1T + 43T^{2} \)
47 \( 1 + 10.4T + 47T^{2} \)
53 \( 1 - 10.9T + 53T^{2} \)
59 \( 1 + 11.7T + 59T^{2} \)
61 \( 1 - 4.47T + 61T^{2} \)
67 \( 1 + 1.70T + 67T^{2} \)
71 \( 1 + 11.2T + 71T^{2} \)
73 \( 1 - 8.76T + 73T^{2} \)
79 \( 1 - 0.944T + 79T^{2} \)
83 \( 1 + 10.4T + 83T^{2} \)
89 \( 1 + 12.4T + 89T^{2} \)
97 \( 1 + 1.70T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.70682967747285430763690833760, −6.79626633687161792939813202185, −6.16680290288510962891099299414, −5.80970956771468242324540177221, −4.54595824187663315757080607331, −3.91944101663760734989432064310, −2.93620198046504603677146054564, −2.20489717210985408408596030118, −1.14248795719803245422624664248, 0, 1.14248795719803245422624664248, 2.20489717210985408408596030118, 2.93620198046504603677146054564, 3.91944101663760734989432064310, 4.54595824187663315757080607331, 5.80970956771468242324540177221, 6.16680290288510962891099299414, 6.79626633687161792939813202185, 7.70682967747285430763690833760

Graph of the $Z$-function along the critical line