Properties

Label 768.2.j.d
Level $768$
Weight $2$
Character orbit 768.j
Analytic conductor $6.133$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [768,2,Mod(193,768)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(768, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("768.193");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 768 = 2^{8} \cdot 3 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 768.j (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.13251087523\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{8})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{8}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \zeta_{8} q^{3} + ( - 2 \zeta_{8}^{2} + 2) q^{5} + (3 \zeta_{8}^{3} + 3 \zeta_{8}) q^{7} + \zeta_{8}^{2} q^{9} + 4 \zeta_{8}^{3} q^{11} + (3 \zeta_{8}^{2} + 3) q^{13} + ( - 2 \zeta_{8}^{3} + 2 \zeta_{8}) q^{15}+ \cdots - 4 \zeta_{8} q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 8 q^{5} + 12 q^{13} - 24 q^{17} - 12 q^{21} + 16 q^{29} - 16 q^{33} + 12 q^{37} + 8 q^{45} - 44 q^{49} + 16 q^{53} + 12 q^{61} + 48 q^{65} + 8 q^{69} - 48 q^{77} - 4 q^{81} - 48 q^{85} + 12 q^{93}+ \cdots - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/768\mathbb{Z}\right)^\times\).

\(n\) \(257\) \(511\) \(517\)
\(\chi(n)\) \(1\) \(1\) \(-\zeta_{8}^{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
193.1
−0.707107 + 0.707107i
0.707107 0.707107i
−0.707107 0.707107i
0.707107 + 0.707107i
0 −0.707107 + 0.707107i 0 2.00000 + 2.00000i 0 4.24264i 0 1.00000i 0
193.2 0 0.707107 0.707107i 0 2.00000 + 2.00000i 0 4.24264i 0 1.00000i 0
577.1 0 −0.707107 0.707107i 0 2.00000 2.00000i 0 4.24264i 0 1.00000i 0
577.2 0 0.707107 + 0.707107i 0 2.00000 2.00000i 0 4.24264i 0 1.00000i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
16.e even 4 1 inner
16.f odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 768.2.j.d yes 4
3.b odd 2 1 2304.2.k.a 4
4.b odd 2 1 inner 768.2.j.d yes 4
8.b even 2 1 768.2.j.a 4
8.d odd 2 1 768.2.j.a 4
12.b even 2 1 2304.2.k.a 4
16.e even 4 1 768.2.j.a 4
16.e even 4 1 inner 768.2.j.d yes 4
16.f odd 4 1 768.2.j.a 4
16.f odd 4 1 inner 768.2.j.d yes 4
24.f even 2 1 2304.2.k.d 4
24.h odd 2 1 2304.2.k.d 4
32.g even 8 1 3072.2.a.d 2
32.g even 8 1 3072.2.a.f 2
32.g even 8 2 3072.2.d.d 4
32.h odd 8 1 3072.2.a.d 2
32.h odd 8 1 3072.2.a.f 2
32.h odd 8 2 3072.2.d.d 4
48.i odd 4 1 2304.2.k.a 4
48.i odd 4 1 2304.2.k.d 4
48.k even 4 1 2304.2.k.a 4
48.k even 4 1 2304.2.k.d 4
96.o even 8 1 9216.2.a.e 2
96.o even 8 1 9216.2.a.q 2
96.p odd 8 1 9216.2.a.e 2
96.p odd 8 1 9216.2.a.q 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
768.2.j.a 4 8.b even 2 1
768.2.j.a 4 8.d odd 2 1
768.2.j.a 4 16.e even 4 1
768.2.j.a 4 16.f odd 4 1
768.2.j.d yes 4 1.a even 1 1 trivial
768.2.j.d yes 4 4.b odd 2 1 inner
768.2.j.d yes 4 16.e even 4 1 inner
768.2.j.d yes 4 16.f odd 4 1 inner
2304.2.k.a 4 3.b odd 2 1
2304.2.k.a 4 12.b even 2 1
2304.2.k.a 4 48.i odd 4 1
2304.2.k.a 4 48.k even 4 1
2304.2.k.d 4 24.f even 2 1
2304.2.k.d 4 24.h odd 2 1
2304.2.k.d 4 48.i odd 4 1
2304.2.k.d 4 48.k even 4 1
3072.2.a.d 2 32.g even 8 1
3072.2.a.d 2 32.h odd 8 1
3072.2.a.f 2 32.g even 8 1
3072.2.a.f 2 32.h odd 8 1
3072.2.d.d 4 32.g even 8 2
3072.2.d.d 4 32.h odd 8 2
9216.2.a.e 2 96.o even 8 1
9216.2.a.e 2 96.p odd 8 1
9216.2.a.q 2 96.o even 8 1
9216.2.a.q 2 96.p odd 8 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(768, [\chi])\):

\( T_{5}^{2} - 4T_{5} + 8 \) Copy content Toggle raw display
\( T_{13}^{2} - 6T_{13} + 18 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} + 1 \) Copy content Toggle raw display
$5$ \( (T^{2} - 4 T + 8)^{2} \) Copy content Toggle raw display
$7$ \( (T^{2} + 18)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} + 256 \) Copy content Toggle raw display
$13$ \( (T^{2} - 6 T + 18)^{2} \) Copy content Toggle raw display
$17$ \( (T + 6)^{4} \) Copy content Toggle raw display
$19$ \( T^{4} + 16 \) Copy content Toggle raw display
$23$ \( (T^{2} + 8)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} - 8 T + 32)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} - 18)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} - 6 T + 18)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} + 100)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + 1296 \) Copy content Toggle raw display
$47$ \( (T^{2} - 8)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} - 8 T + 32)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} \) Copy content Toggle raw display
$61$ \( (T^{2} - 6 T + 18)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + 256 \) Copy content Toggle raw display
$71$ \( (T^{2} + 8)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} + 256)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} - 18)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + 65536 \) Copy content Toggle raw display
$89$ \( (T^{2} + 196)^{2} \) Copy content Toggle raw display
$97$ \( (T + 4)^{4} \) Copy content Toggle raw display
show more
show less