Properties

Label 2-766-1.1-c1-0-17
Degree $2$
Conductor $766$
Sign $1$
Analytic cond. $6.11654$
Root an. cond. $2.47316$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3.42·3-s + 4-s + 3.78·5-s − 3.42·6-s − 3.39·7-s − 8-s + 8.75·9-s − 3.78·10-s − 3.03·11-s + 3.42·12-s − 3.07·13-s + 3.39·14-s + 12.9·15-s + 16-s − 2.22·17-s − 8.75·18-s + 7.19·19-s + 3.78·20-s − 11.6·21-s + 3.03·22-s − 2.53·23-s − 3.42·24-s + 9.32·25-s + 3.07·26-s + 19.7·27-s − 3.39·28-s + ⋯
L(s)  = 1  − 0.707·2-s + 1.97·3-s + 0.5·4-s + 1.69·5-s − 1.39·6-s − 1.28·7-s − 0.353·8-s + 2.91·9-s − 1.19·10-s − 0.914·11-s + 0.989·12-s − 0.853·13-s + 0.908·14-s + 3.35·15-s + 0.250·16-s − 0.540·17-s − 2.06·18-s + 1.65·19-s + 0.846·20-s − 2.54·21-s + 0.646·22-s − 0.528·23-s − 0.699·24-s + 1.86·25-s + 0.603·26-s + 3.79·27-s − 0.642·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 766 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 766 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(766\)    =    \(2 \cdot 383\)
Sign: $1$
Analytic conductor: \(6.11654\)
Root analytic conductor: \(2.47316\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 766,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.481903314\)
\(L(\frac12)\) \(\approx\) \(2.481903314\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
383 \( 1 - T \)
good3 \( 1 - 3.42T + 3T^{2} \)
5 \( 1 - 3.78T + 5T^{2} \)
7 \( 1 + 3.39T + 7T^{2} \)
11 \( 1 + 3.03T + 11T^{2} \)
13 \( 1 + 3.07T + 13T^{2} \)
17 \( 1 + 2.22T + 17T^{2} \)
19 \( 1 - 7.19T + 19T^{2} \)
23 \( 1 + 2.53T + 23T^{2} \)
29 \( 1 - 5.93T + 29T^{2} \)
31 \( 1 - 3.29T + 31T^{2} \)
37 \( 1 + 2.18T + 37T^{2} \)
41 \( 1 - 2.98T + 41T^{2} \)
43 \( 1 + 7.65T + 43T^{2} \)
47 \( 1 + 6.30T + 47T^{2} \)
53 \( 1 + 8.04T + 53T^{2} \)
59 \( 1 - 3.09T + 59T^{2} \)
61 \( 1 + 11.4T + 61T^{2} \)
67 \( 1 + 13.9T + 67T^{2} \)
71 \( 1 + 7.18T + 71T^{2} \)
73 \( 1 - 7.28T + 73T^{2} \)
79 \( 1 + 1.50T + 79T^{2} \)
83 \( 1 + 12.5T + 83T^{2} \)
89 \( 1 - 4.74T + 89T^{2} \)
97 \( 1 + 1.17T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.950046016310769035331762059919, −9.539734711876732808867807145876, −8.887158788589513887436607709098, −7.913622281181549898808023564389, −7.07403711531304743695765762046, −6.26523278614503844502983852710, −4.87947867070129405356006991886, −3.06440735855375691059338793463, −2.73965077535804966997282669976, −1.65658049596596153149204924217, 1.65658049596596153149204924217, 2.73965077535804966997282669976, 3.06440735855375691059338793463, 4.87947867070129405356006991886, 6.26523278614503844502983852710, 7.07403711531304743695765762046, 7.913622281181549898808023564389, 8.887158788589513887436607709098, 9.539734711876732808867807145876, 9.950046016310769035331762059919

Graph of the $Z$-function along the critical line