Properties

Label 1530.2.d.f.919.3
Level $1530$
Weight $2$
Character 1530.919
Analytic conductor $12.217$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1530,2,Mod(919,1530)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1530, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1530.919");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1530 = 2 \cdot 3^{2} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1530.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.2171115093\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 3x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 510)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 919.3
Root \(0.618034i\) of defining polynomial
Character \(\chi\) \(=\) 1530.919
Dual form 1530.2.d.f.919.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} -1.00000 q^{4} -2.23607i q^{5} +1.23607i q^{7} -1.00000i q^{8} +2.23607 q^{10} -2.00000 q^{11} +5.23607i q^{13} -1.23607 q^{14} +1.00000 q^{16} +1.00000i q^{17} +6.47214 q^{19} +2.23607i q^{20} -2.00000i q^{22} -4.00000i q^{23} -5.00000 q^{25} -5.23607 q^{26} -1.23607i q^{28} -4.00000 q^{29} +2.47214 q^{31} +1.00000i q^{32} -1.00000 q^{34} +2.76393 q^{35} -2.00000i q^{37} +6.47214i q^{38} -2.23607 q^{40} +7.70820 q^{41} +12.1803i q^{43} +2.00000 q^{44} +4.00000 q^{46} +10.4721i q^{47} +5.47214 q^{49} -5.00000i q^{50} -5.23607i q^{52} +10.9443i q^{53} +4.47214i q^{55} +1.23607 q^{56} -4.00000i q^{58} +11.7082 q^{59} +4.47214 q^{61} +2.47214i q^{62} -1.00000 q^{64} +11.7082 q^{65} +1.70820i q^{67} -1.00000i q^{68} +2.76393i q^{70} -11.2361 q^{71} +8.76393i q^{73} +2.00000 q^{74} -6.47214 q^{76} -2.47214i q^{77} -0.944272 q^{79} -2.23607i q^{80} +7.70820i q^{82} -10.4721i q^{83} +2.23607 q^{85} -12.1803 q^{86} +2.00000i q^{88} +12.4721 q^{89} -6.47214 q^{91} +4.00000i q^{92} -10.4721 q^{94} -14.4721i q^{95} +1.70820i q^{97} +5.47214i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{4} - 8 q^{11} + 4 q^{14} + 4 q^{16} + 8 q^{19} - 20 q^{25} - 12 q^{26} - 16 q^{29} - 8 q^{31} - 4 q^{34} + 20 q^{35} + 4 q^{41} + 8 q^{44} + 16 q^{46} + 4 q^{49} - 4 q^{56} + 20 q^{59} - 4 q^{64}+ \cdots - 24 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1530\mathbb{Z}\right)^\times\).

\(n\) \(307\) \(1261\) \(1361\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 0 0
\(4\) −1.00000 −0.500000
\(5\) − 2.23607i − 1.00000i
\(6\) 0 0
\(7\) 1.23607i 0.467190i 0.972334 + 0.233595i \(0.0750489\pi\)
−0.972334 + 0.233595i \(0.924951\pi\)
\(8\) − 1.00000i − 0.353553i
\(9\) 0 0
\(10\) 2.23607 0.707107
\(11\) −2.00000 −0.603023 −0.301511 0.953463i \(-0.597491\pi\)
−0.301511 + 0.953463i \(0.597491\pi\)
\(12\) 0 0
\(13\) 5.23607i 1.45222i 0.687576 + 0.726112i \(0.258675\pi\)
−0.687576 + 0.726112i \(0.741325\pi\)
\(14\) −1.23607 −0.330353
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 1.00000i 0.242536i
\(18\) 0 0
\(19\) 6.47214 1.48481 0.742405 0.669951i \(-0.233685\pi\)
0.742405 + 0.669951i \(0.233685\pi\)
\(20\) 2.23607i 0.500000i
\(21\) 0 0
\(22\) − 2.00000i − 0.426401i
\(23\) − 4.00000i − 0.834058i −0.908893 0.417029i \(-0.863071\pi\)
0.908893 0.417029i \(-0.136929\pi\)
\(24\) 0 0
\(25\) −5.00000 −1.00000
\(26\) −5.23607 −1.02688
\(27\) 0 0
\(28\) − 1.23607i − 0.233595i
\(29\) −4.00000 −0.742781 −0.371391 0.928477i \(-0.621119\pi\)
−0.371391 + 0.928477i \(0.621119\pi\)
\(30\) 0 0
\(31\) 2.47214 0.444009 0.222004 0.975046i \(-0.428740\pi\)
0.222004 + 0.975046i \(0.428740\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0 0
\(34\) −1.00000 −0.171499
\(35\) 2.76393 0.467190
\(36\) 0 0
\(37\) − 2.00000i − 0.328798i −0.986394 0.164399i \(-0.947432\pi\)
0.986394 0.164399i \(-0.0525685\pi\)
\(38\) 6.47214i 1.04992i
\(39\) 0 0
\(40\) −2.23607 −0.353553
\(41\) 7.70820 1.20382 0.601910 0.798564i \(-0.294407\pi\)
0.601910 + 0.798564i \(0.294407\pi\)
\(42\) 0 0
\(43\) 12.1803i 1.85748i 0.370726 + 0.928742i \(0.379109\pi\)
−0.370726 + 0.928742i \(0.620891\pi\)
\(44\) 2.00000 0.301511
\(45\) 0 0
\(46\) 4.00000 0.589768
\(47\) 10.4721i 1.52752i 0.645501 + 0.763759i \(0.276648\pi\)
−0.645501 + 0.763759i \(0.723352\pi\)
\(48\) 0 0
\(49\) 5.47214 0.781734
\(50\) − 5.00000i − 0.707107i
\(51\) 0 0
\(52\) − 5.23607i − 0.726112i
\(53\) 10.9443i 1.50331i 0.659556 + 0.751656i \(0.270744\pi\)
−0.659556 + 0.751656i \(0.729256\pi\)
\(54\) 0 0
\(55\) 4.47214i 0.603023i
\(56\) 1.23607 0.165177
\(57\) 0 0
\(58\) − 4.00000i − 0.525226i
\(59\) 11.7082 1.52428 0.762139 0.647413i \(-0.224149\pi\)
0.762139 + 0.647413i \(0.224149\pi\)
\(60\) 0 0
\(61\) 4.47214 0.572598 0.286299 0.958140i \(-0.407575\pi\)
0.286299 + 0.958140i \(0.407575\pi\)
\(62\) 2.47214i 0.313962i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 11.7082 1.45222
\(66\) 0 0
\(67\) 1.70820i 0.208690i 0.994541 + 0.104345i \(0.0332747\pi\)
−0.994541 + 0.104345i \(0.966725\pi\)
\(68\) − 1.00000i − 0.121268i
\(69\) 0 0
\(70\) 2.76393i 0.330353i
\(71\) −11.2361 −1.33348 −0.666738 0.745292i \(-0.732310\pi\)
−0.666738 + 0.745292i \(0.732310\pi\)
\(72\) 0 0
\(73\) 8.76393i 1.02574i 0.858466 + 0.512870i \(0.171418\pi\)
−0.858466 + 0.512870i \(0.828582\pi\)
\(74\) 2.00000 0.232495
\(75\) 0 0
\(76\) −6.47214 −0.742405
\(77\) − 2.47214i − 0.281726i
\(78\) 0 0
\(79\) −0.944272 −0.106239 −0.0531194 0.998588i \(-0.516916\pi\)
−0.0531194 + 0.998588i \(0.516916\pi\)
\(80\) − 2.23607i − 0.250000i
\(81\) 0 0
\(82\) 7.70820i 0.851229i
\(83\) − 10.4721i − 1.14947i −0.818341 0.574733i \(-0.805106\pi\)
0.818341 0.574733i \(-0.194894\pi\)
\(84\) 0 0
\(85\) 2.23607 0.242536
\(86\) −12.1803 −1.31344
\(87\) 0 0
\(88\) 2.00000i 0.213201i
\(89\) 12.4721 1.32204 0.661022 0.750367i \(-0.270123\pi\)
0.661022 + 0.750367i \(0.270123\pi\)
\(90\) 0 0
\(91\) −6.47214 −0.678464
\(92\) 4.00000i 0.417029i
\(93\) 0 0
\(94\) −10.4721 −1.08012
\(95\) − 14.4721i − 1.48481i
\(96\) 0 0
\(97\) 1.70820i 0.173442i 0.996233 + 0.0867209i \(0.0276388\pi\)
−0.996233 + 0.0867209i \(0.972361\pi\)
\(98\) 5.47214i 0.552769i
\(99\) 0 0
\(100\) 5.00000 0.500000
\(101\) 1.70820 0.169973 0.0849863 0.996382i \(-0.472915\pi\)
0.0849863 + 0.996382i \(0.472915\pi\)
\(102\) 0 0
\(103\) 10.9443i 1.07837i 0.842187 + 0.539186i \(0.181268\pi\)
−0.842187 + 0.539186i \(0.818732\pi\)
\(104\) 5.23607 0.513439
\(105\) 0 0
\(106\) −10.9443 −1.06300
\(107\) 8.00000i 0.773389i 0.922208 + 0.386695i \(0.126383\pi\)
−0.922208 + 0.386695i \(0.873617\pi\)
\(108\) 0 0
\(109\) 7.52786 0.721039 0.360519 0.932752i \(-0.382599\pi\)
0.360519 + 0.932752i \(0.382599\pi\)
\(110\) −4.47214 −0.426401
\(111\) 0 0
\(112\) 1.23607i 0.116797i
\(113\) 10.0000i 0.940721i 0.882474 + 0.470360i \(0.155876\pi\)
−0.882474 + 0.470360i \(0.844124\pi\)
\(114\) 0 0
\(115\) −8.94427 −0.834058
\(116\) 4.00000 0.371391
\(117\) 0 0
\(118\) 11.7082i 1.07783i
\(119\) −1.23607 −0.113310
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 4.47214i 0.404888i
\(123\) 0 0
\(124\) −2.47214 −0.222004
\(125\) 11.1803i 1.00000i
\(126\) 0 0
\(127\) − 14.0000i − 1.24230i −0.783692 0.621150i \(-0.786666\pi\)
0.783692 0.621150i \(-0.213334\pi\)
\(128\) − 1.00000i − 0.0883883i
\(129\) 0 0
\(130\) 11.7082i 1.02688i
\(131\) −12.4721 −1.08970 −0.544848 0.838535i \(-0.683413\pi\)
−0.544848 + 0.838535i \(0.683413\pi\)
\(132\) 0 0
\(133\) 8.00000i 0.693688i
\(134\) −1.70820 −0.147566
\(135\) 0 0
\(136\) 1.00000 0.0857493
\(137\) − 2.00000i − 0.170872i −0.996344 0.0854358i \(-0.972772\pi\)
0.996344 0.0854358i \(-0.0272282\pi\)
\(138\) 0 0
\(139\) −1.52786 −0.129592 −0.0647959 0.997899i \(-0.520640\pi\)
−0.0647959 + 0.997899i \(0.520640\pi\)
\(140\) −2.76393 −0.233595
\(141\) 0 0
\(142\) − 11.2361i − 0.942910i
\(143\) − 10.4721i − 0.875724i
\(144\) 0 0
\(145\) 8.94427i 0.742781i
\(146\) −8.76393 −0.725308
\(147\) 0 0
\(148\) 2.00000i 0.164399i
\(149\) 12.1803 0.997852 0.498926 0.866644i \(-0.333728\pi\)
0.498926 + 0.866644i \(0.333728\pi\)
\(150\) 0 0
\(151\) −4.00000 −0.325515 −0.162758 0.986666i \(-0.552039\pi\)
−0.162758 + 0.986666i \(0.552039\pi\)
\(152\) − 6.47214i − 0.524960i
\(153\) 0 0
\(154\) 2.47214 0.199210
\(155\) − 5.52786i − 0.444009i
\(156\) 0 0
\(157\) − 10.1803i − 0.812480i −0.913767 0.406240i \(-0.866840\pi\)
0.913767 0.406240i \(-0.133160\pi\)
\(158\) − 0.944272i − 0.0751222i
\(159\) 0 0
\(160\) 2.23607 0.176777
\(161\) 4.94427 0.389663
\(162\) 0 0
\(163\) − 22.4721i − 1.76015i −0.474831 0.880077i \(-0.657491\pi\)
0.474831 0.880077i \(-0.342509\pi\)
\(164\) −7.70820 −0.601910
\(165\) 0 0
\(166\) 10.4721 0.812795
\(167\) − 13.8885i − 1.07473i −0.843350 0.537364i \(-0.819420\pi\)
0.843350 0.537364i \(-0.180580\pi\)
\(168\) 0 0
\(169\) −14.4164 −1.10895
\(170\) 2.23607i 0.171499i
\(171\) 0 0
\(172\) − 12.1803i − 0.928742i
\(173\) 15.8885i 1.20798i 0.796991 + 0.603992i \(0.206424\pi\)
−0.796991 + 0.603992i \(0.793576\pi\)
\(174\) 0 0
\(175\) − 6.18034i − 0.467190i
\(176\) −2.00000 −0.150756
\(177\) 0 0
\(178\) 12.4721i 0.934826i
\(179\) −7.70820 −0.576138 −0.288069 0.957610i \(-0.593013\pi\)
−0.288069 + 0.957610i \(0.593013\pi\)
\(180\) 0 0
\(181\) 0.472136 0.0350936 0.0175468 0.999846i \(-0.494414\pi\)
0.0175468 + 0.999846i \(0.494414\pi\)
\(182\) − 6.47214i − 0.479747i
\(183\) 0 0
\(184\) −4.00000 −0.294884
\(185\) −4.47214 −0.328798
\(186\) 0 0
\(187\) − 2.00000i − 0.146254i
\(188\) − 10.4721i − 0.763759i
\(189\) 0 0
\(190\) 14.4721 1.04992
\(191\) −5.52786 −0.399982 −0.199991 0.979798i \(-0.564091\pi\)
−0.199991 + 0.979798i \(0.564091\pi\)
\(192\) 0 0
\(193\) − 23.5967i − 1.69853i −0.527966 0.849266i \(-0.677045\pi\)
0.527966 0.849266i \(-0.322955\pi\)
\(194\) −1.70820 −0.122642
\(195\) 0 0
\(196\) −5.47214 −0.390867
\(197\) 15.8885i 1.13201i 0.824401 + 0.566006i \(0.191512\pi\)
−0.824401 + 0.566006i \(0.808488\pi\)
\(198\) 0 0
\(199\) 8.94427 0.634043 0.317021 0.948418i \(-0.397317\pi\)
0.317021 + 0.948418i \(0.397317\pi\)
\(200\) 5.00000i 0.353553i
\(201\) 0 0
\(202\) 1.70820i 0.120189i
\(203\) − 4.94427i − 0.347020i
\(204\) 0 0
\(205\) − 17.2361i − 1.20382i
\(206\) −10.9443 −0.762524
\(207\) 0 0
\(208\) 5.23607i 0.363056i
\(209\) −12.9443 −0.895374
\(210\) 0 0
\(211\) −24.9443 −1.71723 −0.858617 0.512617i \(-0.828676\pi\)
−0.858617 + 0.512617i \(0.828676\pi\)
\(212\) − 10.9443i − 0.751656i
\(213\) 0 0
\(214\) −8.00000 −0.546869
\(215\) 27.2361 1.85748
\(216\) 0 0
\(217\) 3.05573i 0.207436i
\(218\) 7.52786i 0.509851i
\(219\) 0 0
\(220\) − 4.47214i − 0.301511i
\(221\) −5.23607 −0.352216
\(222\) 0 0
\(223\) 9.05573i 0.606416i 0.952924 + 0.303208i \(0.0980578\pi\)
−0.952924 + 0.303208i \(0.901942\pi\)
\(224\) −1.23607 −0.0825883
\(225\) 0 0
\(226\) −10.0000 −0.665190
\(227\) 9.88854i 0.656326i 0.944621 + 0.328163i \(0.106429\pi\)
−0.944621 + 0.328163i \(0.893571\pi\)
\(228\) 0 0
\(229\) 21.4164 1.41524 0.707618 0.706595i \(-0.249770\pi\)
0.707618 + 0.706595i \(0.249770\pi\)
\(230\) − 8.94427i − 0.589768i
\(231\) 0 0
\(232\) 4.00000i 0.262613i
\(233\) − 5.41641i − 0.354841i −0.984135 0.177420i \(-0.943225\pi\)
0.984135 0.177420i \(-0.0567752\pi\)
\(234\) 0 0
\(235\) 23.4164 1.52752
\(236\) −11.7082 −0.762139
\(237\) 0 0
\(238\) − 1.23607i − 0.0801224i
\(239\) −21.8885 −1.41585 −0.707926 0.706287i \(-0.750369\pi\)
−0.707926 + 0.706287i \(0.750369\pi\)
\(240\) 0 0
\(241\) 9.41641 0.606564 0.303282 0.952901i \(-0.401918\pi\)
0.303282 + 0.952901i \(0.401918\pi\)
\(242\) − 7.00000i − 0.449977i
\(243\) 0 0
\(244\) −4.47214 −0.286299
\(245\) − 12.2361i − 0.781734i
\(246\) 0 0
\(247\) 33.8885i 2.15628i
\(248\) − 2.47214i − 0.156981i
\(249\) 0 0
\(250\) −11.1803 −0.707107
\(251\) 10.1803 0.642577 0.321289 0.946981i \(-0.395884\pi\)
0.321289 + 0.946981i \(0.395884\pi\)
\(252\) 0 0
\(253\) 8.00000i 0.502956i
\(254\) 14.0000 0.878438
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 18.0000i 1.12281i 0.827541 + 0.561405i \(0.189739\pi\)
−0.827541 + 0.561405i \(0.810261\pi\)
\(258\) 0 0
\(259\) 2.47214 0.153611
\(260\) −11.7082 −0.726112
\(261\) 0 0
\(262\) − 12.4721i − 0.770531i
\(263\) 4.00000i 0.246651i 0.992366 + 0.123325i \(0.0393559\pi\)
−0.992366 + 0.123325i \(0.960644\pi\)
\(264\) 0 0
\(265\) 24.4721 1.50331
\(266\) −8.00000 −0.490511
\(267\) 0 0
\(268\) − 1.70820i − 0.104345i
\(269\) −7.05573 −0.430195 −0.215098 0.976593i \(-0.569007\pi\)
−0.215098 + 0.976593i \(0.569007\pi\)
\(270\) 0 0
\(271\) 4.00000 0.242983 0.121491 0.992592i \(-0.461232\pi\)
0.121491 + 0.992592i \(0.461232\pi\)
\(272\) 1.00000i 0.0606339i
\(273\) 0 0
\(274\) 2.00000 0.120824
\(275\) 10.0000 0.603023
\(276\) 0 0
\(277\) − 26.3607i − 1.58386i −0.610612 0.791930i \(-0.709077\pi\)
0.610612 0.791930i \(-0.290923\pi\)
\(278\) − 1.52786i − 0.0916352i
\(279\) 0 0
\(280\) − 2.76393i − 0.165177i
\(281\) −1.41641 −0.0844958 −0.0422479 0.999107i \(-0.513452\pi\)
−0.0422479 + 0.999107i \(0.513452\pi\)
\(282\) 0 0
\(283\) − 25.8885i − 1.53891i −0.638699 0.769457i \(-0.720527\pi\)
0.638699 0.769457i \(-0.279473\pi\)
\(284\) 11.2361 0.666738
\(285\) 0 0
\(286\) 10.4721 0.619230
\(287\) 9.52786i 0.562412i
\(288\) 0 0
\(289\) −1.00000 −0.0588235
\(290\) −8.94427 −0.525226
\(291\) 0 0
\(292\) − 8.76393i − 0.512870i
\(293\) − 29.4164i − 1.71852i −0.511535 0.859262i \(-0.670923\pi\)
0.511535 0.859262i \(-0.329077\pi\)
\(294\) 0 0
\(295\) − 26.1803i − 1.52428i
\(296\) −2.00000 −0.116248
\(297\) 0 0
\(298\) 12.1803i 0.705588i
\(299\) 20.9443 1.21124
\(300\) 0 0
\(301\) −15.0557 −0.867798
\(302\) − 4.00000i − 0.230174i
\(303\) 0 0
\(304\) 6.47214 0.371202
\(305\) − 10.0000i − 0.572598i
\(306\) 0 0
\(307\) − 4.18034i − 0.238585i −0.992859 0.119292i \(-0.961937\pi\)
0.992859 0.119292i \(-0.0380626\pi\)
\(308\) 2.47214i 0.140863i
\(309\) 0 0
\(310\) 5.52786 0.313962
\(311\) −19.5967 −1.11123 −0.555615 0.831440i \(-0.687517\pi\)
−0.555615 + 0.831440i \(0.687517\pi\)
\(312\) 0 0
\(313\) − 21.7082i − 1.22702i −0.789687 0.613510i \(-0.789757\pi\)
0.789687 0.613510i \(-0.210243\pi\)
\(314\) 10.1803 0.574510
\(315\) 0 0
\(316\) 0.944272 0.0531194
\(317\) 11.8885i 0.667727i 0.942621 + 0.333864i \(0.108352\pi\)
−0.942621 + 0.333864i \(0.891648\pi\)
\(318\) 0 0
\(319\) 8.00000 0.447914
\(320\) 2.23607i 0.125000i
\(321\) 0 0
\(322\) 4.94427i 0.275534i
\(323\) 6.47214i 0.360119i
\(324\) 0 0
\(325\) − 26.1803i − 1.45222i
\(326\) 22.4721 1.24462
\(327\) 0 0
\(328\) − 7.70820i − 0.425614i
\(329\) −12.9443 −0.713641
\(330\) 0 0
\(331\) −3.41641 −0.187783 −0.0938914 0.995582i \(-0.529931\pi\)
−0.0938914 + 0.995582i \(0.529931\pi\)
\(332\) 10.4721i 0.574733i
\(333\) 0 0
\(334\) 13.8885 0.759947
\(335\) 3.81966 0.208690
\(336\) 0 0
\(337\) 20.1803i 1.09929i 0.835397 + 0.549647i \(0.185238\pi\)
−0.835397 + 0.549647i \(0.814762\pi\)
\(338\) − 14.4164i − 0.784149i
\(339\) 0 0
\(340\) −2.23607 −0.121268
\(341\) −4.94427 −0.267747
\(342\) 0 0
\(343\) 15.4164i 0.832408i
\(344\) 12.1803 0.656720
\(345\) 0 0
\(346\) −15.8885 −0.854173
\(347\) − 22.8328i − 1.22573i −0.790188 0.612865i \(-0.790017\pi\)
0.790188 0.612865i \(-0.209983\pi\)
\(348\) 0 0
\(349\) 28.4721 1.52408 0.762039 0.647531i \(-0.224198\pi\)
0.762039 + 0.647531i \(0.224198\pi\)
\(350\) 6.18034 0.330353
\(351\) 0 0
\(352\) − 2.00000i − 0.106600i
\(353\) 14.9443i 0.795403i 0.917515 + 0.397702i \(0.130192\pi\)
−0.917515 + 0.397702i \(0.869808\pi\)
\(354\) 0 0
\(355\) 25.1246i 1.33348i
\(356\) −12.4721 −0.661022
\(357\) 0 0
\(358\) − 7.70820i − 0.407391i
\(359\) −9.52786 −0.502861 −0.251431 0.967875i \(-0.580901\pi\)
−0.251431 + 0.967875i \(0.580901\pi\)
\(360\) 0 0
\(361\) 22.8885 1.20466
\(362\) 0.472136i 0.0248149i
\(363\) 0 0
\(364\) 6.47214 0.339232
\(365\) 19.5967 1.02574
\(366\) 0 0
\(367\) 5.81966i 0.303784i 0.988397 + 0.151892i \(0.0485366\pi\)
−0.988397 + 0.151892i \(0.951463\pi\)
\(368\) − 4.00000i − 0.208514i
\(369\) 0 0
\(370\) − 4.47214i − 0.232495i
\(371\) −13.5279 −0.702332
\(372\) 0 0
\(373\) − 1.23607i − 0.0640012i −0.999488 0.0320006i \(-0.989812\pi\)
0.999488 0.0320006i \(-0.0101878\pi\)
\(374\) 2.00000 0.103418
\(375\) 0 0
\(376\) 10.4721 0.540059
\(377\) − 20.9443i − 1.07868i
\(378\) 0 0
\(379\) 1.52786 0.0784811 0.0392406 0.999230i \(-0.487506\pi\)
0.0392406 + 0.999230i \(0.487506\pi\)
\(380\) 14.4721i 0.742405i
\(381\) 0 0
\(382\) − 5.52786i − 0.282830i
\(383\) − 17.8885i − 0.914062i −0.889451 0.457031i \(-0.848913\pi\)
0.889451 0.457031i \(-0.151087\pi\)
\(384\) 0 0
\(385\) −5.52786 −0.281726
\(386\) 23.5967 1.20104
\(387\) 0 0
\(388\) − 1.70820i − 0.0867209i
\(389\) 20.1803 1.02318 0.511592 0.859229i \(-0.329056\pi\)
0.511592 + 0.859229i \(0.329056\pi\)
\(390\) 0 0
\(391\) 4.00000 0.202289
\(392\) − 5.47214i − 0.276385i
\(393\) 0 0
\(394\) −15.8885 −0.800453
\(395\) 2.11146i 0.106239i
\(396\) 0 0
\(397\) − 3.88854i − 0.195160i −0.995228 0.0975802i \(-0.968890\pi\)
0.995228 0.0975802i \(-0.0311103\pi\)
\(398\) 8.94427i 0.448336i
\(399\) 0 0
\(400\) −5.00000 −0.250000
\(401\) 36.0689 1.80119 0.900597 0.434655i \(-0.143130\pi\)
0.900597 + 0.434655i \(0.143130\pi\)
\(402\) 0 0
\(403\) 12.9443i 0.644800i
\(404\) −1.70820 −0.0849863
\(405\) 0 0
\(406\) 4.94427 0.245380
\(407\) 4.00000i 0.198273i
\(408\) 0 0
\(409\) −26.3607 −1.30345 −0.651726 0.758455i \(-0.725955\pi\)
−0.651726 + 0.758455i \(0.725955\pi\)
\(410\) 17.2361 0.851229
\(411\) 0 0
\(412\) − 10.9443i − 0.539186i
\(413\) 14.4721i 0.712127i
\(414\) 0 0
\(415\) −23.4164 −1.14947
\(416\) −5.23607 −0.256719
\(417\) 0 0
\(418\) − 12.9443i − 0.633125i
\(419\) 6.36068 0.310740 0.155370 0.987856i \(-0.450343\pi\)
0.155370 + 0.987856i \(0.450343\pi\)
\(420\) 0 0
\(421\) −37.4164 −1.82356 −0.911782 0.410674i \(-0.865293\pi\)
−0.911782 + 0.410674i \(0.865293\pi\)
\(422\) − 24.9443i − 1.21427i
\(423\) 0 0
\(424\) 10.9443 0.531501
\(425\) − 5.00000i − 0.242536i
\(426\) 0 0
\(427\) 5.52786i 0.267512i
\(428\) − 8.00000i − 0.386695i
\(429\) 0 0
\(430\) 27.2361i 1.31344i
\(431\) −31.5967 −1.52196 −0.760981 0.648774i \(-0.775282\pi\)
−0.760981 + 0.648774i \(0.775282\pi\)
\(432\) 0 0
\(433\) 28.3607i 1.36293i 0.731852 + 0.681464i \(0.238656\pi\)
−0.731852 + 0.681464i \(0.761344\pi\)
\(434\) −3.05573 −0.146680
\(435\) 0 0
\(436\) −7.52786 −0.360519
\(437\) − 25.8885i − 1.23842i
\(438\) 0 0
\(439\) −13.5279 −0.645650 −0.322825 0.946459i \(-0.604632\pi\)
−0.322825 + 0.946459i \(0.604632\pi\)
\(440\) 4.47214 0.213201
\(441\) 0 0
\(442\) − 5.23607i − 0.249054i
\(443\) − 4.00000i − 0.190046i −0.995475 0.0950229i \(-0.969708\pi\)
0.995475 0.0950229i \(-0.0302924\pi\)
\(444\) 0 0
\(445\) − 27.8885i − 1.32204i
\(446\) −9.05573 −0.428801
\(447\) 0 0
\(448\) − 1.23607i − 0.0583987i
\(449\) 17.5967 0.830442 0.415221 0.909721i \(-0.363704\pi\)
0.415221 + 0.909721i \(0.363704\pi\)
\(450\) 0 0
\(451\) −15.4164 −0.725930
\(452\) − 10.0000i − 0.470360i
\(453\) 0 0
\(454\) −9.88854 −0.464092
\(455\) 14.4721i 0.678464i
\(456\) 0 0
\(457\) 16.3607i 0.765320i 0.923889 + 0.382660i \(0.124992\pi\)
−0.923889 + 0.382660i \(0.875008\pi\)
\(458\) 21.4164i 1.00072i
\(459\) 0 0
\(460\) 8.94427 0.417029
\(461\) 30.0689 1.40045 0.700224 0.713923i \(-0.253084\pi\)
0.700224 + 0.713923i \(0.253084\pi\)
\(462\) 0 0
\(463\) − 18.9443i − 0.880415i −0.897896 0.440207i \(-0.854905\pi\)
0.897896 0.440207i \(-0.145095\pi\)
\(464\) −4.00000 −0.185695
\(465\) 0 0
\(466\) 5.41641 0.250910
\(467\) 0.944272i 0.0436957i 0.999761 + 0.0218478i \(0.00695494\pi\)
−0.999761 + 0.0218478i \(0.993045\pi\)
\(468\) 0 0
\(469\) −2.11146 −0.0974980
\(470\) 23.4164i 1.08012i
\(471\) 0 0
\(472\) − 11.7082i − 0.538914i
\(473\) − 24.3607i − 1.12011i
\(474\) 0 0
\(475\) −32.3607 −1.48481
\(476\) 1.23607 0.0566551
\(477\) 0 0
\(478\) − 21.8885i − 1.00116i
\(479\) −35.5967 −1.62646 −0.813228 0.581945i \(-0.802292\pi\)
−0.813228 + 0.581945i \(0.802292\pi\)
\(480\) 0 0
\(481\) 10.4721 0.477488
\(482\) 9.41641i 0.428906i
\(483\) 0 0
\(484\) 7.00000 0.318182
\(485\) 3.81966 0.173442
\(486\) 0 0
\(487\) 16.2918i 0.738252i 0.929379 + 0.369126i \(0.120343\pi\)
−0.929379 + 0.369126i \(0.879657\pi\)
\(488\) − 4.47214i − 0.202444i
\(489\) 0 0
\(490\) 12.2361 0.552769
\(491\) −12.2918 −0.554721 −0.277360 0.960766i \(-0.589460\pi\)
−0.277360 + 0.960766i \(0.589460\pi\)
\(492\) 0 0
\(493\) − 4.00000i − 0.180151i
\(494\) −33.8885 −1.52472
\(495\) 0 0
\(496\) 2.47214 0.111002
\(497\) − 13.8885i − 0.622986i
\(498\) 0 0
\(499\) 16.0000 0.716258 0.358129 0.933672i \(-0.383415\pi\)
0.358129 + 0.933672i \(0.383415\pi\)
\(500\) − 11.1803i − 0.500000i
\(501\) 0 0
\(502\) 10.1803i 0.454371i
\(503\) 27.4164i 1.22244i 0.791462 + 0.611219i \(0.209320\pi\)
−0.791462 + 0.611219i \(0.790680\pi\)
\(504\) 0 0
\(505\) − 3.81966i − 0.169973i
\(506\) −8.00000 −0.355643
\(507\) 0 0
\(508\) 14.0000i 0.621150i
\(509\) 1.34752 0.0597280 0.0298640 0.999554i \(-0.490493\pi\)
0.0298640 + 0.999554i \(0.490493\pi\)
\(510\) 0 0
\(511\) −10.8328 −0.479216
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) −18.0000 −0.793946
\(515\) 24.4721 1.07837
\(516\) 0 0
\(517\) − 20.9443i − 0.921128i
\(518\) 2.47214i 0.108619i
\(519\) 0 0
\(520\) − 11.7082i − 0.513439i
\(521\) −5.81966 −0.254964 −0.127482 0.991841i \(-0.540689\pi\)
−0.127482 + 0.991841i \(0.540689\pi\)
\(522\) 0 0
\(523\) − 14.2918i − 0.624937i −0.949928 0.312468i \(-0.898844\pi\)
0.949928 0.312468i \(-0.101156\pi\)
\(524\) 12.4721 0.544848
\(525\) 0 0
\(526\) −4.00000 −0.174408
\(527\) 2.47214i 0.107688i
\(528\) 0 0
\(529\) 7.00000 0.304348
\(530\) 24.4721i 1.06300i
\(531\) 0 0
\(532\) − 8.00000i − 0.346844i
\(533\) 40.3607i 1.74822i
\(534\) 0 0
\(535\) 17.8885 0.773389
\(536\) 1.70820 0.0737832
\(537\) 0 0
\(538\) − 7.05573i − 0.304194i
\(539\) −10.9443 −0.471403
\(540\) 0 0
\(541\) −31.3050 −1.34590 −0.672952 0.739686i \(-0.734974\pi\)
−0.672952 + 0.739686i \(0.734974\pi\)
\(542\) 4.00000i 0.171815i
\(543\) 0 0
\(544\) −1.00000 −0.0428746
\(545\) − 16.8328i − 0.721039i
\(546\) 0 0
\(547\) − 0.944272i − 0.0403742i −0.999796 0.0201871i \(-0.993574\pi\)
0.999796 0.0201871i \(-0.00642618\pi\)
\(548\) 2.00000i 0.0854358i
\(549\) 0 0
\(550\) 10.0000i 0.426401i
\(551\) −25.8885 −1.10289
\(552\) 0 0
\(553\) − 1.16718i − 0.0496337i
\(554\) 26.3607 1.11996
\(555\) 0 0
\(556\) 1.52786 0.0647959
\(557\) − 25.0557i − 1.06165i −0.847483 0.530823i \(-0.821883\pi\)
0.847483 0.530823i \(-0.178117\pi\)
\(558\) 0 0
\(559\) −63.7771 −2.69748
\(560\) 2.76393 0.116797
\(561\) 0 0
\(562\) − 1.41641i − 0.0597476i
\(563\) − 2.11146i − 0.0889873i −0.999010 0.0444936i \(-0.985833\pi\)
0.999010 0.0444936i \(-0.0141674\pi\)
\(564\) 0 0
\(565\) 22.3607 0.940721
\(566\) 25.8885 1.08818
\(567\) 0 0
\(568\) 11.2361i 0.471455i
\(569\) 6.00000 0.251533 0.125767 0.992060i \(-0.459861\pi\)
0.125767 + 0.992060i \(0.459861\pi\)
\(570\) 0 0
\(571\) 36.3607 1.52165 0.760824 0.648959i \(-0.224795\pi\)
0.760824 + 0.648959i \(0.224795\pi\)
\(572\) 10.4721i 0.437862i
\(573\) 0 0
\(574\) −9.52786 −0.397685
\(575\) 20.0000i 0.834058i
\(576\) 0 0
\(577\) 35.4164i 1.47440i 0.675672 + 0.737202i \(0.263853\pi\)
−0.675672 + 0.737202i \(0.736147\pi\)
\(578\) − 1.00000i − 0.0415945i
\(579\) 0 0
\(580\) − 8.94427i − 0.371391i
\(581\) 12.9443 0.537019
\(582\) 0 0
\(583\) − 21.8885i − 0.906531i
\(584\) 8.76393 0.362654
\(585\) 0 0
\(586\) 29.4164 1.21518
\(587\) − 5.52786i − 0.228159i −0.993472 0.114080i \(-0.963608\pi\)
0.993472 0.114080i \(-0.0363919\pi\)
\(588\) 0 0
\(589\) 16.0000 0.659269
\(590\) 26.1803 1.07783
\(591\) 0 0
\(592\) − 2.00000i − 0.0821995i
\(593\) − 30.9443i − 1.27073i −0.772212 0.635364i \(-0.780850\pi\)
0.772212 0.635364i \(-0.219150\pi\)
\(594\) 0 0
\(595\) 2.76393i 0.113310i
\(596\) −12.1803 −0.498926
\(597\) 0 0
\(598\) 20.9443i 0.856475i
\(599\) 25.5279 1.04304 0.521520 0.853239i \(-0.325365\pi\)
0.521520 + 0.853239i \(0.325365\pi\)
\(600\) 0 0
\(601\) −28.4721 −1.16140 −0.580701 0.814117i \(-0.697222\pi\)
−0.580701 + 0.814117i \(0.697222\pi\)
\(602\) − 15.0557i − 0.613626i
\(603\) 0 0
\(604\) 4.00000 0.162758
\(605\) 15.6525i 0.636364i
\(606\) 0 0
\(607\) 31.1246i 1.26331i 0.775250 + 0.631655i \(0.217624\pi\)
−0.775250 + 0.631655i \(0.782376\pi\)
\(608\) 6.47214i 0.262480i
\(609\) 0 0
\(610\) 10.0000 0.404888
\(611\) −54.8328 −2.21830
\(612\) 0 0
\(613\) − 42.1803i − 1.70365i −0.523828 0.851824i \(-0.675497\pi\)
0.523828 0.851824i \(-0.324503\pi\)
\(614\) 4.18034 0.168705
\(615\) 0 0
\(616\) −2.47214 −0.0996052
\(617\) − 20.4721i − 0.824177i −0.911144 0.412089i \(-0.864799\pi\)
0.911144 0.412089i \(-0.135201\pi\)
\(618\) 0 0
\(619\) 48.9443 1.96724 0.983618 0.180264i \(-0.0576953\pi\)
0.983618 + 0.180264i \(0.0576953\pi\)
\(620\) 5.52786i 0.222004i
\(621\) 0 0
\(622\) − 19.5967i − 0.785758i
\(623\) 15.4164i 0.617645i
\(624\) 0 0
\(625\) 25.0000 1.00000
\(626\) 21.7082 0.867634
\(627\) 0 0
\(628\) 10.1803i 0.406240i
\(629\) 2.00000 0.0797452
\(630\) 0 0
\(631\) −9.88854 −0.393657 −0.196828 0.980438i \(-0.563064\pi\)
−0.196828 + 0.980438i \(0.563064\pi\)
\(632\) 0.944272i 0.0375611i
\(633\) 0 0
\(634\) −11.8885 −0.472154
\(635\) −31.3050 −1.24230
\(636\) 0 0
\(637\) 28.6525i 1.13525i
\(638\) 8.00000i 0.316723i
\(639\) 0 0
\(640\) −2.23607 −0.0883883
\(641\) −11.7082 −0.462446 −0.231223 0.972901i \(-0.574273\pi\)
−0.231223 + 0.972901i \(0.574273\pi\)
\(642\) 0 0
\(643\) − 27.4164i − 1.08120i −0.841281 0.540599i \(-0.818198\pi\)
0.841281 0.540599i \(-0.181802\pi\)
\(644\) −4.94427 −0.194832
\(645\) 0 0
\(646\) −6.47214 −0.254643
\(647\) − 20.9443i − 0.823404i −0.911318 0.411702i \(-0.864934\pi\)
0.911318 0.411702i \(-0.135066\pi\)
\(648\) 0 0
\(649\) −23.4164 −0.919174
\(650\) 26.1803 1.02688
\(651\) 0 0
\(652\) 22.4721i 0.880077i
\(653\) 3.52786i 0.138056i 0.997615 + 0.0690280i \(0.0219898\pi\)
−0.997615 + 0.0690280i \(0.978010\pi\)
\(654\) 0 0
\(655\) 27.8885i 1.08970i
\(656\) 7.70820 0.300955
\(657\) 0 0
\(658\) − 12.9443i − 0.504620i
\(659\) 28.2918 1.10209 0.551046 0.834475i \(-0.314229\pi\)
0.551046 + 0.834475i \(0.314229\pi\)
\(660\) 0 0
\(661\) 13.4164 0.521838 0.260919 0.965361i \(-0.415974\pi\)
0.260919 + 0.965361i \(0.415974\pi\)
\(662\) − 3.41641i − 0.132782i
\(663\) 0 0
\(664\) −10.4721 −0.406398
\(665\) 17.8885 0.693688
\(666\) 0 0
\(667\) 16.0000i 0.619522i
\(668\) 13.8885i 0.537364i
\(669\) 0 0
\(670\) 3.81966i 0.147566i
\(671\) −8.94427 −0.345290
\(672\) 0 0
\(673\) 4.18034i 0.161140i 0.996749 + 0.0805701i \(0.0256741\pi\)
−0.996749 + 0.0805701i \(0.974326\pi\)
\(674\) −20.1803 −0.777318
\(675\) 0 0
\(676\) 14.4164 0.554477
\(677\) − 9.05573i − 0.348040i −0.984742 0.174020i \(-0.944324\pi\)
0.984742 0.174020i \(-0.0556757\pi\)
\(678\) 0 0
\(679\) −2.11146 −0.0810303
\(680\) − 2.23607i − 0.0857493i
\(681\) 0 0
\(682\) − 4.94427i − 0.189326i
\(683\) 32.9443i 1.26058i 0.776361 + 0.630289i \(0.217064\pi\)
−0.776361 + 0.630289i \(0.782936\pi\)
\(684\) 0 0
\(685\) −4.47214 −0.170872
\(686\) −15.4164 −0.588601
\(687\) 0 0
\(688\) 12.1803i 0.464371i
\(689\) −57.3050 −2.18314
\(690\) 0 0
\(691\) −4.94427 −0.188089 −0.0940445 0.995568i \(-0.529980\pi\)
−0.0940445 + 0.995568i \(0.529980\pi\)
\(692\) − 15.8885i − 0.603992i
\(693\) 0 0
\(694\) 22.8328 0.866722
\(695\) 3.41641i 0.129592i
\(696\) 0 0
\(697\) 7.70820i 0.291969i
\(698\) 28.4721i 1.07769i
\(699\) 0 0
\(700\) 6.18034i 0.233595i
\(701\) −11.5967 −0.438003 −0.219002 0.975725i \(-0.570280\pi\)
−0.219002 + 0.975725i \(0.570280\pi\)
\(702\) 0 0
\(703\) − 12.9443i − 0.488202i
\(704\) 2.00000 0.0753778
\(705\) 0 0
\(706\) −14.9443 −0.562435
\(707\) 2.11146i 0.0794095i
\(708\) 0 0
\(709\) 39.5279 1.48450 0.742250 0.670123i \(-0.233759\pi\)
0.742250 + 0.670123i \(0.233759\pi\)
\(710\) −25.1246 −0.942910
\(711\) 0 0
\(712\) − 12.4721i − 0.467413i
\(713\) − 9.88854i − 0.370329i
\(714\) 0 0
\(715\) −23.4164 −0.875724
\(716\) 7.70820 0.288069
\(717\) 0 0
\(718\) − 9.52786i − 0.355577i
\(719\) −36.5410 −1.36275 −0.681375 0.731934i \(-0.738618\pi\)
−0.681375 + 0.731934i \(0.738618\pi\)
\(720\) 0 0
\(721\) −13.5279 −0.503804
\(722\) 22.8885i 0.851823i
\(723\) 0 0
\(724\) −0.472136 −0.0175468
\(725\) 20.0000 0.742781
\(726\) 0 0
\(727\) 23.8885i 0.885977i 0.896527 + 0.442989i \(0.146082\pi\)
−0.896527 + 0.442989i \(0.853918\pi\)
\(728\) 6.47214i 0.239873i
\(729\) 0 0
\(730\) 19.5967i 0.725308i
\(731\) −12.1803 −0.450506
\(732\) 0 0
\(733\) 38.5410i 1.42355i 0.702410 + 0.711773i \(0.252107\pi\)
−0.702410 + 0.711773i \(0.747893\pi\)
\(734\) −5.81966 −0.214808
\(735\) 0 0
\(736\) 4.00000 0.147442
\(737\) − 3.41641i − 0.125845i
\(738\) 0 0
\(739\) −33.5279 −1.23334 −0.616671 0.787221i \(-0.711519\pi\)
−0.616671 + 0.787221i \(0.711519\pi\)
\(740\) 4.47214 0.164399
\(741\) 0 0
\(742\) − 13.5279i − 0.496624i
\(743\) − 33.5279i − 1.23002i −0.788520 0.615009i \(-0.789152\pi\)
0.788520 0.615009i \(-0.210848\pi\)
\(744\) 0 0
\(745\) − 27.2361i − 0.997852i
\(746\) 1.23607 0.0452557
\(747\) 0 0
\(748\) 2.00000i 0.0731272i
\(749\) −9.88854 −0.361320
\(750\) 0 0
\(751\) 29.8885 1.09065 0.545324 0.838225i \(-0.316407\pi\)
0.545324 + 0.838225i \(0.316407\pi\)
\(752\) 10.4721i 0.381880i
\(753\) 0 0
\(754\) 20.9443 0.762745
\(755\) 8.94427i 0.325515i
\(756\) 0 0
\(757\) 37.5967i 1.36648i 0.730195 + 0.683239i \(0.239429\pi\)
−0.730195 + 0.683239i \(0.760571\pi\)
\(758\) 1.52786i 0.0554945i
\(759\) 0 0
\(760\) −14.4721 −0.524960
\(761\) −52.8328 −1.91519 −0.957594 0.288121i \(-0.906969\pi\)
−0.957594 + 0.288121i \(0.906969\pi\)
\(762\) 0 0
\(763\) 9.30495i 0.336862i
\(764\) 5.52786 0.199991
\(765\) 0 0
\(766\) 17.8885 0.646339
\(767\) 61.3050i 2.21359i
\(768\) 0 0
\(769\) 34.3607 1.23908 0.619539 0.784966i \(-0.287320\pi\)
0.619539 + 0.784966i \(0.287320\pi\)
\(770\) − 5.52786i − 0.199210i
\(771\) 0 0
\(772\) 23.5967i 0.849266i
\(773\) − 33.4164i − 1.20190i −0.799285 0.600952i \(-0.794788\pi\)
0.799285 0.600952i \(-0.205212\pi\)
\(774\) 0 0
\(775\) −12.3607 −0.444009
\(776\) 1.70820 0.0613209
\(777\) 0 0
\(778\) 20.1803i 0.723500i
\(779\) 49.8885 1.78744
\(780\) 0 0
\(781\) 22.4721 0.804116
\(782\) 4.00000i 0.143040i
\(783\) 0 0
\(784\) 5.47214 0.195433
\(785\) −22.7639 −0.812480
\(786\) 0 0
\(787\) − 46.4721i − 1.65655i −0.560320 0.828276i \(-0.689322\pi\)
0.560320 0.828276i \(-0.310678\pi\)
\(788\) − 15.8885i − 0.566006i
\(789\) 0 0
\(790\) −2.11146 −0.0751222
\(791\) −12.3607 −0.439495
\(792\) 0 0
\(793\) 23.4164i 0.831541i
\(794\) 3.88854 0.137999
\(795\) 0 0
\(796\) −8.94427 −0.317021
\(797\) 46.0000i 1.62940i 0.579880 + 0.814702i \(0.303099\pi\)
−0.579880 + 0.814702i \(0.696901\pi\)
\(798\) 0 0
\(799\) −10.4721 −0.370478
\(800\) − 5.00000i − 0.176777i
\(801\) 0 0
\(802\) 36.0689i 1.27364i
\(803\) − 17.5279i − 0.618545i
\(804\) 0 0
\(805\) − 11.0557i − 0.389663i
\(806\) −12.9443 −0.455943
\(807\) 0 0
\(808\) − 1.70820i − 0.0600944i
\(809\) 47.1246 1.65681 0.828407 0.560127i \(-0.189248\pi\)
0.828407 + 0.560127i \(0.189248\pi\)
\(810\) 0 0
\(811\) 42.2492 1.48357 0.741785 0.670637i \(-0.233979\pi\)
0.741785 + 0.670637i \(0.233979\pi\)
\(812\) 4.94427i 0.173510i
\(813\) 0 0
\(814\) −4.00000 −0.140200
\(815\) −50.2492 −1.76015
\(816\) 0 0
\(817\) 78.8328i 2.75801i
\(818\) − 26.3607i − 0.921680i
\(819\) 0 0
\(820\) 17.2361i 0.601910i
\(821\) −15.4164 −0.538036 −0.269018 0.963135i \(-0.586699\pi\)
−0.269018 + 0.963135i \(0.586699\pi\)
\(822\) 0 0
\(823\) 38.1803i 1.33088i 0.746450 + 0.665441i \(0.231757\pi\)
−0.746450 + 0.665441i \(0.768243\pi\)
\(824\) 10.9443 0.381262
\(825\) 0 0
\(826\) −14.4721 −0.503550
\(827\) − 23.0557i − 0.801726i −0.916138 0.400863i \(-0.868710\pi\)
0.916138 0.400863i \(-0.131290\pi\)
\(828\) 0 0
\(829\) −34.0000 −1.18087 −0.590434 0.807086i \(-0.701044\pi\)
−0.590434 + 0.807086i \(0.701044\pi\)
\(830\) − 23.4164i − 0.812795i
\(831\) 0 0
\(832\) − 5.23607i − 0.181528i
\(833\) 5.47214i 0.189598i
\(834\) 0 0
\(835\) −31.0557 −1.07473
\(836\) 12.9443 0.447687
\(837\) 0 0
\(838\) 6.36068i 0.219726i
\(839\) −22.0689 −0.761902 −0.380951 0.924595i \(-0.624403\pi\)
−0.380951 + 0.924595i \(0.624403\pi\)
\(840\) 0 0
\(841\) −13.0000 −0.448276
\(842\) − 37.4164i − 1.28945i
\(843\) 0 0
\(844\) 24.9443 0.858617
\(845\) 32.2361i 1.10895i
\(846\) 0 0
\(847\) − 8.65248i − 0.297303i
\(848\) 10.9443i 0.375828i
\(849\) 0 0
\(850\) 5.00000 0.171499
\(851\) −8.00000 −0.274236
\(852\) 0 0
\(853\) − 6.36068i − 0.217786i −0.994054 0.108893i \(-0.965269\pi\)
0.994054 0.108893i \(-0.0347305\pi\)
\(854\) −5.52786 −0.189160
\(855\) 0 0
\(856\) 8.00000 0.273434
\(857\) 50.3607i 1.72029i 0.510051 + 0.860144i \(0.329626\pi\)
−0.510051 + 0.860144i \(0.670374\pi\)
\(858\) 0 0
\(859\) −7.05573 −0.240738 −0.120369 0.992729i \(-0.538408\pi\)
−0.120369 + 0.992729i \(0.538408\pi\)
\(860\) −27.2361 −0.928742
\(861\) 0 0
\(862\) − 31.5967i − 1.07619i
\(863\) 21.3050i 0.725229i 0.931939 + 0.362614i \(0.118116\pi\)
−0.931939 + 0.362614i \(0.881884\pi\)
\(864\) 0 0
\(865\) 35.5279 1.20798
\(866\) −28.3607 −0.963735
\(867\) 0 0
\(868\) − 3.05573i − 0.103718i
\(869\) 1.88854 0.0640645
\(870\) 0 0
\(871\) −8.94427 −0.303065
\(872\) − 7.52786i − 0.254926i
\(873\) 0 0
\(874\) 25.8885 0.875693
\(875\) −13.8197 −0.467190
\(876\) 0 0
\(877\) 40.4721i 1.36665i 0.730116 + 0.683323i \(0.239466\pi\)
−0.730116 + 0.683323i \(0.760534\pi\)
\(878\) − 13.5279i − 0.456543i
\(879\) 0 0
\(880\) 4.47214i 0.150756i
\(881\) 7.12461 0.240034 0.120017 0.992772i \(-0.461705\pi\)
0.120017 + 0.992772i \(0.461705\pi\)
\(882\) 0 0
\(883\) − 27.2361i − 0.916567i −0.888806 0.458283i \(-0.848465\pi\)
0.888806 0.458283i \(-0.151535\pi\)
\(884\) 5.23607 0.176108
\(885\) 0 0
\(886\) 4.00000 0.134383
\(887\) 8.94427i 0.300319i 0.988662 + 0.150160i \(0.0479788\pi\)
−0.988662 + 0.150160i \(0.952021\pi\)
\(888\) 0 0
\(889\) 17.3050 0.580389
\(890\) 27.8885 0.934826
\(891\) 0 0
\(892\) − 9.05573i − 0.303208i
\(893\) 67.7771i 2.26807i
\(894\) 0 0
\(895\) 17.2361i 0.576138i
\(896\) 1.23607 0.0412941
\(897\) 0 0
\(898\) 17.5967i 0.587211i
\(899\) −9.88854 −0.329801
\(900\) 0 0
\(901\) −10.9443 −0.364607
\(902\) − 15.4164i − 0.513310i
\(903\) 0 0
\(904\) 10.0000 0.332595
\(905\) − 1.05573i − 0.0350936i
\(906\) 0 0
\(907\) − 4.36068i − 0.144794i −0.997376 0.0723970i \(-0.976935\pi\)
0.997376 0.0723970i \(-0.0230649\pi\)
\(908\) − 9.88854i − 0.328163i
\(909\) 0 0
\(910\) −14.4721 −0.479747
\(911\) 12.5410 0.415503 0.207751 0.978182i \(-0.433386\pi\)
0.207751 + 0.978182i \(0.433386\pi\)
\(912\) 0 0
\(913\) 20.9443i 0.693154i
\(914\) −16.3607 −0.541163
\(915\) 0 0
\(916\) −21.4164 −0.707618
\(917\) − 15.4164i − 0.509095i
\(918\) 0 0
\(919\) −52.7214 −1.73912 −0.869559 0.493830i \(-0.835597\pi\)
−0.869559 + 0.493830i \(0.835597\pi\)
\(920\) 8.94427i 0.294884i
\(921\) 0 0
\(922\) 30.0689i 0.990266i
\(923\) − 58.8328i − 1.93651i
\(924\) 0 0
\(925\) 10.0000i 0.328798i
\(926\) 18.9443 0.622547
\(927\) 0 0
\(928\) − 4.00000i − 0.131306i
\(929\) 24.0689 0.789674 0.394837 0.918751i \(-0.370801\pi\)
0.394837 + 0.918751i \(0.370801\pi\)
\(930\) 0 0
\(931\) 35.4164 1.16073
\(932\) 5.41641i 0.177420i
\(933\) 0 0
\(934\) −0.944272 −0.0308975
\(935\) −4.47214 −0.146254
\(936\) 0 0
\(937\) − 17.5279i − 0.572610i −0.958138 0.286305i \(-0.907573\pi\)
0.958138 0.286305i \(-0.0924271\pi\)
\(938\) − 2.11146i − 0.0689415i
\(939\) 0 0
\(940\) −23.4164 −0.763759
\(941\) −13.3050 −0.433729 −0.216865 0.976202i \(-0.569583\pi\)
−0.216865 + 0.976202i \(0.569583\pi\)
\(942\) 0 0
\(943\) − 30.8328i − 1.00405i
\(944\) 11.7082 0.381070
\(945\) 0 0
\(946\) 24.3607 0.792034
\(947\) 48.7214i 1.58323i 0.611019 + 0.791616i \(0.290760\pi\)
−0.611019 + 0.791616i \(0.709240\pi\)
\(948\) 0 0
\(949\) −45.8885 −1.48961
\(950\) − 32.3607i − 1.04992i
\(951\) 0 0
\(952\) 1.23607i 0.0400612i
\(953\) − 26.9443i − 0.872811i −0.899750 0.436405i \(-0.856251\pi\)
0.899750 0.436405i \(-0.143749\pi\)
\(954\) 0 0
\(955\) 12.3607i 0.399982i
\(956\) 21.8885 0.707926
\(957\) 0 0
\(958\) − 35.5967i − 1.15008i
\(959\) 2.47214 0.0798294
\(960\) 0 0
\(961\) −24.8885 −0.802856
\(962\) 10.4721i 0.337635i
\(963\) 0 0
\(964\) −9.41641 −0.303282
\(965\) −52.7639 −1.69853
\(966\) 0 0
\(967\) 0.472136i 0.0151829i 0.999971 + 0.00759143i \(0.00241645\pi\)
−0.999971 + 0.00759143i \(0.997584\pi\)
\(968\) 7.00000i 0.224989i
\(969\) 0 0
\(970\) 3.81966i 0.122642i
\(971\) 22.7639 0.730529 0.365265 0.930904i \(-0.380978\pi\)
0.365265 + 0.930904i \(0.380978\pi\)
\(972\) 0 0
\(973\) − 1.88854i − 0.0605439i
\(974\) −16.2918 −0.522023
\(975\) 0 0
\(976\) 4.47214 0.143150
\(977\) 26.9443i 0.862024i 0.902346 + 0.431012i \(0.141843\pi\)
−0.902346 + 0.431012i \(0.858157\pi\)
\(978\) 0 0
\(979\) −24.9443 −0.797222
\(980\) 12.2361i 0.390867i
\(981\) 0 0
\(982\) − 12.2918i − 0.392247i
\(983\) − 11.4164i − 0.364127i −0.983287 0.182063i \(-0.941722\pi\)
0.983287 0.182063i \(-0.0582776\pi\)
\(984\) 0 0
\(985\) 35.5279 1.13201
\(986\) 4.00000 0.127386
\(987\) 0 0
\(988\) − 33.8885i − 1.07814i
\(989\) 48.7214 1.54925
\(990\) 0 0
\(991\) −10.8328 −0.344116 −0.172058 0.985087i \(-0.555042\pi\)
−0.172058 + 0.985087i \(0.555042\pi\)
\(992\) 2.47214i 0.0784904i
\(993\) 0 0
\(994\) 13.8885 0.440518
\(995\) − 20.0000i − 0.634043i
\(996\) 0 0
\(997\) − 41.0557i − 1.30025i −0.759828 0.650124i \(-0.774717\pi\)
0.759828 0.650124i \(-0.225283\pi\)
\(998\) 16.0000i 0.506471i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1530.2.d.f.919.3 4
3.2 odd 2 510.2.d.b.409.2 4
5.2 odd 4 7650.2.a.cx.1.1 2
5.3 odd 4 7650.2.a.da.1.2 2
5.4 even 2 inner 1530.2.d.f.919.2 4
12.11 even 2 4080.2.m.m.2449.4 4
15.2 even 4 2550.2.a.bk.1.1 2
15.8 even 4 2550.2.a.bh.1.2 2
15.14 odd 2 510.2.d.b.409.3 yes 4
60.59 even 2 4080.2.m.m.2449.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
510.2.d.b.409.2 4 3.2 odd 2
510.2.d.b.409.3 yes 4 15.14 odd 2
1530.2.d.f.919.2 4 5.4 even 2 inner
1530.2.d.f.919.3 4 1.1 even 1 trivial
2550.2.a.bh.1.2 2 15.8 even 4
2550.2.a.bk.1.1 2 15.2 even 4
4080.2.m.m.2449.1 4 60.59 even 2
4080.2.m.m.2449.4 4 12.11 even 2
7650.2.a.cx.1.1 2 5.2 odd 4
7650.2.a.da.1.2 2 5.3 odd 4