L(s) = 1 | + 8·5-s + 12·13-s − 24·17-s + 32·25-s + 16·29-s + 12·37-s − 8·49-s + 16·53-s + 12·61-s + 96·65-s − 81-s − 192·85-s − 16·97-s + 32·101-s − 28·109-s + 24·113-s + 104·125-s + 127-s + 131-s + 137-s + 139-s + 128·145-s + 149-s + 151-s + 157-s + 163-s + 167-s + ⋯ |
L(s) = 1 | + 3.57·5-s + 3.32·13-s − 5.82·17-s + 32/5·25-s + 2.97·29-s + 1.97·37-s − 8/7·49-s + 2.19·53-s + 1.53·61-s + 11.9·65-s − 1/9·81-s − 20.8·85-s − 1.62·97-s + 3.18·101-s − 2.68·109-s + 2.25·113-s + 9.30·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 10.6·145-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + ⋯ |
Λ(s)=(=((232⋅34)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((232⋅34)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
232⋅34
|
Sign: |
1
|
Analytic conductor: |
1414.33 |
Root analytic conductor: |
2.47639 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 232⋅34, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
8.419198324 |
L(21) |
≈ |
8.419198324 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C22 | 1+T4 |
good | 5 | C22 | (1−4T+8T2−4pT3+p2T4)2 |
| 7 | C22 | (1+4T2+p2T4)2 |
| 11 | C23 | 1−206T4+p4T8 |
| 13 | C22 | (1−6T+18T2−6pT3+p2T4)2 |
| 17 | C2 | (1+6T+pT2)4 |
| 19 | C22×C22 | (1−12T+72T2−12pT3+p2T4)(1+12T+72T2+12pT3+p2T4) |
| 23 | C22 | (1−38T2+p2T4)2 |
| 29 | C22 | (1−8T+32T2−8pT3+p2T4)2 |
| 31 | C22 | (1+44T2+p2T4)2 |
| 37 | C22 | (1−6T+18T2−6pT3+p2T4)2 |
| 41 | C2 | (1−8T+pT2)2(1+8T+pT2)2 |
| 43 | C23 | 1−1198T4+p4T8 |
| 47 | C22 | (1+86T2+p2T4)2 |
| 53 | C22 | (1−8T+32T2−8pT3+p2T4)2 |
| 59 | C22 | (1+p2T4)2 |
| 61 | C22 | (1−6T+18T2−6pT3+p2T4)2 |
| 67 | C23 | 1+4946T4+p4T8 |
| 71 | C22 | (1−134T2+p2T4)2 |
| 73 | C2 | (1−6T+pT2)2(1+6T+pT2)2 |
| 79 | C22 | (1+140T2+p2T4)2 |
| 83 | C23 | 1−5678T4+p4T8 |
| 89 | C22 | (1+18T2+p2T4)2 |
| 97 | C2 | (1+4T+pT2)4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.17541090524028005340860416239, −6.90766429471259305559175216361, −6.60530406817808809405330585777, −6.59514634713179358768277490491, −6.55916352975344041183676534129, −6.31227264158126278770763844670, −6.11445119591430064242779320287, −5.84178694129719924994683965658, −5.72070719485549474035647467450, −5.41853600021421866967305718659, −5.13995183399375656247404544564, −4.64452540296242581733366135328, −4.55333170601221371658323845706, −4.28657100691365784008816074475, −4.27793153380316927668091195971, −3.77575529505352704074050354129, −3.37833124370845631094842673982, −2.86337915081147267109893599540, −2.56869848048385159799366707749, −2.56414720835923351115198045294, −1.97386060038264469952212255906, −1.90312982309361220561424011402, −1.79390694285162107155781629995, −0.948955856369256371994491761986, −0.851831776320703403346591185809,
0.851831776320703403346591185809, 0.948955856369256371994491761986, 1.79390694285162107155781629995, 1.90312982309361220561424011402, 1.97386060038264469952212255906, 2.56414720835923351115198045294, 2.56869848048385159799366707749, 2.86337915081147267109893599540, 3.37833124370845631094842673982, 3.77575529505352704074050354129, 4.27793153380316927668091195971, 4.28657100691365784008816074475, 4.55333170601221371658323845706, 4.64452540296242581733366135328, 5.13995183399375656247404544564, 5.41853600021421866967305718659, 5.72070719485549474035647467450, 5.84178694129719924994683965658, 6.11445119591430064242779320287, 6.31227264158126278770763844670, 6.55916352975344041183676534129, 6.59514634713179358768277490491, 6.60530406817808809405330585777, 6.90766429471259305559175216361, 7.17541090524028005340860416239