Properties

Label 2550.2.a.bh.1.2
Level $2550$
Weight $2$
Character 2550.1
Self dual yes
Analytic conductor $20.362$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2550,2,Mod(1,2550)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2550, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2550.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2550 = 2 \cdot 3 \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2550.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(20.3618525154\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 510)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-0.618034\) of defining polynomial
Character \(\chi\) \(=\) 2550.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{3} +1.00000 q^{4} -1.00000 q^{6} +1.23607 q^{7} -1.00000 q^{8} +1.00000 q^{9} +2.00000 q^{11} +1.00000 q^{12} -5.23607 q^{13} -1.23607 q^{14} +1.00000 q^{16} -1.00000 q^{17} -1.00000 q^{18} -6.47214 q^{19} +1.23607 q^{21} -2.00000 q^{22} -4.00000 q^{23} -1.00000 q^{24} +5.23607 q^{26} +1.00000 q^{27} +1.23607 q^{28} -4.00000 q^{29} +2.47214 q^{31} -1.00000 q^{32} +2.00000 q^{33} +1.00000 q^{34} +1.00000 q^{36} -2.00000 q^{37} +6.47214 q^{38} -5.23607 q^{39} -7.70820 q^{41} -1.23607 q^{42} -12.1803 q^{43} +2.00000 q^{44} +4.00000 q^{46} -10.4721 q^{47} +1.00000 q^{48} -5.47214 q^{49} -1.00000 q^{51} -5.23607 q^{52} +10.9443 q^{53} -1.00000 q^{54} -1.23607 q^{56} -6.47214 q^{57} +4.00000 q^{58} +11.7082 q^{59} +4.47214 q^{61} -2.47214 q^{62} +1.23607 q^{63} +1.00000 q^{64} -2.00000 q^{66} +1.70820 q^{67} -1.00000 q^{68} -4.00000 q^{69} +11.2361 q^{71} -1.00000 q^{72} -8.76393 q^{73} +2.00000 q^{74} -6.47214 q^{76} +2.47214 q^{77} +5.23607 q^{78} +0.944272 q^{79} +1.00000 q^{81} +7.70820 q^{82} -10.4721 q^{83} +1.23607 q^{84} +12.1803 q^{86} -4.00000 q^{87} -2.00000 q^{88} +12.4721 q^{89} -6.47214 q^{91} -4.00000 q^{92} +2.47214 q^{93} +10.4721 q^{94} -1.00000 q^{96} +1.70820 q^{97} +5.47214 q^{98} +2.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 2 q^{3} + 2 q^{4} - 2 q^{6} - 2 q^{7} - 2 q^{8} + 2 q^{9} + 4 q^{11} + 2 q^{12} - 6 q^{13} + 2 q^{14} + 2 q^{16} - 2 q^{17} - 2 q^{18} - 4 q^{19} - 2 q^{21} - 4 q^{22} - 8 q^{23} - 2 q^{24}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 1.00000 0.577350
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) −1.00000 −0.408248
\(7\) 1.23607 0.467190 0.233595 0.972334i \(-0.424951\pi\)
0.233595 + 0.972334i \(0.424951\pi\)
\(8\) −1.00000 −0.353553
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 2.00000 0.603023 0.301511 0.953463i \(-0.402509\pi\)
0.301511 + 0.953463i \(0.402509\pi\)
\(12\) 1.00000 0.288675
\(13\) −5.23607 −1.45222 −0.726112 0.687576i \(-0.758675\pi\)
−0.726112 + 0.687576i \(0.758675\pi\)
\(14\) −1.23607 −0.330353
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −1.00000 −0.242536
\(18\) −1.00000 −0.235702
\(19\) −6.47214 −1.48481 −0.742405 0.669951i \(-0.766315\pi\)
−0.742405 + 0.669951i \(0.766315\pi\)
\(20\) 0 0
\(21\) 1.23607 0.269732
\(22\) −2.00000 −0.426401
\(23\) −4.00000 −0.834058 −0.417029 0.908893i \(-0.636929\pi\)
−0.417029 + 0.908893i \(0.636929\pi\)
\(24\) −1.00000 −0.204124
\(25\) 0 0
\(26\) 5.23607 1.02688
\(27\) 1.00000 0.192450
\(28\) 1.23607 0.233595
\(29\) −4.00000 −0.742781 −0.371391 0.928477i \(-0.621119\pi\)
−0.371391 + 0.928477i \(0.621119\pi\)
\(30\) 0 0
\(31\) 2.47214 0.444009 0.222004 0.975046i \(-0.428740\pi\)
0.222004 + 0.975046i \(0.428740\pi\)
\(32\) −1.00000 −0.176777
\(33\) 2.00000 0.348155
\(34\) 1.00000 0.171499
\(35\) 0 0
\(36\) 1.00000 0.166667
\(37\) −2.00000 −0.328798 −0.164399 0.986394i \(-0.552568\pi\)
−0.164399 + 0.986394i \(0.552568\pi\)
\(38\) 6.47214 1.04992
\(39\) −5.23607 −0.838442
\(40\) 0 0
\(41\) −7.70820 −1.20382 −0.601910 0.798564i \(-0.705593\pi\)
−0.601910 + 0.798564i \(0.705593\pi\)
\(42\) −1.23607 −0.190729
\(43\) −12.1803 −1.85748 −0.928742 0.370726i \(-0.879109\pi\)
−0.928742 + 0.370726i \(0.879109\pi\)
\(44\) 2.00000 0.301511
\(45\) 0 0
\(46\) 4.00000 0.589768
\(47\) −10.4721 −1.52752 −0.763759 0.645501i \(-0.776648\pi\)
−0.763759 + 0.645501i \(0.776648\pi\)
\(48\) 1.00000 0.144338
\(49\) −5.47214 −0.781734
\(50\) 0 0
\(51\) −1.00000 −0.140028
\(52\) −5.23607 −0.726112
\(53\) 10.9443 1.50331 0.751656 0.659556i \(-0.229256\pi\)
0.751656 + 0.659556i \(0.229256\pi\)
\(54\) −1.00000 −0.136083
\(55\) 0 0
\(56\) −1.23607 −0.165177
\(57\) −6.47214 −0.857255
\(58\) 4.00000 0.525226
\(59\) 11.7082 1.52428 0.762139 0.647413i \(-0.224149\pi\)
0.762139 + 0.647413i \(0.224149\pi\)
\(60\) 0 0
\(61\) 4.47214 0.572598 0.286299 0.958140i \(-0.407575\pi\)
0.286299 + 0.958140i \(0.407575\pi\)
\(62\) −2.47214 −0.313962
\(63\) 1.23607 0.155730
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) −2.00000 −0.246183
\(67\) 1.70820 0.208690 0.104345 0.994541i \(-0.466725\pi\)
0.104345 + 0.994541i \(0.466725\pi\)
\(68\) −1.00000 −0.121268
\(69\) −4.00000 −0.481543
\(70\) 0 0
\(71\) 11.2361 1.33348 0.666738 0.745292i \(-0.267690\pi\)
0.666738 + 0.745292i \(0.267690\pi\)
\(72\) −1.00000 −0.117851
\(73\) −8.76393 −1.02574 −0.512870 0.858466i \(-0.671418\pi\)
−0.512870 + 0.858466i \(0.671418\pi\)
\(74\) 2.00000 0.232495
\(75\) 0 0
\(76\) −6.47214 −0.742405
\(77\) 2.47214 0.281726
\(78\) 5.23607 0.592868
\(79\) 0.944272 0.106239 0.0531194 0.998588i \(-0.483084\pi\)
0.0531194 + 0.998588i \(0.483084\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 7.70820 0.851229
\(83\) −10.4721 −1.14947 −0.574733 0.818341i \(-0.694894\pi\)
−0.574733 + 0.818341i \(0.694894\pi\)
\(84\) 1.23607 0.134866
\(85\) 0 0
\(86\) 12.1803 1.31344
\(87\) −4.00000 −0.428845
\(88\) −2.00000 −0.213201
\(89\) 12.4721 1.32204 0.661022 0.750367i \(-0.270123\pi\)
0.661022 + 0.750367i \(0.270123\pi\)
\(90\) 0 0
\(91\) −6.47214 −0.678464
\(92\) −4.00000 −0.417029
\(93\) 2.47214 0.256349
\(94\) 10.4721 1.08012
\(95\) 0 0
\(96\) −1.00000 −0.102062
\(97\) 1.70820 0.173442 0.0867209 0.996233i \(-0.472361\pi\)
0.0867209 + 0.996233i \(0.472361\pi\)
\(98\) 5.47214 0.552769
\(99\) 2.00000 0.201008
\(100\) 0 0
\(101\) −1.70820 −0.169973 −0.0849863 0.996382i \(-0.527085\pi\)
−0.0849863 + 0.996382i \(0.527085\pi\)
\(102\) 1.00000 0.0990148
\(103\) −10.9443 −1.07837 −0.539186 0.842187i \(-0.681268\pi\)
−0.539186 + 0.842187i \(0.681268\pi\)
\(104\) 5.23607 0.513439
\(105\) 0 0
\(106\) −10.9443 −1.06300
\(107\) −8.00000 −0.773389 −0.386695 0.922208i \(-0.626383\pi\)
−0.386695 + 0.922208i \(0.626383\pi\)
\(108\) 1.00000 0.0962250
\(109\) −7.52786 −0.721039 −0.360519 0.932752i \(-0.617401\pi\)
−0.360519 + 0.932752i \(0.617401\pi\)
\(110\) 0 0
\(111\) −2.00000 −0.189832
\(112\) 1.23607 0.116797
\(113\) 10.0000 0.940721 0.470360 0.882474i \(-0.344124\pi\)
0.470360 + 0.882474i \(0.344124\pi\)
\(114\) 6.47214 0.606171
\(115\) 0 0
\(116\) −4.00000 −0.371391
\(117\) −5.23607 −0.484075
\(118\) −11.7082 −1.07783
\(119\) −1.23607 −0.113310
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) −4.47214 −0.404888
\(123\) −7.70820 −0.695025
\(124\) 2.47214 0.222004
\(125\) 0 0
\(126\) −1.23607 −0.110118
\(127\) −14.0000 −1.24230 −0.621150 0.783692i \(-0.713334\pi\)
−0.621150 + 0.783692i \(0.713334\pi\)
\(128\) −1.00000 −0.0883883
\(129\) −12.1803 −1.07242
\(130\) 0 0
\(131\) 12.4721 1.08970 0.544848 0.838535i \(-0.316587\pi\)
0.544848 + 0.838535i \(0.316587\pi\)
\(132\) 2.00000 0.174078
\(133\) −8.00000 −0.693688
\(134\) −1.70820 −0.147566
\(135\) 0 0
\(136\) 1.00000 0.0857493
\(137\) 2.00000 0.170872 0.0854358 0.996344i \(-0.472772\pi\)
0.0854358 + 0.996344i \(0.472772\pi\)
\(138\) 4.00000 0.340503
\(139\) 1.52786 0.129592 0.0647959 0.997899i \(-0.479360\pi\)
0.0647959 + 0.997899i \(0.479360\pi\)
\(140\) 0 0
\(141\) −10.4721 −0.881913
\(142\) −11.2361 −0.942910
\(143\) −10.4721 −0.875724
\(144\) 1.00000 0.0833333
\(145\) 0 0
\(146\) 8.76393 0.725308
\(147\) −5.47214 −0.451334
\(148\) −2.00000 −0.164399
\(149\) 12.1803 0.997852 0.498926 0.866644i \(-0.333728\pi\)
0.498926 + 0.866644i \(0.333728\pi\)
\(150\) 0 0
\(151\) −4.00000 −0.325515 −0.162758 0.986666i \(-0.552039\pi\)
−0.162758 + 0.986666i \(0.552039\pi\)
\(152\) 6.47214 0.524960
\(153\) −1.00000 −0.0808452
\(154\) −2.47214 −0.199210
\(155\) 0 0
\(156\) −5.23607 −0.419221
\(157\) −10.1803 −0.812480 −0.406240 0.913767i \(-0.633160\pi\)
−0.406240 + 0.913767i \(0.633160\pi\)
\(158\) −0.944272 −0.0751222
\(159\) 10.9443 0.867937
\(160\) 0 0
\(161\) −4.94427 −0.389663
\(162\) −1.00000 −0.0785674
\(163\) 22.4721 1.76015 0.880077 0.474831i \(-0.157491\pi\)
0.880077 + 0.474831i \(0.157491\pi\)
\(164\) −7.70820 −0.601910
\(165\) 0 0
\(166\) 10.4721 0.812795
\(167\) 13.8885 1.07473 0.537364 0.843350i \(-0.319420\pi\)
0.537364 + 0.843350i \(0.319420\pi\)
\(168\) −1.23607 −0.0953647
\(169\) 14.4164 1.10895
\(170\) 0 0
\(171\) −6.47214 −0.494937
\(172\) −12.1803 −0.928742
\(173\) 15.8885 1.20798 0.603992 0.796991i \(-0.293576\pi\)
0.603992 + 0.796991i \(0.293576\pi\)
\(174\) 4.00000 0.303239
\(175\) 0 0
\(176\) 2.00000 0.150756
\(177\) 11.7082 0.880042
\(178\) −12.4721 −0.934826
\(179\) −7.70820 −0.576138 −0.288069 0.957610i \(-0.593013\pi\)
−0.288069 + 0.957610i \(0.593013\pi\)
\(180\) 0 0
\(181\) 0.472136 0.0350936 0.0175468 0.999846i \(-0.494414\pi\)
0.0175468 + 0.999846i \(0.494414\pi\)
\(182\) 6.47214 0.479747
\(183\) 4.47214 0.330590
\(184\) 4.00000 0.294884
\(185\) 0 0
\(186\) −2.47214 −0.181266
\(187\) −2.00000 −0.146254
\(188\) −10.4721 −0.763759
\(189\) 1.23607 0.0899107
\(190\) 0 0
\(191\) 5.52786 0.399982 0.199991 0.979798i \(-0.435909\pi\)
0.199991 + 0.979798i \(0.435909\pi\)
\(192\) 1.00000 0.0721688
\(193\) 23.5967 1.69853 0.849266 0.527966i \(-0.177045\pi\)
0.849266 + 0.527966i \(0.177045\pi\)
\(194\) −1.70820 −0.122642
\(195\) 0 0
\(196\) −5.47214 −0.390867
\(197\) −15.8885 −1.13201 −0.566006 0.824401i \(-0.691512\pi\)
−0.566006 + 0.824401i \(0.691512\pi\)
\(198\) −2.00000 −0.142134
\(199\) −8.94427 −0.634043 −0.317021 0.948418i \(-0.602683\pi\)
−0.317021 + 0.948418i \(0.602683\pi\)
\(200\) 0 0
\(201\) 1.70820 0.120487
\(202\) 1.70820 0.120189
\(203\) −4.94427 −0.347020
\(204\) −1.00000 −0.0700140
\(205\) 0 0
\(206\) 10.9443 0.762524
\(207\) −4.00000 −0.278019
\(208\) −5.23607 −0.363056
\(209\) −12.9443 −0.895374
\(210\) 0 0
\(211\) −24.9443 −1.71723 −0.858617 0.512617i \(-0.828676\pi\)
−0.858617 + 0.512617i \(0.828676\pi\)
\(212\) 10.9443 0.751656
\(213\) 11.2361 0.769883
\(214\) 8.00000 0.546869
\(215\) 0 0
\(216\) −1.00000 −0.0680414
\(217\) 3.05573 0.207436
\(218\) 7.52786 0.509851
\(219\) −8.76393 −0.592212
\(220\) 0 0
\(221\) 5.23607 0.352216
\(222\) 2.00000 0.134231
\(223\) −9.05573 −0.606416 −0.303208 0.952924i \(-0.598058\pi\)
−0.303208 + 0.952924i \(0.598058\pi\)
\(224\) −1.23607 −0.0825883
\(225\) 0 0
\(226\) −10.0000 −0.665190
\(227\) −9.88854 −0.656326 −0.328163 0.944621i \(-0.606429\pi\)
−0.328163 + 0.944621i \(0.606429\pi\)
\(228\) −6.47214 −0.428628
\(229\) −21.4164 −1.41524 −0.707618 0.706595i \(-0.750230\pi\)
−0.707618 + 0.706595i \(0.750230\pi\)
\(230\) 0 0
\(231\) 2.47214 0.162655
\(232\) 4.00000 0.262613
\(233\) −5.41641 −0.354841 −0.177420 0.984135i \(-0.556775\pi\)
−0.177420 + 0.984135i \(0.556775\pi\)
\(234\) 5.23607 0.342292
\(235\) 0 0
\(236\) 11.7082 0.762139
\(237\) 0.944272 0.0613371
\(238\) 1.23607 0.0801224
\(239\) −21.8885 −1.41585 −0.707926 0.706287i \(-0.750369\pi\)
−0.707926 + 0.706287i \(0.750369\pi\)
\(240\) 0 0
\(241\) 9.41641 0.606564 0.303282 0.952901i \(-0.401918\pi\)
0.303282 + 0.952901i \(0.401918\pi\)
\(242\) 7.00000 0.449977
\(243\) 1.00000 0.0641500
\(244\) 4.47214 0.286299
\(245\) 0 0
\(246\) 7.70820 0.491457
\(247\) 33.8885 2.15628
\(248\) −2.47214 −0.156981
\(249\) −10.4721 −0.663645
\(250\) 0 0
\(251\) −10.1803 −0.642577 −0.321289 0.946981i \(-0.604116\pi\)
−0.321289 + 0.946981i \(0.604116\pi\)
\(252\) 1.23607 0.0778650
\(253\) −8.00000 −0.502956
\(254\) 14.0000 0.878438
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −18.0000 −1.12281 −0.561405 0.827541i \(-0.689739\pi\)
−0.561405 + 0.827541i \(0.689739\pi\)
\(258\) 12.1803 0.758315
\(259\) −2.47214 −0.153611
\(260\) 0 0
\(261\) −4.00000 −0.247594
\(262\) −12.4721 −0.770531
\(263\) 4.00000 0.246651 0.123325 0.992366i \(-0.460644\pi\)
0.123325 + 0.992366i \(0.460644\pi\)
\(264\) −2.00000 −0.123091
\(265\) 0 0
\(266\) 8.00000 0.490511
\(267\) 12.4721 0.763282
\(268\) 1.70820 0.104345
\(269\) −7.05573 −0.430195 −0.215098 0.976593i \(-0.569007\pi\)
−0.215098 + 0.976593i \(0.569007\pi\)
\(270\) 0 0
\(271\) 4.00000 0.242983 0.121491 0.992592i \(-0.461232\pi\)
0.121491 + 0.992592i \(0.461232\pi\)
\(272\) −1.00000 −0.0606339
\(273\) −6.47214 −0.391711
\(274\) −2.00000 −0.120824
\(275\) 0 0
\(276\) −4.00000 −0.240772
\(277\) −26.3607 −1.58386 −0.791930 0.610612i \(-0.790923\pi\)
−0.791930 + 0.610612i \(0.790923\pi\)
\(278\) −1.52786 −0.0916352
\(279\) 2.47214 0.148003
\(280\) 0 0
\(281\) 1.41641 0.0844958 0.0422479 0.999107i \(-0.486548\pi\)
0.0422479 + 0.999107i \(0.486548\pi\)
\(282\) 10.4721 0.623607
\(283\) 25.8885 1.53891 0.769457 0.638699i \(-0.220527\pi\)
0.769457 + 0.638699i \(0.220527\pi\)
\(284\) 11.2361 0.666738
\(285\) 0 0
\(286\) 10.4721 0.619230
\(287\) −9.52786 −0.562412
\(288\) −1.00000 −0.0589256
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) 1.70820 0.100137
\(292\) −8.76393 −0.512870
\(293\) −29.4164 −1.71852 −0.859262 0.511535i \(-0.829077\pi\)
−0.859262 + 0.511535i \(0.829077\pi\)
\(294\) 5.47214 0.319141
\(295\) 0 0
\(296\) 2.00000 0.116248
\(297\) 2.00000 0.116052
\(298\) −12.1803 −0.705588
\(299\) 20.9443 1.21124
\(300\) 0 0
\(301\) −15.0557 −0.867798
\(302\) 4.00000 0.230174
\(303\) −1.70820 −0.0981338
\(304\) −6.47214 −0.371202
\(305\) 0 0
\(306\) 1.00000 0.0571662
\(307\) −4.18034 −0.238585 −0.119292 0.992859i \(-0.538063\pi\)
−0.119292 + 0.992859i \(0.538063\pi\)
\(308\) 2.47214 0.140863
\(309\) −10.9443 −0.622598
\(310\) 0 0
\(311\) 19.5967 1.11123 0.555615 0.831440i \(-0.312483\pi\)
0.555615 + 0.831440i \(0.312483\pi\)
\(312\) 5.23607 0.296434
\(313\) 21.7082 1.22702 0.613510 0.789687i \(-0.289757\pi\)
0.613510 + 0.789687i \(0.289757\pi\)
\(314\) 10.1803 0.574510
\(315\) 0 0
\(316\) 0.944272 0.0531194
\(317\) −11.8885 −0.667727 −0.333864 0.942621i \(-0.608352\pi\)
−0.333864 + 0.942621i \(0.608352\pi\)
\(318\) −10.9443 −0.613724
\(319\) −8.00000 −0.447914
\(320\) 0 0
\(321\) −8.00000 −0.446516
\(322\) 4.94427 0.275534
\(323\) 6.47214 0.360119
\(324\) 1.00000 0.0555556
\(325\) 0 0
\(326\) −22.4721 −1.24462
\(327\) −7.52786 −0.416292
\(328\) 7.70820 0.425614
\(329\) −12.9443 −0.713641
\(330\) 0 0
\(331\) −3.41641 −0.187783 −0.0938914 0.995582i \(-0.529931\pi\)
−0.0938914 + 0.995582i \(0.529931\pi\)
\(332\) −10.4721 −0.574733
\(333\) −2.00000 −0.109599
\(334\) −13.8885 −0.759947
\(335\) 0 0
\(336\) 1.23607 0.0674330
\(337\) 20.1803 1.09929 0.549647 0.835397i \(-0.314762\pi\)
0.549647 + 0.835397i \(0.314762\pi\)
\(338\) −14.4164 −0.784149
\(339\) 10.0000 0.543125
\(340\) 0 0
\(341\) 4.94427 0.267747
\(342\) 6.47214 0.349973
\(343\) −15.4164 −0.832408
\(344\) 12.1803 0.656720
\(345\) 0 0
\(346\) −15.8885 −0.854173
\(347\) 22.8328 1.22573 0.612865 0.790188i \(-0.290017\pi\)
0.612865 + 0.790188i \(0.290017\pi\)
\(348\) −4.00000 −0.214423
\(349\) −28.4721 −1.52408 −0.762039 0.647531i \(-0.775802\pi\)
−0.762039 + 0.647531i \(0.775802\pi\)
\(350\) 0 0
\(351\) −5.23607 −0.279481
\(352\) −2.00000 −0.106600
\(353\) 14.9443 0.795403 0.397702 0.917515i \(-0.369808\pi\)
0.397702 + 0.917515i \(0.369808\pi\)
\(354\) −11.7082 −0.622284
\(355\) 0 0
\(356\) 12.4721 0.661022
\(357\) −1.23607 −0.0654197
\(358\) 7.70820 0.407391
\(359\) −9.52786 −0.502861 −0.251431 0.967875i \(-0.580901\pi\)
−0.251431 + 0.967875i \(0.580901\pi\)
\(360\) 0 0
\(361\) 22.8885 1.20466
\(362\) −0.472136 −0.0248149
\(363\) −7.00000 −0.367405
\(364\) −6.47214 −0.339232
\(365\) 0 0
\(366\) −4.47214 −0.233762
\(367\) 5.81966 0.303784 0.151892 0.988397i \(-0.451463\pi\)
0.151892 + 0.988397i \(0.451463\pi\)
\(368\) −4.00000 −0.208514
\(369\) −7.70820 −0.401273
\(370\) 0 0
\(371\) 13.5279 0.702332
\(372\) 2.47214 0.128174
\(373\) 1.23607 0.0640012 0.0320006 0.999488i \(-0.489812\pi\)
0.0320006 + 0.999488i \(0.489812\pi\)
\(374\) 2.00000 0.103418
\(375\) 0 0
\(376\) 10.4721 0.540059
\(377\) 20.9443 1.07868
\(378\) −1.23607 −0.0635765
\(379\) −1.52786 −0.0784811 −0.0392406 0.999230i \(-0.512494\pi\)
−0.0392406 + 0.999230i \(0.512494\pi\)
\(380\) 0 0
\(381\) −14.0000 −0.717242
\(382\) −5.52786 −0.282830
\(383\) −17.8885 −0.914062 −0.457031 0.889451i \(-0.651087\pi\)
−0.457031 + 0.889451i \(0.651087\pi\)
\(384\) −1.00000 −0.0510310
\(385\) 0 0
\(386\) −23.5967 −1.20104
\(387\) −12.1803 −0.619161
\(388\) 1.70820 0.0867209
\(389\) 20.1803 1.02318 0.511592 0.859229i \(-0.329056\pi\)
0.511592 + 0.859229i \(0.329056\pi\)
\(390\) 0 0
\(391\) 4.00000 0.202289
\(392\) 5.47214 0.276385
\(393\) 12.4721 0.629136
\(394\) 15.8885 0.800453
\(395\) 0 0
\(396\) 2.00000 0.100504
\(397\) −3.88854 −0.195160 −0.0975802 0.995228i \(-0.531110\pi\)
−0.0975802 + 0.995228i \(0.531110\pi\)
\(398\) 8.94427 0.448336
\(399\) −8.00000 −0.400501
\(400\) 0 0
\(401\) −36.0689 −1.80119 −0.900597 0.434655i \(-0.856870\pi\)
−0.900597 + 0.434655i \(0.856870\pi\)
\(402\) −1.70820 −0.0851975
\(403\) −12.9443 −0.644800
\(404\) −1.70820 −0.0849863
\(405\) 0 0
\(406\) 4.94427 0.245380
\(407\) −4.00000 −0.198273
\(408\) 1.00000 0.0495074
\(409\) 26.3607 1.30345 0.651726 0.758455i \(-0.274045\pi\)
0.651726 + 0.758455i \(0.274045\pi\)
\(410\) 0 0
\(411\) 2.00000 0.0986527
\(412\) −10.9443 −0.539186
\(413\) 14.4721 0.712127
\(414\) 4.00000 0.196589
\(415\) 0 0
\(416\) 5.23607 0.256719
\(417\) 1.52786 0.0748198
\(418\) 12.9443 0.633125
\(419\) 6.36068 0.310740 0.155370 0.987856i \(-0.450343\pi\)
0.155370 + 0.987856i \(0.450343\pi\)
\(420\) 0 0
\(421\) −37.4164 −1.82356 −0.911782 0.410674i \(-0.865293\pi\)
−0.911782 + 0.410674i \(0.865293\pi\)
\(422\) 24.9443 1.21427
\(423\) −10.4721 −0.509173
\(424\) −10.9443 −0.531501
\(425\) 0 0
\(426\) −11.2361 −0.544389
\(427\) 5.52786 0.267512
\(428\) −8.00000 −0.386695
\(429\) −10.4721 −0.505599
\(430\) 0 0
\(431\) 31.5967 1.52196 0.760981 0.648774i \(-0.224718\pi\)
0.760981 + 0.648774i \(0.224718\pi\)
\(432\) 1.00000 0.0481125
\(433\) −28.3607 −1.36293 −0.681464 0.731852i \(-0.738656\pi\)
−0.681464 + 0.731852i \(0.738656\pi\)
\(434\) −3.05573 −0.146680
\(435\) 0 0
\(436\) −7.52786 −0.360519
\(437\) 25.8885 1.23842
\(438\) 8.76393 0.418757
\(439\) 13.5279 0.645650 0.322825 0.946459i \(-0.395368\pi\)
0.322825 + 0.946459i \(0.395368\pi\)
\(440\) 0 0
\(441\) −5.47214 −0.260578
\(442\) −5.23607 −0.249054
\(443\) −4.00000 −0.190046 −0.0950229 0.995475i \(-0.530292\pi\)
−0.0950229 + 0.995475i \(0.530292\pi\)
\(444\) −2.00000 −0.0949158
\(445\) 0 0
\(446\) 9.05573 0.428801
\(447\) 12.1803 0.576110
\(448\) 1.23607 0.0583987
\(449\) 17.5967 0.830442 0.415221 0.909721i \(-0.363704\pi\)
0.415221 + 0.909721i \(0.363704\pi\)
\(450\) 0 0
\(451\) −15.4164 −0.725930
\(452\) 10.0000 0.470360
\(453\) −4.00000 −0.187936
\(454\) 9.88854 0.464092
\(455\) 0 0
\(456\) 6.47214 0.303086
\(457\) 16.3607 0.765320 0.382660 0.923889i \(-0.375008\pi\)
0.382660 + 0.923889i \(0.375008\pi\)
\(458\) 21.4164 1.00072
\(459\) −1.00000 −0.0466760
\(460\) 0 0
\(461\) −30.0689 −1.40045 −0.700224 0.713923i \(-0.746916\pi\)
−0.700224 + 0.713923i \(0.746916\pi\)
\(462\) −2.47214 −0.115014
\(463\) 18.9443 0.880415 0.440207 0.897896i \(-0.354905\pi\)
0.440207 + 0.897896i \(0.354905\pi\)
\(464\) −4.00000 −0.185695
\(465\) 0 0
\(466\) 5.41641 0.250910
\(467\) −0.944272 −0.0436957 −0.0218478 0.999761i \(-0.506955\pi\)
−0.0218478 + 0.999761i \(0.506955\pi\)
\(468\) −5.23607 −0.242037
\(469\) 2.11146 0.0974980
\(470\) 0 0
\(471\) −10.1803 −0.469085
\(472\) −11.7082 −0.538914
\(473\) −24.3607 −1.12011
\(474\) −0.944272 −0.0433718
\(475\) 0 0
\(476\) −1.23607 −0.0566551
\(477\) 10.9443 0.501104
\(478\) 21.8885 1.00116
\(479\) −35.5967 −1.62646 −0.813228 0.581945i \(-0.802292\pi\)
−0.813228 + 0.581945i \(0.802292\pi\)
\(480\) 0 0
\(481\) 10.4721 0.477488
\(482\) −9.41641 −0.428906
\(483\) −4.94427 −0.224972
\(484\) −7.00000 −0.318182
\(485\) 0 0
\(486\) −1.00000 −0.0453609
\(487\) 16.2918 0.738252 0.369126 0.929379i \(-0.379657\pi\)
0.369126 + 0.929379i \(0.379657\pi\)
\(488\) −4.47214 −0.202444
\(489\) 22.4721 1.01623
\(490\) 0 0
\(491\) 12.2918 0.554721 0.277360 0.960766i \(-0.410540\pi\)
0.277360 + 0.960766i \(0.410540\pi\)
\(492\) −7.70820 −0.347513
\(493\) 4.00000 0.180151
\(494\) −33.8885 −1.52472
\(495\) 0 0
\(496\) 2.47214 0.111002
\(497\) 13.8885 0.622986
\(498\) 10.4721 0.469268
\(499\) −16.0000 −0.716258 −0.358129 0.933672i \(-0.616585\pi\)
−0.358129 + 0.933672i \(0.616585\pi\)
\(500\) 0 0
\(501\) 13.8885 0.620494
\(502\) 10.1803 0.454371
\(503\) 27.4164 1.22244 0.611219 0.791462i \(-0.290680\pi\)
0.611219 + 0.791462i \(0.290680\pi\)
\(504\) −1.23607 −0.0550588
\(505\) 0 0
\(506\) 8.00000 0.355643
\(507\) 14.4164 0.640255
\(508\) −14.0000 −0.621150
\(509\) 1.34752 0.0597280 0.0298640 0.999554i \(-0.490493\pi\)
0.0298640 + 0.999554i \(0.490493\pi\)
\(510\) 0 0
\(511\) −10.8328 −0.479216
\(512\) −1.00000 −0.0441942
\(513\) −6.47214 −0.285752
\(514\) 18.0000 0.793946
\(515\) 0 0
\(516\) −12.1803 −0.536210
\(517\) −20.9443 −0.921128
\(518\) 2.47214 0.108619
\(519\) 15.8885 0.697430
\(520\) 0 0
\(521\) 5.81966 0.254964 0.127482 0.991841i \(-0.459311\pi\)
0.127482 + 0.991841i \(0.459311\pi\)
\(522\) 4.00000 0.175075
\(523\) 14.2918 0.624937 0.312468 0.949928i \(-0.398844\pi\)
0.312468 + 0.949928i \(0.398844\pi\)
\(524\) 12.4721 0.544848
\(525\) 0 0
\(526\) −4.00000 −0.174408
\(527\) −2.47214 −0.107688
\(528\) 2.00000 0.0870388
\(529\) −7.00000 −0.304348
\(530\) 0 0
\(531\) 11.7082 0.508093
\(532\) −8.00000 −0.346844
\(533\) 40.3607 1.74822
\(534\) −12.4721 −0.539722
\(535\) 0 0
\(536\) −1.70820 −0.0737832
\(537\) −7.70820 −0.332634
\(538\) 7.05573 0.304194
\(539\) −10.9443 −0.471403
\(540\) 0 0
\(541\) −31.3050 −1.34590 −0.672952 0.739686i \(-0.734974\pi\)
−0.672952 + 0.739686i \(0.734974\pi\)
\(542\) −4.00000 −0.171815
\(543\) 0.472136 0.0202613
\(544\) 1.00000 0.0428746
\(545\) 0 0
\(546\) 6.47214 0.276982
\(547\) −0.944272 −0.0403742 −0.0201871 0.999796i \(-0.506426\pi\)
−0.0201871 + 0.999796i \(0.506426\pi\)
\(548\) 2.00000 0.0854358
\(549\) 4.47214 0.190866
\(550\) 0 0
\(551\) 25.8885 1.10289
\(552\) 4.00000 0.170251
\(553\) 1.16718 0.0496337
\(554\) 26.3607 1.11996
\(555\) 0 0
\(556\) 1.52786 0.0647959
\(557\) 25.0557 1.06165 0.530823 0.847483i \(-0.321883\pi\)
0.530823 + 0.847483i \(0.321883\pi\)
\(558\) −2.47214 −0.104654
\(559\) 63.7771 2.69748
\(560\) 0 0
\(561\) −2.00000 −0.0844401
\(562\) −1.41641 −0.0597476
\(563\) −2.11146 −0.0889873 −0.0444936 0.999010i \(-0.514167\pi\)
−0.0444936 + 0.999010i \(0.514167\pi\)
\(564\) −10.4721 −0.440956
\(565\) 0 0
\(566\) −25.8885 −1.08818
\(567\) 1.23607 0.0519100
\(568\) −11.2361 −0.471455
\(569\) 6.00000 0.251533 0.125767 0.992060i \(-0.459861\pi\)
0.125767 + 0.992060i \(0.459861\pi\)
\(570\) 0 0
\(571\) 36.3607 1.52165 0.760824 0.648959i \(-0.224795\pi\)
0.760824 + 0.648959i \(0.224795\pi\)
\(572\) −10.4721 −0.437862
\(573\) 5.52786 0.230930
\(574\) 9.52786 0.397685
\(575\) 0 0
\(576\) 1.00000 0.0416667
\(577\) 35.4164 1.47440 0.737202 0.675672i \(-0.236147\pi\)
0.737202 + 0.675672i \(0.236147\pi\)
\(578\) −1.00000 −0.0415945
\(579\) 23.5967 0.980647
\(580\) 0 0
\(581\) −12.9443 −0.537019
\(582\) −1.70820 −0.0708073
\(583\) 21.8885 0.906531
\(584\) 8.76393 0.362654
\(585\) 0 0
\(586\) 29.4164 1.21518
\(587\) 5.52786 0.228159 0.114080 0.993472i \(-0.463608\pi\)
0.114080 + 0.993472i \(0.463608\pi\)
\(588\) −5.47214 −0.225667
\(589\) −16.0000 −0.659269
\(590\) 0 0
\(591\) −15.8885 −0.653567
\(592\) −2.00000 −0.0821995
\(593\) −30.9443 −1.27073 −0.635364 0.772212i \(-0.719150\pi\)
−0.635364 + 0.772212i \(0.719150\pi\)
\(594\) −2.00000 −0.0820610
\(595\) 0 0
\(596\) 12.1803 0.498926
\(597\) −8.94427 −0.366065
\(598\) −20.9443 −0.856475
\(599\) 25.5279 1.04304 0.521520 0.853239i \(-0.325365\pi\)
0.521520 + 0.853239i \(0.325365\pi\)
\(600\) 0 0
\(601\) −28.4721 −1.16140 −0.580701 0.814117i \(-0.697222\pi\)
−0.580701 + 0.814117i \(0.697222\pi\)
\(602\) 15.0557 0.613626
\(603\) 1.70820 0.0695634
\(604\) −4.00000 −0.162758
\(605\) 0 0
\(606\) 1.70820 0.0693910
\(607\) 31.1246 1.26331 0.631655 0.775250i \(-0.282376\pi\)
0.631655 + 0.775250i \(0.282376\pi\)
\(608\) 6.47214 0.262480
\(609\) −4.94427 −0.200352
\(610\) 0 0
\(611\) 54.8328 2.21830
\(612\) −1.00000 −0.0404226
\(613\) 42.1803 1.70365 0.851824 0.523828i \(-0.175497\pi\)
0.851824 + 0.523828i \(0.175497\pi\)
\(614\) 4.18034 0.168705
\(615\) 0 0
\(616\) −2.47214 −0.0996052
\(617\) 20.4721 0.824177 0.412089 0.911144i \(-0.364799\pi\)
0.412089 + 0.911144i \(0.364799\pi\)
\(618\) 10.9443 0.440243
\(619\) −48.9443 −1.96724 −0.983618 0.180264i \(-0.942305\pi\)
−0.983618 + 0.180264i \(0.942305\pi\)
\(620\) 0 0
\(621\) −4.00000 −0.160514
\(622\) −19.5967 −0.785758
\(623\) 15.4164 0.617645
\(624\) −5.23607 −0.209610
\(625\) 0 0
\(626\) −21.7082 −0.867634
\(627\) −12.9443 −0.516944
\(628\) −10.1803 −0.406240
\(629\) 2.00000 0.0797452
\(630\) 0 0
\(631\) −9.88854 −0.393657 −0.196828 0.980438i \(-0.563064\pi\)
−0.196828 + 0.980438i \(0.563064\pi\)
\(632\) −0.944272 −0.0375611
\(633\) −24.9443 −0.991446
\(634\) 11.8885 0.472154
\(635\) 0 0
\(636\) 10.9443 0.433969
\(637\) 28.6525 1.13525
\(638\) 8.00000 0.316723
\(639\) 11.2361 0.444492
\(640\) 0 0
\(641\) 11.7082 0.462446 0.231223 0.972901i \(-0.425727\pi\)
0.231223 + 0.972901i \(0.425727\pi\)
\(642\) 8.00000 0.315735
\(643\) 27.4164 1.08120 0.540599 0.841281i \(-0.318198\pi\)
0.540599 + 0.841281i \(0.318198\pi\)
\(644\) −4.94427 −0.194832
\(645\) 0 0
\(646\) −6.47214 −0.254643
\(647\) 20.9443 0.823404 0.411702 0.911318i \(-0.364934\pi\)
0.411702 + 0.911318i \(0.364934\pi\)
\(648\) −1.00000 −0.0392837
\(649\) 23.4164 0.919174
\(650\) 0 0
\(651\) 3.05573 0.119763
\(652\) 22.4721 0.880077
\(653\) 3.52786 0.138056 0.0690280 0.997615i \(-0.478010\pi\)
0.0690280 + 0.997615i \(0.478010\pi\)
\(654\) 7.52786 0.294363
\(655\) 0 0
\(656\) −7.70820 −0.300955
\(657\) −8.76393 −0.341914
\(658\) 12.9443 0.504620
\(659\) 28.2918 1.10209 0.551046 0.834475i \(-0.314229\pi\)
0.551046 + 0.834475i \(0.314229\pi\)
\(660\) 0 0
\(661\) 13.4164 0.521838 0.260919 0.965361i \(-0.415974\pi\)
0.260919 + 0.965361i \(0.415974\pi\)
\(662\) 3.41641 0.132782
\(663\) 5.23607 0.203352
\(664\) 10.4721 0.406398
\(665\) 0 0
\(666\) 2.00000 0.0774984
\(667\) 16.0000 0.619522
\(668\) 13.8885 0.537364
\(669\) −9.05573 −0.350115
\(670\) 0 0
\(671\) 8.94427 0.345290
\(672\) −1.23607 −0.0476824
\(673\) −4.18034 −0.161140 −0.0805701 0.996749i \(-0.525674\pi\)
−0.0805701 + 0.996749i \(0.525674\pi\)
\(674\) −20.1803 −0.777318
\(675\) 0 0
\(676\) 14.4164 0.554477
\(677\) 9.05573 0.348040 0.174020 0.984742i \(-0.444324\pi\)
0.174020 + 0.984742i \(0.444324\pi\)
\(678\) −10.0000 −0.384048
\(679\) 2.11146 0.0810303
\(680\) 0 0
\(681\) −9.88854 −0.378930
\(682\) −4.94427 −0.189326
\(683\) 32.9443 1.26058 0.630289 0.776361i \(-0.282936\pi\)
0.630289 + 0.776361i \(0.282936\pi\)
\(684\) −6.47214 −0.247468
\(685\) 0 0
\(686\) 15.4164 0.588601
\(687\) −21.4164 −0.817087
\(688\) −12.1803 −0.464371
\(689\) −57.3050 −2.18314
\(690\) 0 0
\(691\) −4.94427 −0.188089 −0.0940445 0.995568i \(-0.529980\pi\)
−0.0940445 + 0.995568i \(0.529980\pi\)
\(692\) 15.8885 0.603992
\(693\) 2.47214 0.0939087
\(694\) −22.8328 −0.866722
\(695\) 0 0
\(696\) 4.00000 0.151620
\(697\) 7.70820 0.291969
\(698\) 28.4721 1.07769
\(699\) −5.41641 −0.204867
\(700\) 0 0
\(701\) 11.5967 0.438003 0.219002 0.975725i \(-0.429720\pi\)
0.219002 + 0.975725i \(0.429720\pi\)
\(702\) 5.23607 0.197623
\(703\) 12.9443 0.488202
\(704\) 2.00000 0.0753778
\(705\) 0 0
\(706\) −14.9443 −0.562435
\(707\) −2.11146 −0.0794095
\(708\) 11.7082 0.440021
\(709\) −39.5279 −1.48450 −0.742250 0.670123i \(-0.766241\pi\)
−0.742250 + 0.670123i \(0.766241\pi\)
\(710\) 0 0
\(711\) 0.944272 0.0354130
\(712\) −12.4721 −0.467413
\(713\) −9.88854 −0.370329
\(714\) 1.23607 0.0462587
\(715\) 0 0
\(716\) −7.70820 −0.288069
\(717\) −21.8885 −0.817443
\(718\) 9.52786 0.355577
\(719\) −36.5410 −1.36275 −0.681375 0.731934i \(-0.738618\pi\)
−0.681375 + 0.731934i \(0.738618\pi\)
\(720\) 0 0
\(721\) −13.5279 −0.503804
\(722\) −22.8885 −0.851823
\(723\) 9.41641 0.350200
\(724\) 0.472136 0.0175468
\(725\) 0 0
\(726\) 7.00000 0.259794
\(727\) 23.8885 0.885977 0.442989 0.896527i \(-0.353918\pi\)
0.442989 + 0.896527i \(0.353918\pi\)
\(728\) 6.47214 0.239873
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 12.1803 0.450506
\(732\) 4.47214 0.165295
\(733\) −38.5410 −1.42355 −0.711773 0.702410i \(-0.752107\pi\)
−0.711773 + 0.702410i \(0.752107\pi\)
\(734\) −5.81966 −0.214808
\(735\) 0 0
\(736\) 4.00000 0.147442
\(737\) 3.41641 0.125845
\(738\) 7.70820 0.283743
\(739\) 33.5279 1.23334 0.616671 0.787221i \(-0.288481\pi\)
0.616671 + 0.787221i \(0.288481\pi\)
\(740\) 0 0
\(741\) 33.8885 1.24493
\(742\) −13.5279 −0.496624
\(743\) −33.5279 −1.23002 −0.615009 0.788520i \(-0.710848\pi\)
−0.615009 + 0.788520i \(0.710848\pi\)
\(744\) −2.47214 −0.0906329
\(745\) 0 0
\(746\) −1.23607 −0.0452557
\(747\) −10.4721 −0.383155
\(748\) −2.00000 −0.0731272
\(749\) −9.88854 −0.361320
\(750\) 0 0
\(751\) 29.8885 1.09065 0.545324 0.838225i \(-0.316407\pi\)
0.545324 + 0.838225i \(0.316407\pi\)
\(752\) −10.4721 −0.381880
\(753\) −10.1803 −0.370992
\(754\) −20.9443 −0.762745
\(755\) 0 0
\(756\) 1.23607 0.0449554
\(757\) 37.5967 1.36648 0.683239 0.730195i \(-0.260571\pi\)
0.683239 + 0.730195i \(0.260571\pi\)
\(758\) 1.52786 0.0554945
\(759\) −8.00000 −0.290382
\(760\) 0 0
\(761\) 52.8328 1.91519 0.957594 0.288121i \(-0.0930305\pi\)
0.957594 + 0.288121i \(0.0930305\pi\)
\(762\) 14.0000 0.507166
\(763\) −9.30495 −0.336862
\(764\) 5.52786 0.199991
\(765\) 0 0
\(766\) 17.8885 0.646339
\(767\) −61.3050 −2.21359
\(768\) 1.00000 0.0360844
\(769\) −34.3607 −1.23908 −0.619539 0.784966i \(-0.712680\pi\)
−0.619539 + 0.784966i \(0.712680\pi\)
\(770\) 0 0
\(771\) −18.0000 −0.648254
\(772\) 23.5967 0.849266
\(773\) −33.4164 −1.20190 −0.600952 0.799285i \(-0.705212\pi\)
−0.600952 + 0.799285i \(0.705212\pi\)
\(774\) 12.1803 0.437813
\(775\) 0 0
\(776\) −1.70820 −0.0613209
\(777\) −2.47214 −0.0886874
\(778\) −20.1803 −0.723500
\(779\) 49.8885 1.78744
\(780\) 0 0
\(781\) 22.4721 0.804116
\(782\) −4.00000 −0.143040
\(783\) −4.00000 −0.142948
\(784\) −5.47214 −0.195433
\(785\) 0 0
\(786\) −12.4721 −0.444866
\(787\) −46.4721 −1.65655 −0.828276 0.560320i \(-0.810678\pi\)
−0.828276 + 0.560320i \(0.810678\pi\)
\(788\) −15.8885 −0.566006
\(789\) 4.00000 0.142404
\(790\) 0 0
\(791\) 12.3607 0.439495
\(792\) −2.00000 −0.0710669
\(793\) −23.4164 −0.831541
\(794\) 3.88854 0.137999
\(795\) 0 0
\(796\) −8.94427 −0.317021
\(797\) −46.0000 −1.62940 −0.814702 0.579880i \(-0.803099\pi\)
−0.814702 + 0.579880i \(0.803099\pi\)
\(798\) 8.00000 0.283197
\(799\) 10.4721 0.370478
\(800\) 0 0
\(801\) 12.4721 0.440681
\(802\) 36.0689 1.27364
\(803\) −17.5279 −0.618545
\(804\) 1.70820 0.0602437
\(805\) 0 0
\(806\) 12.9443 0.455943
\(807\) −7.05573 −0.248373
\(808\) 1.70820 0.0600944
\(809\) 47.1246 1.65681 0.828407 0.560127i \(-0.189248\pi\)
0.828407 + 0.560127i \(0.189248\pi\)
\(810\) 0 0
\(811\) 42.2492 1.48357 0.741785 0.670637i \(-0.233979\pi\)
0.741785 + 0.670637i \(0.233979\pi\)
\(812\) −4.94427 −0.173510
\(813\) 4.00000 0.140286
\(814\) 4.00000 0.140200
\(815\) 0 0
\(816\) −1.00000 −0.0350070
\(817\) 78.8328 2.75801
\(818\) −26.3607 −0.921680
\(819\) −6.47214 −0.226155
\(820\) 0 0
\(821\) 15.4164 0.538036 0.269018 0.963135i \(-0.413301\pi\)
0.269018 + 0.963135i \(0.413301\pi\)
\(822\) −2.00000 −0.0697580
\(823\) −38.1803 −1.33088 −0.665441 0.746450i \(-0.731757\pi\)
−0.665441 + 0.746450i \(0.731757\pi\)
\(824\) 10.9443 0.381262
\(825\) 0 0
\(826\) −14.4721 −0.503550
\(827\) 23.0557 0.801726 0.400863 0.916138i \(-0.368710\pi\)
0.400863 + 0.916138i \(0.368710\pi\)
\(828\) −4.00000 −0.139010
\(829\) 34.0000 1.18087 0.590434 0.807086i \(-0.298956\pi\)
0.590434 + 0.807086i \(0.298956\pi\)
\(830\) 0 0
\(831\) −26.3607 −0.914442
\(832\) −5.23607 −0.181528
\(833\) 5.47214 0.189598
\(834\) −1.52786 −0.0529056
\(835\) 0 0
\(836\) −12.9443 −0.447687
\(837\) 2.47214 0.0854495
\(838\) −6.36068 −0.219726
\(839\) −22.0689 −0.761902 −0.380951 0.924595i \(-0.624403\pi\)
−0.380951 + 0.924595i \(0.624403\pi\)
\(840\) 0 0
\(841\) −13.0000 −0.448276
\(842\) 37.4164 1.28945
\(843\) 1.41641 0.0487837
\(844\) −24.9443 −0.858617
\(845\) 0 0
\(846\) 10.4721 0.360039
\(847\) −8.65248 −0.297303
\(848\) 10.9443 0.375828
\(849\) 25.8885 0.888493
\(850\) 0 0
\(851\) 8.00000 0.274236
\(852\) 11.2361 0.384941
\(853\) 6.36068 0.217786 0.108893 0.994054i \(-0.465269\pi\)
0.108893 + 0.994054i \(0.465269\pi\)
\(854\) −5.52786 −0.189160
\(855\) 0 0
\(856\) 8.00000 0.273434
\(857\) −50.3607 −1.72029 −0.860144 0.510051i \(-0.829626\pi\)
−0.860144 + 0.510051i \(0.829626\pi\)
\(858\) 10.4721 0.357513
\(859\) 7.05573 0.240738 0.120369 0.992729i \(-0.461592\pi\)
0.120369 + 0.992729i \(0.461592\pi\)
\(860\) 0 0
\(861\) −9.52786 −0.324709
\(862\) −31.5967 −1.07619
\(863\) 21.3050 0.725229 0.362614 0.931939i \(-0.381884\pi\)
0.362614 + 0.931939i \(0.381884\pi\)
\(864\) −1.00000 −0.0340207
\(865\) 0 0
\(866\) 28.3607 0.963735
\(867\) 1.00000 0.0339618
\(868\) 3.05573 0.103718
\(869\) 1.88854 0.0640645
\(870\) 0 0
\(871\) −8.94427 −0.303065
\(872\) 7.52786 0.254926
\(873\) 1.70820 0.0578139
\(874\) −25.8885 −0.875693
\(875\) 0 0
\(876\) −8.76393 −0.296106
\(877\) 40.4721 1.36665 0.683323 0.730116i \(-0.260534\pi\)
0.683323 + 0.730116i \(0.260534\pi\)
\(878\) −13.5279 −0.456543
\(879\) −29.4164 −0.992191
\(880\) 0 0
\(881\) −7.12461 −0.240034 −0.120017 0.992772i \(-0.538295\pi\)
−0.120017 + 0.992772i \(0.538295\pi\)
\(882\) 5.47214 0.184256
\(883\) 27.2361 0.916567 0.458283 0.888806i \(-0.348465\pi\)
0.458283 + 0.888806i \(0.348465\pi\)
\(884\) 5.23607 0.176108
\(885\) 0 0
\(886\) 4.00000 0.134383
\(887\) −8.94427 −0.300319 −0.150160 0.988662i \(-0.547979\pi\)
−0.150160 + 0.988662i \(0.547979\pi\)
\(888\) 2.00000 0.0671156
\(889\) −17.3050 −0.580389
\(890\) 0 0
\(891\) 2.00000 0.0670025
\(892\) −9.05573 −0.303208
\(893\) 67.7771 2.26807
\(894\) −12.1803 −0.407372
\(895\) 0 0
\(896\) −1.23607 −0.0412941
\(897\) 20.9443 0.699309
\(898\) −17.5967 −0.587211
\(899\) −9.88854 −0.329801
\(900\) 0 0
\(901\) −10.9443 −0.364607
\(902\) 15.4164 0.513310
\(903\) −15.0557 −0.501023
\(904\) −10.0000 −0.332595
\(905\) 0 0
\(906\) 4.00000 0.132891
\(907\) −4.36068 −0.144794 −0.0723970 0.997376i \(-0.523065\pi\)
−0.0723970 + 0.997376i \(0.523065\pi\)
\(908\) −9.88854 −0.328163
\(909\) −1.70820 −0.0566575
\(910\) 0 0
\(911\) −12.5410 −0.415503 −0.207751 0.978182i \(-0.566614\pi\)
−0.207751 + 0.978182i \(0.566614\pi\)
\(912\) −6.47214 −0.214314
\(913\) −20.9443 −0.693154
\(914\) −16.3607 −0.541163
\(915\) 0 0
\(916\) −21.4164 −0.707618
\(917\) 15.4164 0.509095
\(918\) 1.00000 0.0330049
\(919\) 52.7214 1.73912 0.869559 0.493830i \(-0.164403\pi\)
0.869559 + 0.493830i \(0.164403\pi\)
\(920\) 0 0
\(921\) −4.18034 −0.137747
\(922\) 30.0689 0.990266
\(923\) −58.8328 −1.93651
\(924\) 2.47214 0.0813273
\(925\) 0 0
\(926\) −18.9443 −0.622547
\(927\) −10.9443 −0.359457
\(928\) 4.00000 0.131306
\(929\) 24.0689 0.789674 0.394837 0.918751i \(-0.370801\pi\)
0.394837 + 0.918751i \(0.370801\pi\)
\(930\) 0 0
\(931\) 35.4164 1.16073
\(932\) −5.41641 −0.177420
\(933\) 19.5967 0.641569
\(934\) 0.944272 0.0308975
\(935\) 0 0
\(936\) 5.23607 0.171146
\(937\) −17.5279 −0.572610 −0.286305 0.958138i \(-0.592427\pi\)
−0.286305 + 0.958138i \(0.592427\pi\)
\(938\) −2.11146 −0.0689415
\(939\) 21.7082 0.708420
\(940\) 0 0
\(941\) 13.3050 0.433729 0.216865 0.976202i \(-0.430417\pi\)
0.216865 + 0.976202i \(0.430417\pi\)
\(942\) 10.1803 0.331693
\(943\) 30.8328 1.00405
\(944\) 11.7082 0.381070
\(945\) 0 0
\(946\) 24.3607 0.792034
\(947\) −48.7214 −1.58323 −0.791616 0.611019i \(-0.790760\pi\)
−0.791616 + 0.611019i \(0.790760\pi\)
\(948\) 0.944272 0.0306685
\(949\) 45.8885 1.48961
\(950\) 0 0
\(951\) −11.8885 −0.385512
\(952\) 1.23607 0.0400612
\(953\) −26.9443 −0.872811 −0.436405 0.899750i \(-0.643749\pi\)
−0.436405 + 0.899750i \(0.643749\pi\)
\(954\) −10.9443 −0.354334
\(955\) 0 0
\(956\) −21.8885 −0.707926
\(957\) −8.00000 −0.258603
\(958\) 35.5967 1.15008
\(959\) 2.47214 0.0798294
\(960\) 0 0
\(961\) −24.8885 −0.802856
\(962\) −10.4721 −0.337635
\(963\) −8.00000 −0.257796
\(964\) 9.41641 0.303282
\(965\) 0 0
\(966\) 4.94427 0.159079
\(967\) 0.472136 0.0151829 0.00759143 0.999971i \(-0.497584\pi\)
0.00759143 + 0.999971i \(0.497584\pi\)
\(968\) 7.00000 0.224989
\(969\) 6.47214 0.207915
\(970\) 0 0
\(971\) −22.7639 −0.730529 −0.365265 0.930904i \(-0.619022\pi\)
−0.365265 + 0.930904i \(0.619022\pi\)
\(972\) 1.00000 0.0320750
\(973\) 1.88854 0.0605439
\(974\) −16.2918 −0.522023
\(975\) 0 0
\(976\) 4.47214 0.143150
\(977\) −26.9443 −0.862024 −0.431012 0.902346i \(-0.641843\pi\)
−0.431012 + 0.902346i \(0.641843\pi\)
\(978\) −22.4721 −0.718580
\(979\) 24.9443 0.797222
\(980\) 0 0
\(981\) −7.52786 −0.240346
\(982\) −12.2918 −0.392247
\(983\) −11.4164 −0.364127 −0.182063 0.983287i \(-0.558278\pi\)
−0.182063 + 0.983287i \(0.558278\pi\)
\(984\) 7.70820 0.245729
\(985\) 0 0
\(986\) −4.00000 −0.127386
\(987\) −12.9443 −0.412021
\(988\) 33.8885 1.07814
\(989\) 48.7214 1.54925
\(990\) 0 0
\(991\) −10.8328 −0.344116 −0.172058 0.985087i \(-0.555042\pi\)
−0.172058 + 0.985087i \(0.555042\pi\)
\(992\) −2.47214 −0.0784904
\(993\) −3.41641 −0.108416
\(994\) −13.8885 −0.440518
\(995\) 0 0
\(996\) −10.4721 −0.331822
\(997\) −41.0557 −1.30025 −0.650124 0.759828i \(-0.725283\pi\)
−0.650124 + 0.759828i \(0.725283\pi\)
\(998\) 16.0000 0.506471
\(999\) −2.00000 −0.0632772
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2550.2.a.bh.1.2 2
3.2 odd 2 7650.2.a.da.1.2 2
5.2 odd 4 510.2.d.b.409.2 4
5.3 odd 4 510.2.d.b.409.3 yes 4
5.4 even 2 2550.2.a.bk.1.1 2
15.2 even 4 1530.2.d.f.919.3 4
15.8 even 4 1530.2.d.f.919.2 4
15.14 odd 2 7650.2.a.cx.1.1 2
20.3 even 4 4080.2.m.m.2449.1 4
20.7 even 4 4080.2.m.m.2449.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
510.2.d.b.409.2 4 5.2 odd 4
510.2.d.b.409.3 yes 4 5.3 odd 4
1530.2.d.f.919.2 4 15.8 even 4
1530.2.d.f.919.3 4 15.2 even 4
2550.2.a.bh.1.2 2 1.1 even 1 trivial
2550.2.a.bk.1.1 2 5.4 even 2
4080.2.m.m.2449.1 4 20.3 even 4
4080.2.m.m.2449.4 4 20.7 even 4
7650.2.a.cx.1.1 2 15.14 odd 2
7650.2.a.da.1.2 2 3.2 odd 2