Properties

Label 7650.2.a.cx.1.1
Level $7650$
Weight $2$
Character 7650.1
Self dual yes
Analytic conductor $61.086$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7650,2,Mod(1,7650)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7650, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7650.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7650 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7650.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(61.0855575463\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 510)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-0.618034\) of defining polynomial
Character \(\chi\) \(=\) 7650.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{4} -1.23607 q^{7} -1.00000 q^{8} -2.00000 q^{11} +5.23607 q^{13} +1.23607 q^{14} +1.00000 q^{16} -1.00000 q^{17} -6.47214 q^{19} +2.00000 q^{22} -4.00000 q^{23} -5.23607 q^{26} -1.23607 q^{28} +4.00000 q^{29} +2.47214 q^{31} -1.00000 q^{32} +1.00000 q^{34} +2.00000 q^{37} +6.47214 q^{38} +7.70820 q^{41} +12.1803 q^{43} -2.00000 q^{44} +4.00000 q^{46} -10.4721 q^{47} -5.47214 q^{49} +5.23607 q^{52} +10.9443 q^{53} +1.23607 q^{56} -4.00000 q^{58} -11.7082 q^{59} +4.47214 q^{61} -2.47214 q^{62} +1.00000 q^{64} -1.70820 q^{67} -1.00000 q^{68} -11.2361 q^{71} +8.76393 q^{73} -2.00000 q^{74} -6.47214 q^{76} +2.47214 q^{77} +0.944272 q^{79} -7.70820 q^{82} -10.4721 q^{83} -12.1803 q^{86} +2.00000 q^{88} -12.4721 q^{89} -6.47214 q^{91} -4.00000 q^{92} +10.4721 q^{94} -1.70820 q^{97} +5.47214 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 2 q^{4} + 2 q^{7} - 2 q^{8} - 4 q^{11} + 6 q^{13} - 2 q^{14} + 2 q^{16} - 2 q^{17} - 4 q^{19} + 4 q^{22} - 8 q^{23} - 6 q^{26} + 2 q^{28} + 8 q^{29} - 4 q^{31} - 2 q^{32} + 2 q^{34} + 4 q^{37}+ \cdots + 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) 0 0
\(7\) −1.23607 −0.467190 −0.233595 0.972334i \(-0.575049\pi\)
−0.233595 + 0.972334i \(0.575049\pi\)
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) 0 0
\(11\) −2.00000 −0.603023 −0.301511 0.953463i \(-0.597491\pi\)
−0.301511 + 0.953463i \(0.597491\pi\)
\(12\) 0 0
\(13\) 5.23607 1.45222 0.726112 0.687576i \(-0.241325\pi\)
0.726112 + 0.687576i \(0.241325\pi\)
\(14\) 1.23607 0.330353
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −1.00000 −0.242536
\(18\) 0 0
\(19\) −6.47214 −1.48481 −0.742405 0.669951i \(-0.766315\pi\)
−0.742405 + 0.669951i \(0.766315\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 2.00000 0.426401
\(23\) −4.00000 −0.834058 −0.417029 0.908893i \(-0.636929\pi\)
−0.417029 + 0.908893i \(0.636929\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −5.23607 −1.02688
\(27\) 0 0
\(28\) −1.23607 −0.233595
\(29\) 4.00000 0.742781 0.371391 0.928477i \(-0.378881\pi\)
0.371391 + 0.928477i \(0.378881\pi\)
\(30\) 0 0
\(31\) 2.47214 0.444009 0.222004 0.975046i \(-0.428740\pi\)
0.222004 + 0.975046i \(0.428740\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) 1.00000 0.171499
\(35\) 0 0
\(36\) 0 0
\(37\) 2.00000 0.328798 0.164399 0.986394i \(-0.447432\pi\)
0.164399 + 0.986394i \(0.447432\pi\)
\(38\) 6.47214 1.04992
\(39\) 0 0
\(40\) 0 0
\(41\) 7.70820 1.20382 0.601910 0.798564i \(-0.294407\pi\)
0.601910 + 0.798564i \(0.294407\pi\)
\(42\) 0 0
\(43\) 12.1803 1.85748 0.928742 0.370726i \(-0.120891\pi\)
0.928742 + 0.370726i \(0.120891\pi\)
\(44\) −2.00000 −0.301511
\(45\) 0 0
\(46\) 4.00000 0.589768
\(47\) −10.4721 −1.52752 −0.763759 0.645501i \(-0.776648\pi\)
−0.763759 + 0.645501i \(0.776648\pi\)
\(48\) 0 0
\(49\) −5.47214 −0.781734
\(50\) 0 0
\(51\) 0 0
\(52\) 5.23607 0.726112
\(53\) 10.9443 1.50331 0.751656 0.659556i \(-0.229256\pi\)
0.751656 + 0.659556i \(0.229256\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 1.23607 0.165177
\(57\) 0 0
\(58\) −4.00000 −0.525226
\(59\) −11.7082 −1.52428 −0.762139 0.647413i \(-0.775851\pi\)
−0.762139 + 0.647413i \(0.775851\pi\)
\(60\) 0 0
\(61\) 4.47214 0.572598 0.286299 0.958140i \(-0.407575\pi\)
0.286299 + 0.958140i \(0.407575\pi\)
\(62\) −2.47214 −0.313962
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) −1.70820 −0.208690 −0.104345 0.994541i \(-0.533275\pi\)
−0.104345 + 0.994541i \(0.533275\pi\)
\(68\) −1.00000 −0.121268
\(69\) 0 0
\(70\) 0 0
\(71\) −11.2361 −1.33348 −0.666738 0.745292i \(-0.732310\pi\)
−0.666738 + 0.745292i \(0.732310\pi\)
\(72\) 0 0
\(73\) 8.76393 1.02574 0.512870 0.858466i \(-0.328582\pi\)
0.512870 + 0.858466i \(0.328582\pi\)
\(74\) −2.00000 −0.232495
\(75\) 0 0
\(76\) −6.47214 −0.742405
\(77\) 2.47214 0.281726
\(78\) 0 0
\(79\) 0.944272 0.106239 0.0531194 0.998588i \(-0.483084\pi\)
0.0531194 + 0.998588i \(0.483084\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −7.70820 −0.851229
\(83\) −10.4721 −1.14947 −0.574733 0.818341i \(-0.694894\pi\)
−0.574733 + 0.818341i \(0.694894\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −12.1803 −1.31344
\(87\) 0 0
\(88\) 2.00000 0.213201
\(89\) −12.4721 −1.32204 −0.661022 0.750367i \(-0.729877\pi\)
−0.661022 + 0.750367i \(0.729877\pi\)
\(90\) 0 0
\(91\) −6.47214 −0.678464
\(92\) −4.00000 −0.417029
\(93\) 0 0
\(94\) 10.4721 1.08012
\(95\) 0 0
\(96\) 0 0
\(97\) −1.70820 −0.173442 −0.0867209 0.996233i \(-0.527639\pi\)
−0.0867209 + 0.996233i \(0.527639\pi\)
\(98\) 5.47214 0.552769
\(99\) 0 0
\(100\) 0 0
\(101\) 1.70820 0.169973 0.0849863 0.996382i \(-0.472915\pi\)
0.0849863 + 0.996382i \(0.472915\pi\)
\(102\) 0 0
\(103\) 10.9443 1.07837 0.539186 0.842187i \(-0.318732\pi\)
0.539186 + 0.842187i \(0.318732\pi\)
\(104\) −5.23607 −0.513439
\(105\) 0 0
\(106\) −10.9443 −1.06300
\(107\) −8.00000 −0.773389 −0.386695 0.922208i \(-0.626383\pi\)
−0.386695 + 0.922208i \(0.626383\pi\)
\(108\) 0 0
\(109\) −7.52786 −0.721039 −0.360519 0.932752i \(-0.617401\pi\)
−0.360519 + 0.932752i \(0.617401\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −1.23607 −0.116797
\(113\) 10.0000 0.940721 0.470360 0.882474i \(-0.344124\pi\)
0.470360 + 0.882474i \(0.344124\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 4.00000 0.371391
\(117\) 0 0
\(118\) 11.7082 1.07783
\(119\) 1.23607 0.113310
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) −4.47214 −0.404888
\(123\) 0 0
\(124\) 2.47214 0.222004
\(125\) 0 0
\(126\) 0 0
\(127\) 14.0000 1.24230 0.621150 0.783692i \(-0.286666\pi\)
0.621150 + 0.783692i \(0.286666\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) 0 0
\(131\) −12.4721 −1.08970 −0.544848 0.838535i \(-0.683413\pi\)
−0.544848 + 0.838535i \(0.683413\pi\)
\(132\) 0 0
\(133\) 8.00000 0.693688
\(134\) 1.70820 0.147566
\(135\) 0 0
\(136\) 1.00000 0.0857493
\(137\) 2.00000 0.170872 0.0854358 0.996344i \(-0.472772\pi\)
0.0854358 + 0.996344i \(0.472772\pi\)
\(138\) 0 0
\(139\) 1.52786 0.129592 0.0647959 0.997899i \(-0.479360\pi\)
0.0647959 + 0.997899i \(0.479360\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 11.2361 0.942910
\(143\) −10.4721 −0.875724
\(144\) 0 0
\(145\) 0 0
\(146\) −8.76393 −0.725308
\(147\) 0 0
\(148\) 2.00000 0.164399
\(149\) −12.1803 −0.997852 −0.498926 0.866644i \(-0.666272\pi\)
−0.498926 + 0.866644i \(0.666272\pi\)
\(150\) 0 0
\(151\) −4.00000 −0.325515 −0.162758 0.986666i \(-0.552039\pi\)
−0.162758 + 0.986666i \(0.552039\pi\)
\(152\) 6.47214 0.524960
\(153\) 0 0
\(154\) −2.47214 −0.199210
\(155\) 0 0
\(156\) 0 0
\(157\) 10.1803 0.812480 0.406240 0.913767i \(-0.366840\pi\)
0.406240 + 0.913767i \(0.366840\pi\)
\(158\) −0.944272 −0.0751222
\(159\) 0 0
\(160\) 0 0
\(161\) 4.94427 0.389663
\(162\) 0 0
\(163\) −22.4721 −1.76015 −0.880077 0.474831i \(-0.842509\pi\)
−0.880077 + 0.474831i \(0.842509\pi\)
\(164\) 7.70820 0.601910
\(165\) 0 0
\(166\) 10.4721 0.812795
\(167\) 13.8885 1.07473 0.537364 0.843350i \(-0.319420\pi\)
0.537364 + 0.843350i \(0.319420\pi\)
\(168\) 0 0
\(169\) 14.4164 1.10895
\(170\) 0 0
\(171\) 0 0
\(172\) 12.1803 0.928742
\(173\) 15.8885 1.20798 0.603992 0.796991i \(-0.293576\pi\)
0.603992 + 0.796991i \(0.293576\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −2.00000 −0.150756
\(177\) 0 0
\(178\) 12.4721 0.934826
\(179\) 7.70820 0.576138 0.288069 0.957610i \(-0.406987\pi\)
0.288069 + 0.957610i \(0.406987\pi\)
\(180\) 0 0
\(181\) 0.472136 0.0350936 0.0175468 0.999846i \(-0.494414\pi\)
0.0175468 + 0.999846i \(0.494414\pi\)
\(182\) 6.47214 0.479747
\(183\) 0 0
\(184\) 4.00000 0.294884
\(185\) 0 0
\(186\) 0 0
\(187\) 2.00000 0.146254
\(188\) −10.4721 −0.763759
\(189\) 0 0
\(190\) 0 0
\(191\) −5.52786 −0.399982 −0.199991 0.979798i \(-0.564091\pi\)
−0.199991 + 0.979798i \(0.564091\pi\)
\(192\) 0 0
\(193\) −23.5967 −1.69853 −0.849266 0.527966i \(-0.822955\pi\)
−0.849266 + 0.527966i \(0.822955\pi\)
\(194\) 1.70820 0.122642
\(195\) 0 0
\(196\) −5.47214 −0.390867
\(197\) −15.8885 −1.13201 −0.566006 0.824401i \(-0.691512\pi\)
−0.566006 + 0.824401i \(0.691512\pi\)
\(198\) 0 0
\(199\) −8.94427 −0.634043 −0.317021 0.948418i \(-0.602683\pi\)
−0.317021 + 0.948418i \(0.602683\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −1.70820 −0.120189
\(203\) −4.94427 −0.347020
\(204\) 0 0
\(205\) 0 0
\(206\) −10.9443 −0.762524
\(207\) 0 0
\(208\) 5.23607 0.363056
\(209\) 12.9443 0.895374
\(210\) 0 0
\(211\) −24.9443 −1.71723 −0.858617 0.512617i \(-0.828676\pi\)
−0.858617 + 0.512617i \(0.828676\pi\)
\(212\) 10.9443 0.751656
\(213\) 0 0
\(214\) 8.00000 0.546869
\(215\) 0 0
\(216\) 0 0
\(217\) −3.05573 −0.207436
\(218\) 7.52786 0.509851
\(219\) 0 0
\(220\) 0 0
\(221\) −5.23607 −0.352216
\(222\) 0 0
\(223\) 9.05573 0.606416 0.303208 0.952924i \(-0.401942\pi\)
0.303208 + 0.952924i \(0.401942\pi\)
\(224\) 1.23607 0.0825883
\(225\) 0 0
\(226\) −10.0000 −0.665190
\(227\) −9.88854 −0.656326 −0.328163 0.944621i \(-0.606429\pi\)
−0.328163 + 0.944621i \(0.606429\pi\)
\(228\) 0 0
\(229\) −21.4164 −1.41524 −0.707618 0.706595i \(-0.750230\pi\)
−0.707618 + 0.706595i \(0.750230\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −4.00000 −0.262613
\(233\) −5.41641 −0.354841 −0.177420 0.984135i \(-0.556775\pi\)
−0.177420 + 0.984135i \(0.556775\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −11.7082 −0.762139
\(237\) 0 0
\(238\) −1.23607 −0.0801224
\(239\) 21.8885 1.41585 0.707926 0.706287i \(-0.249631\pi\)
0.707926 + 0.706287i \(0.249631\pi\)
\(240\) 0 0
\(241\) 9.41641 0.606564 0.303282 0.952901i \(-0.401918\pi\)
0.303282 + 0.952901i \(0.401918\pi\)
\(242\) 7.00000 0.449977
\(243\) 0 0
\(244\) 4.47214 0.286299
\(245\) 0 0
\(246\) 0 0
\(247\) −33.8885 −2.15628
\(248\) −2.47214 −0.156981
\(249\) 0 0
\(250\) 0 0
\(251\) 10.1803 0.642577 0.321289 0.946981i \(-0.395884\pi\)
0.321289 + 0.946981i \(0.395884\pi\)
\(252\) 0 0
\(253\) 8.00000 0.502956
\(254\) −14.0000 −0.878438
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −18.0000 −1.12281 −0.561405 0.827541i \(-0.689739\pi\)
−0.561405 + 0.827541i \(0.689739\pi\)
\(258\) 0 0
\(259\) −2.47214 −0.153611
\(260\) 0 0
\(261\) 0 0
\(262\) 12.4721 0.770531
\(263\) 4.00000 0.246651 0.123325 0.992366i \(-0.460644\pi\)
0.123325 + 0.992366i \(0.460644\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −8.00000 −0.490511
\(267\) 0 0
\(268\) −1.70820 −0.104345
\(269\) 7.05573 0.430195 0.215098 0.976593i \(-0.430993\pi\)
0.215098 + 0.976593i \(0.430993\pi\)
\(270\) 0 0
\(271\) 4.00000 0.242983 0.121491 0.992592i \(-0.461232\pi\)
0.121491 + 0.992592i \(0.461232\pi\)
\(272\) −1.00000 −0.0606339
\(273\) 0 0
\(274\) −2.00000 −0.120824
\(275\) 0 0
\(276\) 0 0
\(277\) 26.3607 1.58386 0.791930 0.610612i \(-0.209077\pi\)
0.791930 + 0.610612i \(0.209077\pi\)
\(278\) −1.52786 −0.0916352
\(279\) 0 0
\(280\) 0 0
\(281\) −1.41641 −0.0844958 −0.0422479 0.999107i \(-0.513452\pi\)
−0.0422479 + 0.999107i \(0.513452\pi\)
\(282\) 0 0
\(283\) −25.8885 −1.53891 −0.769457 0.638699i \(-0.779473\pi\)
−0.769457 + 0.638699i \(0.779473\pi\)
\(284\) −11.2361 −0.666738
\(285\) 0 0
\(286\) 10.4721 0.619230
\(287\) −9.52786 −0.562412
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) 0 0
\(292\) 8.76393 0.512870
\(293\) −29.4164 −1.71852 −0.859262 0.511535i \(-0.829077\pi\)
−0.859262 + 0.511535i \(0.829077\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −2.00000 −0.116248
\(297\) 0 0
\(298\) 12.1803 0.705588
\(299\) −20.9443 −1.21124
\(300\) 0 0
\(301\) −15.0557 −0.867798
\(302\) 4.00000 0.230174
\(303\) 0 0
\(304\) −6.47214 −0.371202
\(305\) 0 0
\(306\) 0 0
\(307\) 4.18034 0.238585 0.119292 0.992859i \(-0.461937\pi\)
0.119292 + 0.992859i \(0.461937\pi\)
\(308\) 2.47214 0.140863
\(309\) 0 0
\(310\) 0 0
\(311\) −19.5967 −1.11123 −0.555615 0.831440i \(-0.687517\pi\)
−0.555615 + 0.831440i \(0.687517\pi\)
\(312\) 0 0
\(313\) −21.7082 −1.22702 −0.613510 0.789687i \(-0.710243\pi\)
−0.613510 + 0.789687i \(0.710243\pi\)
\(314\) −10.1803 −0.574510
\(315\) 0 0
\(316\) 0.944272 0.0531194
\(317\) −11.8885 −0.667727 −0.333864 0.942621i \(-0.608352\pi\)
−0.333864 + 0.942621i \(0.608352\pi\)
\(318\) 0 0
\(319\) −8.00000 −0.447914
\(320\) 0 0
\(321\) 0 0
\(322\) −4.94427 −0.275534
\(323\) 6.47214 0.360119
\(324\) 0 0
\(325\) 0 0
\(326\) 22.4721 1.24462
\(327\) 0 0
\(328\) −7.70820 −0.425614
\(329\) 12.9443 0.713641
\(330\) 0 0
\(331\) −3.41641 −0.187783 −0.0938914 0.995582i \(-0.529931\pi\)
−0.0938914 + 0.995582i \(0.529931\pi\)
\(332\) −10.4721 −0.574733
\(333\) 0 0
\(334\) −13.8885 −0.759947
\(335\) 0 0
\(336\) 0 0
\(337\) −20.1803 −1.09929 −0.549647 0.835397i \(-0.685238\pi\)
−0.549647 + 0.835397i \(0.685238\pi\)
\(338\) −14.4164 −0.784149
\(339\) 0 0
\(340\) 0 0
\(341\) −4.94427 −0.267747
\(342\) 0 0
\(343\) 15.4164 0.832408
\(344\) −12.1803 −0.656720
\(345\) 0 0
\(346\) −15.8885 −0.854173
\(347\) 22.8328 1.22573 0.612865 0.790188i \(-0.290017\pi\)
0.612865 + 0.790188i \(0.290017\pi\)
\(348\) 0 0
\(349\) −28.4721 −1.52408 −0.762039 0.647531i \(-0.775802\pi\)
−0.762039 + 0.647531i \(0.775802\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 2.00000 0.106600
\(353\) 14.9443 0.795403 0.397702 0.917515i \(-0.369808\pi\)
0.397702 + 0.917515i \(0.369808\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −12.4721 −0.661022
\(357\) 0 0
\(358\) −7.70820 −0.407391
\(359\) 9.52786 0.502861 0.251431 0.967875i \(-0.419099\pi\)
0.251431 + 0.967875i \(0.419099\pi\)
\(360\) 0 0
\(361\) 22.8885 1.20466
\(362\) −0.472136 −0.0248149
\(363\) 0 0
\(364\) −6.47214 −0.339232
\(365\) 0 0
\(366\) 0 0
\(367\) −5.81966 −0.303784 −0.151892 0.988397i \(-0.548537\pi\)
−0.151892 + 0.988397i \(0.548537\pi\)
\(368\) −4.00000 −0.208514
\(369\) 0 0
\(370\) 0 0
\(371\) −13.5279 −0.702332
\(372\) 0 0
\(373\) −1.23607 −0.0640012 −0.0320006 0.999488i \(-0.510188\pi\)
−0.0320006 + 0.999488i \(0.510188\pi\)
\(374\) −2.00000 −0.103418
\(375\) 0 0
\(376\) 10.4721 0.540059
\(377\) 20.9443 1.07868
\(378\) 0 0
\(379\) −1.52786 −0.0784811 −0.0392406 0.999230i \(-0.512494\pi\)
−0.0392406 + 0.999230i \(0.512494\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 5.52786 0.282830
\(383\) −17.8885 −0.914062 −0.457031 0.889451i \(-0.651087\pi\)
−0.457031 + 0.889451i \(0.651087\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 23.5967 1.20104
\(387\) 0 0
\(388\) −1.70820 −0.0867209
\(389\) −20.1803 −1.02318 −0.511592 0.859229i \(-0.670944\pi\)
−0.511592 + 0.859229i \(0.670944\pi\)
\(390\) 0 0
\(391\) 4.00000 0.202289
\(392\) 5.47214 0.276385
\(393\) 0 0
\(394\) 15.8885 0.800453
\(395\) 0 0
\(396\) 0 0
\(397\) 3.88854 0.195160 0.0975802 0.995228i \(-0.468890\pi\)
0.0975802 + 0.995228i \(0.468890\pi\)
\(398\) 8.94427 0.448336
\(399\) 0 0
\(400\) 0 0
\(401\) 36.0689 1.80119 0.900597 0.434655i \(-0.143130\pi\)
0.900597 + 0.434655i \(0.143130\pi\)
\(402\) 0 0
\(403\) 12.9443 0.644800
\(404\) 1.70820 0.0849863
\(405\) 0 0
\(406\) 4.94427 0.245380
\(407\) −4.00000 −0.198273
\(408\) 0 0
\(409\) 26.3607 1.30345 0.651726 0.758455i \(-0.274045\pi\)
0.651726 + 0.758455i \(0.274045\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 10.9443 0.539186
\(413\) 14.4721 0.712127
\(414\) 0 0
\(415\) 0 0
\(416\) −5.23607 −0.256719
\(417\) 0 0
\(418\) −12.9443 −0.633125
\(419\) −6.36068 −0.310740 −0.155370 0.987856i \(-0.549657\pi\)
−0.155370 + 0.987856i \(0.549657\pi\)
\(420\) 0 0
\(421\) −37.4164 −1.82356 −0.911782 0.410674i \(-0.865293\pi\)
−0.911782 + 0.410674i \(0.865293\pi\)
\(422\) 24.9443 1.21427
\(423\) 0 0
\(424\) −10.9443 −0.531501
\(425\) 0 0
\(426\) 0 0
\(427\) −5.52786 −0.267512
\(428\) −8.00000 −0.386695
\(429\) 0 0
\(430\) 0 0
\(431\) −31.5967 −1.52196 −0.760981 0.648774i \(-0.775282\pi\)
−0.760981 + 0.648774i \(0.775282\pi\)
\(432\) 0 0
\(433\) 28.3607 1.36293 0.681464 0.731852i \(-0.261344\pi\)
0.681464 + 0.731852i \(0.261344\pi\)
\(434\) 3.05573 0.146680
\(435\) 0 0
\(436\) −7.52786 −0.360519
\(437\) 25.8885 1.23842
\(438\) 0 0
\(439\) 13.5279 0.645650 0.322825 0.946459i \(-0.395368\pi\)
0.322825 + 0.946459i \(0.395368\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 5.23607 0.249054
\(443\) −4.00000 −0.190046 −0.0950229 0.995475i \(-0.530292\pi\)
−0.0950229 + 0.995475i \(0.530292\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −9.05573 −0.428801
\(447\) 0 0
\(448\) −1.23607 −0.0583987
\(449\) −17.5967 −0.830442 −0.415221 0.909721i \(-0.636296\pi\)
−0.415221 + 0.909721i \(0.636296\pi\)
\(450\) 0 0
\(451\) −15.4164 −0.725930
\(452\) 10.0000 0.470360
\(453\) 0 0
\(454\) 9.88854 0.464092
\(455\) 0 0
\(456\) 0 0
\(457\) −16.3607 −0.765320 −0.382660 0.923889i \(-0.624992\pi\)
−0.382660 + 0.923889i \(0.624992\pi\)
\(458\) 21.4164 1.00072
\(459\) 0 0
\(460\) 0 0
\(461\) 30.0689 1.40045 0.700224 0.713923i \(-0.253084\pi\)
0.700224 + 0.713923i \(0.253084\pi\)
\(462\) 0 0
\(463\) −18.9443 −0.880415 −0.440207 0.897896i \(-0.645095\pi\)
−0.440207 + 0.897896i \(0.645095\pi\)
\(464\) 4.00000 0.185695
\(465\) 0 0
\(466\) 5.41641 0.250910
\(467\) −0.944272 −0.0436957 −0.0218478 0.999761i \(-0.506955\pi\)
−0.0218478 + 0.999761i \(0.506955\pi\)
\(468\) 0 0
\(469\) 2.11146 0.0974980
\(470\) 0 0
\(471\) 0 0
\(472\) 11.7082 0.538914
\(473\) −24.3607 −1.12011
\(474\) 0 0
\(475\) 0 0
\(476\) 1.23607 0.0566551
\(477\) 0 0
\(478\) −21.8885 −1.00116
\(479\) 35.5967 1.62646 0.813228 0.581945i \(-0.197708\pi\)
0.813228 + 0.581945i \(0.197708\pi\)
\(480\) 0 0
\(481\) 10.4721 0.477488
\(482\) −9.41641 −0.428906
\(483\) 0 0
\(484\) −7.00000 −0.318182
\(485\) 0 0
\(486\) 0 0
\(487\) −16.2918 −0.738252 −0.369126 0.929379i \(-0.620343\pi\)
−0.369126 + 0.929379i \(0.620343\pi\)
\(488\) −4.47214 −0.202444
\(489\) 0 0
\(490\) 0 0
\(491\) −12.2918 −0.554721 −0.277360 0.960766i \(-0.589460\pi\)
−0.277360 + 0.960766i \(0.589460\pi\)
\(492\) 0 0
\(493\) −4.00000 −0.180151
\(494\) 33.8885 1.52472
\(495\) 0 0
\(496\) 2.47214 0.111002
\(497\) 13.8885 0.622986
\(498\) 0 0
\(499\) −16.0000 −0.716258 −0.358129 0.933672i \(-0.616585\pi\)
−0.358129 + 0.933672i \(0.616585\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −10.1803 −0.454371
\(503\) 27.4164 1.22244 0.611219 0.791462i \(-0.290680\pi\)
0.611219 + 0.791462i \(0.290680\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −8.00000 −0.355643
\(507\) 0 0
\(508\) 14.0000 0.621150
\(509\) −1.34752 −0.0597280 −0.0298640 0.999554i \(-0.509507\pi\)
−0.0298640 + 0.999554i \(0.509507\pi\)
\(510\) 0 0
\(511\) −10.8328 −0.479216
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) 18.0000 0.793946
\(515\) 0 0
\(516\) 0 0
\(517\) 20.9443 0.921128
\(518\) 2.47214 0.108619
\(519\) 0 0
\(520\) 0 0
\(521\) −5.81966 −0.254964 −0.127482 0.991841i \(-0.540689\pi\)
−0.127482 + 0.991841i \(0.540689\pi\)
\(522\) 0 0
\(523\) −14.2918 −0.624937 −0.312468 0.949928i \(-0.601156\pi\)
−0.312468 + 0.949928i \(0.601156\pi\)
\(524\) −12.4721 −0.544848
\(525\) 0 0
\(526\) −4.00000 −0.174408
\(527\) −2.47214 −0.107688
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) 0 0
\(531\) 0 0
\(532\) 8.00000 0.346844
\(533\) 40.3607 1.74822
\(534\) 0 0
\(535\) 0 0
\(536\) 1.70820 0.0737832
\(537\) 0 0
\(538\) −7.05573 −0.304194
\(539\) 10.9443 0.471403
\(540\) 0 0
\(541\) −31.3050 −1.34590 −0.672952 0.739686i \(-0.734974\pi\)
−0.672952 + 0.739686i \(0.734974\pi\)
\(542\) −4.00000 −0.171815
\(543\) 0 0
\(544\) 1.00000 0.0428746
\(545\) 0 0
\(546\) 0 0
\(547\) 0.944272 0.0403742 0.0201871 0.999796i \(-0.493574\pi\)
0.0201871 + 0.999796i \(0.493574\pi\)
\(548\) 2.00000 0.0854358
\(549\) 0 0
\(550\) 0 0
\(551\) −25.8885 −1.10289
\(552\) 0 0
\(553\) −1.16718 −0.0496337
\(554\) −26.3607 −1.11996
\(555\) 0 0
\(556\) 1.52786 0.0647959
\(557\) 25.0557 1.06165 0.530823 0.847483i \(-0.321883\pi\)
0.530823 + 0.847483i \(0.321883\pi\)
\(558\) 0 0
\(559\) 63.7771 2.69748
\(560\) 0 0
\(561\) 0 0
\(562\) 1.41641 0.0597476
\(563\) −2.11146 −0.0889873 −0.0444936 0.999010i \(-0.514167\pi\)
−0.0444936 + 0.999010i \(0.514167\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 25.8885 1.08818
\(567\) 0 0
\(568\) 11.2361 0.471455
\(569\) −6.00000 −0.251533 −0.125767 0.992060i \(-0.540139\pi\)
−0.125767 + 0.992060i \(0.540139\pi\)
\(570\) 0 0
\(571\) 36.3607 1.52165 0.760824 0.648959i \(-0.224795\pi\)
0.760824 + 0.648959i \(0.224795\pi\)
\(572\) −10.4721 −0.437862
\(573\) 0 0
\(574\) 9.52786 0.397685
\(575\) 0 0
\(576\) 0 0
\(577\) −35.4164 −1.47440 −0.737202 0.675672i \(-0.763853\pi\)
−0.737202 + 0.675672i \(0.763853\pi\)
\(578\) −1.00000 −0.0415945
\(579\) 0 0
\(580\) 0 0
\(581\) 12.9443 0.537019
\(582\) 0 0
\(583\) −21.8885 −0.906531
\(584\) −8.76393 −0.362654
\(585\) 0 0
\(586\) 29.4164 1.21518
\(587\) 5.52786 0.228159 0.114080 0.993472i \(-0.463608\pi\)
0.114080 + 0.993472i \(0.463608\pi\)
\(588\) 0 0
\(589\) −16.0000 −0.659269
\(590\) 0 0
\(591\) 0 0
\(592\) 2.00000 0.0821995
\(593\) −30.9443 −1.27073 −0.635364 0.772212i \(-0.719150\pi\)
−0.635364 + 0.772212i \(0.719150\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −12.1803 −0.498926
\(597\) 0 0
\(598\) 20.9443 0.856475
\(599\) −25.5279 −1.04304 −0.521520 0.853239i \(-0.674635\pi\)
−0.521520 + 0.853239i \(0.674635\pi\)
\(600\) 0 0
\(601\) −28.4721 −1.16140 −0.580701 0.814117i \(-0.697222\pi\)
−0.580701 + 0.814117i \(0.697222\pi\)
\(602\) 15.0557 0.613626
\(603\) 0 0
\(604\) −4.00000 −0.162758
\(605\) 0 0
\(606\) 0 0
\(607\) −31.1246 −1.26331 −0.631655 0.775250i \(-0.717624\pi\)
−0.631655 + 0.775250i \(0.717624\pi\)
\(608\) 6.47214 0.262480
\(609\) 0 0
\(610\) 0 0
\(611\) −54.8328 −2.21830
\(612\) 0 0
\(613\) −42.1803 −1.70365 −0.851824 0.523828i \(-0.824503\pi\)
−0.851824 + 0.523828i \(0.824503\pi\)
\(614\) −4.18034 −0.168705
\(615\) 0 0
\(616\) −2.47214 −0.0996052
\(617\) 20.4721 0.824177 0.412089 0.911144i \(-0.364799\pi\)
0.412089 + 0.911144i \(0.364799\pi\)
\(618\) 0 0
\(619\) −48.9443 −1.96724 −0.983618 0.180264i \(-0.942305\pi\)
−0.983618 + 0.180264i \(0.942305\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 19.5967 0.785758
\(623\) 15.4164 0.617645
\(624\) 0 0
\(625\) 0 0
\(626\) 21.7082 0.867634
\(627\) 0 0
\(628\) 10.1803 0.406240
\(629\) −2.00000 −0.0797452
\(630\) 0 0
\(631\) −9.88854 −0.393657 −0.196828 0.980438i \(-0.563064\pi\)
−0.196828 + 0.980438i \(0.563064\pi\)
\(632\) −0.944272 −0.0375611
\(633\) 0 0
\(634\) 11.8885 0.472154
\(635\) 0 0
\(636\) 0 0
\(637\) −28.6525 −1.13525
\(638\) 8.00000 0.316723
\(639\) 0 0
\(640\) 0 0
\(641\) −11.7082 −0.462446 −0.231223 0.972901i \(-0.574273\pi\)
−0.231223 + 0.972901i \(0.574273\pi\)
\(642\) 0 0
\(643\) −27.4164 −1.08120 −0.540599 0.841281i \(-0.681802\pi\)
−0.540599 + 0.841281i \(0.681802\pi\)
\(644\) 4.94427 0.194832
\(645\) 0 0
\(646\) −6.47214 −0.254643
\(647\) 20.9443 0.823404 0.411702 0.911318i \(-0.364934\pi\)
0.411702 + 0.911318i \(0.364934\pi\)
\(648\) 0 0
\(649\) 23.4164 0.919174
\(650\) 0 0
\(651\) 0 0
\(652\) −22.4721 −0.880077
\(653\) 3.52786 0.138056 0.0690280 0.997615i \(-0.478010\pi\)
0.0690280 + 0.997615i \(0.478010\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 7.70820 0.300955
\(657\) 0 0
\(658\) −12.9443 −0.504620
\(659\) −28.2918 −1.10209 −0.551046 0.834475i \(-0.685771\pi\)
−0.551046 + 0.834475i \(0.685771\pi\)
\(660\) 0 0
\(661\) 13.4164 0.521838 0.260919 0.965361i \(-0.415974\pi\)
0.260919 + 0.965361i \(0.415974\pi\)
\(662\) 3.41641 0.132782
\(663\) 0 0
\(664\) 10.4721 0.406398
\(665\) 0 0
\(666\) 0 0
\(667\) −16.0000 −0.619522
\(668\) 13.8885 0.537364
\(669\) 0 0
\(670\) 0 0
\(671\) −8.94427 −0.345290
\(672\) 0 0
\(673\) 4.18034 0.161140 0.0805701 0.996749i \(-0.474326\pi\)
0.0805701 + 0.996749i \(0.474326\pi\)
\(674\) 20.1803 0.777318
\(675\) 0 0
\(676\) 14.4164 0.554477
\(677\) 9.05573 0.348040 0.174020 0.984742i \(-0.444324\pi\)
0.174020 + 0.984742i \(0.444324\pi\)
\(678\) 0 0
\(679\) 2.11146 0.0810303
\(680\) 0 0
\(681\) 0 0
\(682\) 4.94427 0.189326
\(683\) 32.9443 1.26058 0.630289 0.776361i \(-0.282936\pi\)
0.630289 + 0.776361i \(0.282936\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −15.4164 −0.588601
\(687\) 0 0
\(688\) 12.1803 0.464371
\(689\) 57.3050 2.18314
\(690\) 0 0
\(691\) −4.94427 −0.188089 −0.0940445 0.995568i \(-0.529980\pi\)
−0.0940445 + 0.995568i \(0.529980\pi\)
\(692\) 15.8885 0.603992
\(693\) 0 0
\(694\) −22.8328 −0.866722
\(695\) 0 0
\(696\) 0 0
\(697\) −7.70820 −0.291969
\(698\) 28.4721 1.07769
\(699\) 0 0
\(700\) 0 0
\(701\) −11.5967 −0.438003 −0.219002 0.975725i \(-0.570280\pi\)
−0.219002 + 0.975725i \(0.570280\pi\)
\(702\) 0 0
\(703\) −12.9443 −0.488202
\(704\) −2.00000 −0.0753778
\(705\) 0 0
\(706\) −14.9443 −0.562435
\(707\) −2.11146 −0.0794095
\(708\) 0 0
\(709\) −39.5279 −1.48450 −0.742250 0.670123i \(-0.766241\pi\)
−0.742250 + 0.670123i \(0.766241\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 12.4721 0.467413
\(713\) −9.88854 −0.370329
\(714\) 0 0
\(715\) 0 0
\(716\) 7.70820 0.288069
\(717\) 0 0
\(718\) −9.52786 −0.355577
\(719\) 36.5410 1.36275 0.681375 0.731934i \(-0.261382\pi\)
0.681375 + 0.731934i \(0.261382\pi\)
\(720\) 0 0
\(721\) −13.5279 −0.503804
\(722\) −22.8885 −0.851823
\(723\) 0 0
\(724\) 0.472136 0.0175468
\(725\) 0 0
\(726\) 0 0
\(727\) −23.8885 −0.885977 −0.442989 0.896527i \(-0.646082\pi\)
−0.442989 + 0.896527i \(0.646082\pi\)
\(728\) 6.47214 0.239873
\(729\) 0 0
\(730\) 0 0
\(731\) −12.1803 −0.450506
\(732\) 0 0
\(733\) 38.5410 1.42355 0.711773 0.702410i \(-0.247893\pi\)
0.711773 + 0.702410i \(0.247893\pi\)
\(734\) 5.81966 0.214808
\(735\) 0 0
\(736\) 4.00000 0.147442
\(737\) 3.41641 0.125845
\(738\) 0 0
\(739\) 33.5279 1.23334 0.616671 0.787221i \(-0.288481\pi\)
0.616671 + 0.787221i \(0.288481\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 13.5279 0.496624
\(743\) −33.5279 −1.23002 −0.615009 0.788520i \(-0.710848\pi\)
−0.615009 + 0.788520i \(0.710848\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 1.23607 0.0452557
\(747\) 0 0
\(748\) 2.00000 0.0731272
\(749\) 9.88854 0.361320
\(750\) 0 0
\(751\) 29.8885 1.09065 0.545324 0.838225i \(-0.316407\pi\)
0.545324 + 0.838225i \(0.316407\pi\)
\(752\) −10.4721 −0.381880
\(753\) 0 0
\(754\) −20.9443 −0.762745
\(755\) 0 0
\(756\) 0 0
\(757\) −37.5967 −1.36648 −0.683239 0.730195i \(-0.739429\pi\)
−0.683239 + 0.730195i \(0.739429\pi\)
\(758\) 1.52786 0.0554945
\(759\) 0 0
\(760\) 0 0
\(761\) −52.8328 −1.91519 −0.957594 0.288121i \(-0.906969\pi\)
−0.957594 + 0.288121i \(0.906969\pi\)
\(762\) 0 0
\(763\) 9.30495 0.336862
\(764\) −5.52786 −0.199991
\(765\) 0 0
\(766\) 17.8885 0.646339
\(767\) −61.3050 −2.21359
\(768\) 0 0
\(769\) −34.3607 −1.23908 −0.619539 0.784966i \(-0.712680\pi\)
−0.619539 + 0.784966i \(0.712680\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −23.5967 −0.849266
\(773\) −33.4164 −1.20190 −0.600952 0.799285i \(-0.705212\pi\)
−0.600952 + 0.799285i \(0.705212\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 1.70820 0.0613209
\(777\) 0 0
\(778\) 20.1803 0.723500
\(779\) −49.8885 −1.78744
\(780\) 0 0
\(781\) 22.4721 0.804116
\(782\) −4.00000 −0.143040
\(783\) 0 0
\(784\) −5.47214 −0.195433
\(785\) 0 0
\(786\) 0 0
\(787\) 46.4721 1.65655 0.828276 0.560320i \(-0.189322\pi\)
0.828276 + 0.560320i \(0.189322\pi\)
\(788\) −15.8885 −0.566006
\(789\) 0 0
\(790\) 0 0
\(791\) −12.3607 −0.439495
\(792\) 0 0
\(793\) 23.4164 0.831541
\(794\) −3.88854 −0.137999
\(795\) 0 0
\(796\) −8.94427 −0.317021
\(797\) −46.0000 −1.62940 −0.814702 0.579880i \(-0.803099\pi\)
−0.814702 + 0.579880i \(0.803099\pi\)
\(798\) 0 0
\(799\) 10.4721 0.370478
\(800\) 0 0
\(801\) 0 0
\(802\) −36.0689 −1.27364
\(803\) −17.5279 −0.618545
\(804\) 0 0
\(805\) 0 0
\(806\) −12.9443 −0.455943
\(807\) 0 0
\(808\) −1.70820 −0.0600944
\(809\) −47.1246 −1.65681 −0.828407 0.560127i \(-0.810752\pi\)
−0.828407 + 0.560127i \(0.810752\pi\)
\(810\) 0 0
\(811\) 42.2492 1.48357 0.741785 0.670637i \(-0.233979\pi\)
0.741785 + 0.670637i \(0.233979\pi\)
\(812\) −4.94427 −0.173510
\(813\) 0 0
\(814\) 4.00000 0.140200
\(815\) 0 0
\(816\) 0 0
\(817\) −78.8328 −2.75801
\(818\) −26.3607 −0.921680
\(819\) 0 0
\(820\) 0 0
\(821\) −15.4164 −0.538036 −0.269018 0.963135i \(-0.586699\pi\)
−0.269018 + 0.963135i \(0.586699\pi\)
\(822\) 0 0
\(823\) 38.1803 1.33088 0.665441 0.746450i \(-0.268243\pi\)
0.665441 + 0.746450i \(0.268243\pi\)
\(824\) −10.9443 −0.381262
\(825\) 0 0
\(826\) −14.4721 −0.503550
\(827\) 23.0557 0.801726 0.400863 0.916138i \(-0.368710\pi\)
0.400863 + 0.916138i \(0.368710\pi\)
\(828\) 0 0
\(829\) 34.0000 1.18087 0.590434 0.807086i \(-0.298956\pi\)
0.590434 + 0.807086i \(0.298956\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 5.23607 0.181528
\(833\) 5.47214 0.189598
\(834\) 0 0
\(835\) 0 0
\(836\) 12.9443 0.447687
\(837\) 0 0
\(838\) 6.36068 0.219726
\(839\) 22.0689 0.761902 0.380951 0.924595i \(-0.375597\pi\)
0.380951 + 0.924595i \(0.375597\pi\)
\(840\) 0 0
\(841\) −13.0000 −0.448276
\(842\) 37.4164 1.28945
\(843\) 0 0
\(844\) −24.9443 −0.858617
\(845\) 0 0
\(846\) 0 0
\(847\) 8.65248 0.297303
\(848\) 10.9443 0.375828
\(849\) 0 0
\(850\) 0 0
\(851\) −8.00000 −0.274236
\(852\) 0 0
\(853\) −6.36068 −0.217786 −0.108893 0.994054i \(-0.534731\pi\)
−0.108893 + 0.994054i \(0.534731\pi\)
\(854\) 5.52786 0.189160
\(855\) 0 0
\(856\) 8.00000 0.273434
\(857\) −50.3607 −1.72029 −0.860144 0.510051i \(-0.829626\pi\)
−0.860144 + 0.510051i \(0.829626\pi\)
\(858\) 0 0
\(859\) 7.05573 0.240738 0.120369 0.992729i \(-0.461592\pi\)
0.120369 + 0.992729i \(0.461592\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 31.5967 1.07619
\(863\) 21.3050 0.725229 0.362614 0.931939i \(-0.381884\pi\)
0.362614 + 0.931939i \(0.381884\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −28.3607 −0.963735
\(867\) 0 0
\(868\) −3.05573 −0.103718
\(869\) −1.88854 −0.0640645
\(870\) 0 0
\(871\) −8.94427 −0.303065
\(872\) 7.52786 0.254926
\(873\) 0 0
\(874\) −25.8885 −0.875693
\(875\) 0 0
\(876\) 0 0
\(877\) −40.4721 −1.36665 −0.683323 0.730116i \(-0.739466\pi\)
−0.683323 + 0.730116i \(0.739466\pi\)
\(878\) −13.5279 −0.456543
\(879\) 0 0
\(880\) 0 0
\(881\) 7.12461 0.240034 0.120017 0.992772i \(-0.461705\pi\)
0.120017 + 0.992772i \(0.461705\pi\)
\(882\) 0 0
\(883\) −27.2361 −0.916567 −0.458283 0.888806i \(-0.651535\pi\)
−0.458283 + 0.888806i \(0.651535\pi\)
\(884\) −5.23607 −0.176108
\(885\) 0 0
\(886\) 4.00000 0.134383
\(887\) −8.94427 −0.300319 −0.150160 0.988662i \(-0.547979\pi\)
−0.150160 + 0.988662i \(0.547979\pi\)
\(888\) 0 0
\(889\) −17.3050 −0.580389
\(890\) 0 0
\(891\) 0 0
\(892\) 9.05573 0.303208
\(893\) 67.7771 2.26807
\(894\) 0 0
\(895\) 0 0
\(896\) 1.23607 0.0412941
\(897\) 0 0
\(898\) 17.5967 0.587211
\(899\) 9.88854 0.329801
\(900\) 0 0
\(901\) −10.9443 −0.364607
\(902\) 15.4164 0.513310
\(903\) 0 0
\(904\) −10.0000 −0.332595
\(905\) 0 0
\(906\) 0 0
\(907\) 4.36068 0.144794 0.0723970 0.997376i \(-0.476935\pi\)
0.0723970 + 0.997376i \(0.476935\pi\)
\(908\) −9.88854 −0.328163
\(909\) 0 0
\(910\) 0 0
\(911\) 12.5410 0.415503 0.207751 0.978182i \(-0.433386\pi\)
0.207751 + 0.978182i \(0.433386\pi\)
\(912\) 0 0
\(913\) 20.9443 0.693154
\(914\) 16.3607 0.541163
\(915\) 0 0
\(916\) −21.4164 −0.707618
\(917\) 15.4164 0.509095
\(918\) 0 0
\(919\) 52.7214 1.73912 0.869559 0.493830i \(-0.164403\pi\)
0.869559 + 0.493830i \(0.164403\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −30.0689 −0.990266
\(923\) −58.8328 −1.93651
\(924\) 0 0
\(925\) 0 0
\(926\) 18.9443 0.622547
\(927\) 0 0
\(928\) −4.00000 −0.131306
\(929\) −24.0689 −0.789674 −0.394837 0.918751i \(-0.629199\pi\)
−0.394837 + 0.918751i \(0.629199\pi\)
\(930\) 0 0
\(931\) 35.4164 1.16073
\(932\) −5.41641 −0.177420
\(933\) 0 0
\(934\) 0.944272 0.0308975
\(935\) 0 0
\(936\) 0 0
\(937\) 17.5279 0.572610 0.286305 0.958138i \(-0.407573\pi\)
0.286305 + 0.958138i \(0.407573\pi\)
\(938\) −2.11146 −0.0689415
\(939\) 0 0
\(940\) 0 0
\(941\) −13.3050 −0.433729 −0.216865 0.976202i \(-0.569583\pi\)
−0.216865 + 0.976202i \(0.569583\pi\)
\(942\) 0 0
\(943\) −30.8328 −1.00405
\(944\) −11.7082 −0.381070
\(945\) 0 0
\(946\) 24.3607 0.792034
\(947\) −48.7214 −1.58323 −0.791616 0.611019i \(-0.790760\pi\)
−0.791616 + 0.611019i \(0.790760\pi\)
\(948\) 0 0
\(949\) 45.8885 1.48961
\(950\) 0 0
\(951\) 0 0
\(952\) −1.23607 −0.0400612
\(953\) −26.9443 −0.872811 −0.436405 0.899750i \(-0.643749\pi\)
−0.436405 + 0.899750i \(0.643749\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 21.8885 0.707926
\(957\) 0 0
\(958\) −35.5967 −1.15008
\(959\) −2.47214 −0.0798294
\(960\) 0 0
\(961\) −24.8885 −0.802856
\(962\) −10.4721 −0.337635
\(963\) 0 0
\(964\) 9.41641 0.303282
\(965\) 0 0
\(966\) 0 0
\(967\) −0.472136 −0.0151829 −0.00759143 0.999971i \(-0.502416\pi\)
−0.00759143 + 0.999971i \(0.502416\pi\)
\(968\) 7.00000 0.224989
\(969\) 0 0
\(970\) 0 0
\(971\) 22.7639 0.730529 0.365265 0.930904i \(-0.380978\pi\)
0.365265 + 0.930904i \(0.380978\pi\)
\(972\) 0 0
\(973\) −1.88854 −0.0605439
\(974\) 16.2918 0.522023
\(975\) 0 0
\(976\) 4.47214 0.143150
\(977\) −26.9443 −0.862024 −0.431012 0.902346i \(-0.641843\pi\)
−0.431012 + 0.902346i \(0.641843\pi\)
\(978\) 0 0
\(979\) 24.9443 0.797222
\(980\) 0 0
\(981\) 0 0
\(982\) 12.2918 0.392247
\(983\) −11.4164 −0.364127 −0.182063 0.983287i \(-0.558278\pi\)
−0.182063 + 0.983287i \(0.558278\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 4.00000 0.127386
\(987\) 0 0
\(988\) −33.8885 −1.07814
\(989\) −48.7214 −1.54925
\(990\) 0 0
\(991\) −10.8328 −0.344116 −0.172058 0.985087i \(-0.555042\pi\)
−0.172058 + 0.985087i \(0.555042\pi\)
\(992\) −2.47214 −0.0784904
\(993\) 0 0
\(994\) −13.8885 −0.440518
\(995\) 0 0
\(996\) 0 0
\(997\) 41.0557 1.30025 0.650124 0.759828i \(-0.274717\pi\)
0.650124 + 0.759828i \(0.274717\pi\)
\(998\) 16.0000 0.506471
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7650.2.a.cx.1.1 2
3.2 odd 2 2550.2.a.bk.1.1 2
5.2 odd 4 1530.2.d.f.919.2 4
5.3 odd 4 1530.2.d.f.919.3 4
5.4 even 2 7650.2.a.da.1.2 2
15.2 even 4 510.2.d.b.409.3 yes 4
15.8 even 4 510.2.d.b.409.2 4
15.14 odd 2 2550.2.a.bh.1.2 2
60.23 odd 4 4080.2.m.m.2449.4 4
60.47 odd 4 4080.2.m.m.2449.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
510.2.d.b.409.2 4 15.8 even 4
510.2.d.b.409.3 yes 4 15.2 even 4
1530.2.d.f.919.2 4 5.2 odd 4
1530.2.d.f.919.3 4 5.3 odd 4
2550.2.a.bh.1.2 2 15.14 odd 2
2550.2.a.bk.1.1 2 3.2 odd 2
4080.2.m.m.2449.1 4 60.47 odd 4
4080.2.m.m.2449.4 4 60.23 odd 4
7650.2.a.cx.1.1 2 1.1 even 1 trivial
7650.2.a.da.1.2 2 5.4 even 2