Properties

Label 766.2.a.f
Level $766$
Weight $2$
Character orbit 766.a
Self dual yes
Analytic conductor $6.117$
Analytic rank $0$
Dimension $10$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [766,2,Mod(1,766)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(766, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("766.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 766 = 2 \cdot 383 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 766.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(6.11654079483\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 5x^{9} - 14x^{8} + 67x^{7} + 83x^{6} - 258x^{5} - 245x^{4} + 188x^{3} + 137x^{2} + 6x - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{9}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{2} + \beta_{4} q^{3} + q^{4} - \beta_{5} q^{5} - \beta_{4} q^{6} + (\beta_{3} + \beta_{2} - 1) q^{7} - q^{8} + (\beta_{8} - \beta_{7} + \beta_{6} + \cdots + 3) q^{9} + \beta_{5} q^{10} + ( - \beta_{8} - \beta_{7} + \beta_{3} + \cdots + 1) q^{11}+ \cdots + ( - 4 \beta_{8} - 4 \beta_{7} + \cdots + 2) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 10 q^{2} + 10 q^{4} + 3 q^{5} - 12 q^{7} - 10 q^{8} + 26 q^{9} - 3 q^{10} + 15 q^{11} - 7 q^{13} + 12 q^{14} + 3 q^{15} + 10 q^{16} + q^{17} - 26 q^{18} - 2 q^{19} + 3 q^{20} + q^{21} - 15 q^{22}+ \cdots + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{10} - 5x^{9} - 14x^{8} + 67x^{7} + 83x^{6} - 258x^{5} - 245x^{4} + 188x^{3} + 137x^{2} + 6x - 2 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( - 5693 \nu^{9} + 36810 \nu^{8} + 81149 \nu^{7} - 615450 \nu^{6} - 698938 \nu^{5} + 2934605 \nu^{4} + \cdots - 417977 ) / 202061 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 10383 \nu^{9} + 63479 \nu^{8} + 75986 \nu^{7} - 799342 \nu^{6} + 48829 \nu^{5} + 2920215 \nu^{4} + \cdots + 116880 ) / 202061 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 11836 \nu^{9} - 44728 \nu^{8} - 222981 \nu^{7} + 575582 \nu^{6} + 1568688 \nu^{5} - 1871416 \nu^{4} + \cdots + 463664 ) / 202061 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 14895 \nu^{9} - 94392 \nu^{8} - 129440 \nu^{7} + 1303516 \nu^{6} + 359879 \nu^{5} - 5357384 \nu^{4} + \cdots - 805322 ) / 202061 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 18278 \nu^{9} + 90924 \nu^{8} + 249322 \nu^{7} - 1228241 \nu^{6} - 1246170 \nu^{5} + \cdots + 564220 ) / 202061 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 30122 \nu^{9} + 146813 \nu^{8} + 440154 \nu^{7} - 1996030 \nu^{6} - 2622120 \nu^{5} + \cdots + 300255 ) / 202061 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 60650 \nu^{9} - 304379 \nu^{8} - 814719 \nu^{7} + 3997122 \nu^{6} + 4454501 \nu^{5} - 15170117 \nu^{4} + \cdots - 177547 ) / 202061 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 63981 \nu^{9} - 329395 \nu^{8} - 840478 \nu^{7} + 4390020 \nu^{6} + 4572979 \nu^{5} - 17109850 \nu^{4} + \cdots - 962103 ) / 202061 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( -\beta_{9} + \beta_{8} + 2\beta_{5} + 2\beta_{3} + \beta_{2} + 2\beta _1 + 5 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -5\beta_{9} + 6\beta_{8} + 3\beta_{7} - 2\beta_{6} + 7\beta_{5} + 8\beta_{3} + 2\beta_{2} + 12\beta _1 + 10 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( - 33 \beta_{9} + 37 \beta_{8} + 11 \beta_{7} - 8 \beta_{6} + 45 \beta_{5} - 2 \beta_{4} + 49 \beta_{3} + \cdots + 68 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( - 164 \beta_{9} + 192 \beta_{8} + 73 \beta_{7} - 52 \beta_{6} + 204 \beta_{5} - 15 \beta_{4} + \cdots + 254 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( - 858 \beta_{9} + 986 \beta_{8} + 332 \beta_{7} - 249 \beta_{6} + 1054 \beta_{5} - 86 \beta_{4} + \cdots + 1314 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( - 4219 \beta_{9} + 4908 \beta_{8} + 1743 \beta_{7} - 1288 \beta_{6} + 5051 \beta_{5} - 473 \beta_{4} + \cdots + 5928 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( - 20919 \beta_{9} + 24210 \beta_{8} + 8342 \beta_{7} - 6288 \beta_{6} + 24901 \beta_{5} - 2384 \beta_{4} + \cdots + 29073 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( - 102113 \beta_{9} + 118594 \beta_{8} + 41382 \beta_{7} - 31026 \beta_{6} + 120618 \beta_{5} + \cdots + 138286 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.11593
0.917369
2.85141
−0.481354
−1.30105
−0.177285
4.85391
2.82034
−2.46390
0.0964894
−1.00000 −3.20458 1.00000 −0.978397 3.20458 2.51132 −1.00000 7.26935 0.978397
1.2 −1.00000 −3.13386 1.00000 2.68856 3.13386 −3.82743 −1.00000 6.82111 −2.68856
1.3 −1.00000 −1.46158 1.00000 −3.83127 1.46158 −4.61324 −1.00000 −0.863771 3.83127
1.4 −1.00000 −1.45408 1.00000 −0.895422 1.45408 −4.01437 −1.00000 −0.885646 0.895422
1.5 −1.00000 −1.29305 1.00000 2.52786 1.29305 2.54939 −1.00000 −1.32802 −2.52786
1.6 −1.00000 0.330181 1.00000 3.19842 −0.330181 −1.93229 −1.00000 −2.89098 −3.19842
1.7 −1.00000 1.00075 1.00000 −1.67672 −1.00075 −0.108385 −1.00000 −1.99850 1.67672
1.8 −1.00000 2.46206 1.00000 1.91260 −2.46206 3.01500 −1.00000 3.06172 −1.91260
1.9 −1.00000 3.32566 1.00000 −3.73068 −3.32566 −2.18027 −1.00000 8.05999 3.73068
1.10 −1.00000 3.42852 1.00000 3.78504 −3.42852 −3.39973 −1.00000 8.75475 −3.78504
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.10
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(383\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 766.2.a.f 10
3.b odd 2 1 6894.2.a.bb 10
4.b odd 2 1 6128.2.a.k 10
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
766.2.a.f 10 1.a even 1 1 trivial
6128.2.a.k 10 4.b odd 2 1
6894.2.a.bb 10 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(766))\):

\( T_{3}^{10} - 28T_{3}^{8} - 7T_{3}^{7} + 264T_{3}^{6} + 133T_{3}^{5} - 926T_{3}^{4} - 676T_{3}^{3} + 920T_{3}^{2} + 576T_{3} - 256 \) Copy content Toggle raw display
\( T_{5}^{10} - 3 T_{5}^{9} - 33 T_{5}^{8} + 103 T_{5}^{7} + 344 T_{5}^{6} - 1115 T_{5}^{5} - 1262 T_{5}^{4} + \cdots - 3304 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 1)^{10} \) Copy content Toggle raw display
$3$ \( T^{10} - 28 T^{8} + \cdots - 256 \) Copy content Toggle raw display
$5$ \( T^{10} - 3 T^{9} + \cdots - 3304 \) Copy content Toggle raw display
$7$ \( T^{10} + 12 T^{9} + \cdots - 2124 \) Copy content Toggle raw display
$11$ \( T^{10} - 15 T^{9} + \cdots + 6 \) Copy content Toggle raw display
$13$ \( T^{10} + 7 T^{9} + \cdots - 4966 \) Copy content Toggle raw display
$17$ \( T^{10} - T^{9} + \cdots - 131732 \) Copy content Toggle raw display
$19$ \( T^{10} + 2 T^{9} + \cdots - 732416 \) Copy content Toggle raw display
$23$ \( T^{10} - 3 T^{9} + \cdots - 192 \) Copy content Toggle raw display
$29$ \( T^{10} - 26 T^{9} + \cdots + 93431328 \) Copy content Toggle raw display
$31$ \( T^{10} - 7 T^{9} + \cdots + 532288 \) Copy content Toggle raw display
$37$ \( T^{10} - 5 T^{9} + \cdots + 157262 \) Copy content Toggle raw display
$41$ \( T^{10} - 37 T^{9} + \cdots + 1093344 \) Copy content Toggle raw display
$43$ \( T^{10} + 25 T^{9} + \cdots + 27672576 \) Copy content Toggle raw display
$47$ \( T^{10} + 4 T^{9} + \cdots + 321536 \) Copy content Toggle raw display
$53$ \( T^{10} - 14 T^{9} + \cdots + 85891418 \) Copy content Toggle raw display
$59$ \( T^{10} - 37 T^{9} + \cdots - 37258322 \) Copy content Toggle raw display
$61$ \( T^{10} - 11 T^{9} + \cdots + 6302914 \) Copy content Toggle raw display
$67$ \( T^{10} + \cdots - 188572608 \) Copy content Toggle raw display
$71$ \( T^{10} - 35 T^{9} + \cdots + 347584 \) Copy content Toggle raw display
$73$ \( T^{10} - 12 T^{9} + \cdots + 10160376 \) Copy content Toggle raw display
$79$ \( T^{10} + \cdots + 698537728 \) Copy content Toggle raw display
$83$ \( T^{10} + \cdots + 2070377304 \) Copy content Toggle raw display
$89$ \( T^{10} - 70 T^{9} + \cdots - 175392 \) Copy content Toggle raw display
$97$ \( T^{10} + 7 T^{9} + \cdots - 20391744 \) Copy content Toggle raw display
show more
show less