Properties

Label 2-768-16.13-c1-0-14
Degree $2$
Conductor $768$
Sign $-0.382 + 0.923i$
Analytic cond. $6.13251$
Root an. cond. $2.47639$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.707 − 0.707i)3-s + (2 − 2i)5-s − 4.24i·7-s + 1.00i·9-s + (2.82 − 2.82i)11-s + (3 + 3i)13-s − 2.82·15-s − 6·17-s + (−1.41 − 1.41i)19-s + (−3 + 3i)21-s + 2.82i·23-s − 3i·25-s + (0.707 − 0.707i)27-s + (4 + 4i)29-s − 4.24·31-s + ⋯
L(s)  = 1  + (−0.408 − 0.408i)3-s + (0.894 − 0.894i)5-s − 1.60i·7-s + 0.333i·9-s + (0.852 − 0.852i)11-s + (0.832 + 0.832i)13-s − 0.730·15-s − 1.45·17-s + (−0.324 − 0.324i)19-s + (−0.654 + 0.654i)21-s + 0.589i·23-s − 0.600i·25-s + (0.136 − 0.136i)27-s + (0.742 + 0.742i)29-s − 0.762·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 768 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.382 + 0.923i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 768 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.382 + 0.923i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(768\)    =    \(2^{8} \cdot 3\)
Sign: $-0.382 + 0.923i$
Analytic conductor: \(6.13251\)
Root analytic conductor: \(2.47639\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{768} (577, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 768,\ (\ :1/2),\ -0.382 + 0.923i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.846991 - 1.26761i\)
\(L(\frac12)\) \(\approx\) \(0.846991 - 1.26761i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (0.707 + 0.707i)T \)
good5 \( 1 + (-2 + 2i)T - 5iT^{2} \)
7 \( 1 + 4.24iT - 7T^{2} \)
11 \( 1 + (-2.82 + 2.82i)T - 11iT^{2} \)
13 \( 1 + (-3 - 3i)T + 13iT^{2} \)
17 \( 1 + 6T + 17T^{2} \)
19 \( 1 + (1.41 + 1.41i)T + 19iT^{2} \)
23 \( 1 - 2.82iT - 23T^{2} \)
29 \( 1 + (-4 - 4i)T + 29iT^{2} \)
31 \( 1 + 4.24T + 31T^{2} \)
37 \( 1 + (-3 + 3i)T - 37iT^{2} \)
41 \( 1 + 10iT - 41T^{2} \)
43 \( 1 + (4.24 - 4.24i)T - 43iT^{2} \)
47 \( 1 - 2.82T + 47T^{2} \)
53 \( 1 + (-4 + 4i)T - 53iT^{2} \)
59 \( 1 - 59iT^{2} \)
61 \( 1 + (-3 - 3i)T + 61iT^{2} \)
67 \( 1 + (-2.82 - 2.82i)T + 67iT^{2} \)
71 \( 1 + 2.82iT - 71T^{2} \)
73 \( 1 - 16iT - 73T^{2} \)
79 \( 1 - 4.24T + 79T^{2} \)
83 \( 1 + (11.3 + 11.3i)T + 83iT^{2} \)
89 \( 1 + 14iT - 89T^{2} \)
97 \( 1 + 4T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.11510962402942557345311230522, −9.017019754242029093189307405784, −8.629996951329103893467879870441, −7.17541090524028005340860416239, −6.60530406817808809405330585777, −5.72070719485549474035647467450, −4.55333170601221371658323845706, −3.77575529505352704074050354129, −1.79390694285162107155781629995, −0.851831776320703403346591185809, 1.97386060038264469952212255906, 2.86337915081147267109893599540, 4.28657100691365784008816074475, 5.41853600021421866967305718659, 6.31227264158126278770763844670, 6.59514634713179358768277490491, 8.240738928944554838331361457835, 9.056803188338565437820075487517, 9.750335414596034369890949145718, 10.56206173434048164945911644265

Graph of the $Z$-function along the critical line