L(s) = 1 | + (−0.707 − 0.707i)3-s + (2 − 2i)5-s − 4.24i·7-s + 1.00i·9-s + (2.82 − 2.82i)11-s + (3 + 3i)13-s − 2.82·15-s − 6·17-s + (−1.41 − 1.41i)19-s + (−3 + 3i)21-s + 2.82i·23-s − 3i·25-s + (0.707 − 0.707i)27-s + (4 + 4i)29-s − 4.24·31-s + ⋯ |
L(s) = 1 | + (−0.408 − 0.408i)3-s + (0.894 − 0.894i)5-s − 1.60i·7-s + 0.333i·9-s + (0.852 − 0.852i)11-s + (0.832 + 0.832i)13-s − 0.730·15-s − 1.45·17-s + (−0.324 − 0.324i)19-s + (−0.654 + 0.654i)21-s + 0.589i·23-s − 0.600i·25-s + (0.136 − 0.136i)27-s + (0.742 + 0.742i)29-s − 0.762·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 768 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.382 + 0.923i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 768 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.382 + 0.923i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.846991 - 1.26761i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.846991 - 1.26761i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.707 + 0.707i)T \) |
good | 5 | \( 1 + (-2 + 2i)T - 5iT^{2} \) |
| 7 | \( 1 + 4.24iT - 7T^{2} \) |
| 11 | \( 1 + (-2.82 + 2.82i)T - 11iT^{2} \) |
| 13 | \( 1 + (-3 - 3i)T + 13iT^{2} \) |
| 17 | \( 1 + 6T + 17T^{2} \) |
| 19 | \( 1 + (1.41 + 1.41i)T + 19iT^{2} \) |
| 23 | \( 1 - 2.82iT - 23T^{2} \) |
| 29 | \( 1 + (-4 - 4i)T + 29iT^{2} \) |
| 31 | \( 1 + 4.24T + 31T^{2} \) |
| 37 | \( 1 + (-3 + 3i)T - 37iT^{2} \) |
| 41 | \( 1 + 10iT - 41T^{2} \) |
| 43 | \( 1 + (4.24 - 4.24i)T - 43iT^{2} \) |
| 47 | \( 1 - 2.82T + 47T^{2} \) |
| 53 | \( 1 + (-4 + 4i)T - 53iT^{2} \) |
| 59 | \( 1 - 59iT^{2} \) |
| 61 | \( 1 + (-3 - 3i)T + 61iT^{2} \) |
| 67 | \( 1 + (-2.82 - 2.82i)T + 67iT^{2} \) |
| 71 | \( 1 + 2.82iT - 71T^{2} \) |
| 73 | \( 1 - 16iT - 73T^{2} \) |
| 79 | \( 1 - 4.24T + 79T^{2} \) |
| 83 | \( 1 + (11.3 + 11.3i)T + 83iT^{2} \) |
| 89 | \( 1 + 14iT - 89T^{2} \) |
| 97 | \( 1 + 4T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.11510962402942557345311230522, −9.017019754242029093189307405784, −8.629996951329103893467879870441, −7.17541090524028005340860416239, −6.60530406817808809405330585777, −5.72070719485549474035647467450, −4.55333170601221371658323845706, −3.77575529505352704074050354129, −1.79390694285162107155781629995, −0.851831776320703403346591185809,
1.97386060038264469952212255906, 2.86337915081147267109893599540, 4.28657100691365784008816074475, 5.41853600021421866967305718659, 6.31227264158126278770763844670, 6.59514634713179358768277490491, 8.240738928944554838331361457835, 9.056803188338565437820075487517, 9.750335414596034369890949145718, 10.56206173434048164945911644265