L(s) = 1 | + 0.0643·3-s − 2.31·5-s + 1.63·7-s − 2.99·9-s + 1.15·13-s − 0.148·15-s + 3.36·17-s + 5.83·19-s + 0.104·21-s − 7.86·23-s + 0.350·25-s − 0.385·27-s + 5.92·29-s − 3.61·31-s − 3.77·35-s + 0.362·37-s + 0.0743·39-s − 4.40·41-s − 5.15·43-s + 6.92·45-s − 1.15·47-s − 4.34·49-s + 0.216·51-s − 6.14·53-s + 0.375·57-s + 8.12·59-s + 8.82·61-s + ⋯ |
L(s) = 1 | + 0.0371·3-s − 1.03·5-s + 0.616·7-s − 0.998·9-s + 0.320·13-s − 0.0384·15-s + 0.815·17-s + 1.33·19-s + 0.0228·21-s − 1.63·23-s + 0.0700·25-s − 0.0742·27-s + 1.10·29-s − 0.648·31-s − 0.637·35-s + 0.0595·37-s + 0.0119·39-s − 0.688·41-s − 0.786·43-s + 1.03·45-s − 0.168·47-s − 0.620·49-s + 0.0302·51-s − 0.843·53-s + 0.0497·57-s + 1.05·59-s + 1.13·61-s + ⋯ |
Λ(s)=(=(7744s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(7744s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 11 | 1 |
good | 3 | 1−0.0643T+3T2 |
| 5 | 1+2.31T+5T2 |
| 7 | 1−1.63T+7T2 |
| 13 | 1−1.15T+13T2 |
| 17 | 1−3.36T+17T2 |
| 19 | 1−5.83T+19T2 |
| 23 | 1+7.86T+23T2 |
| 29 | 1−5.92T+29T2 |
| 31 | 1+3.61T+31T2 |
| 37 | 1−0.362T+37T2 |
| 41 | 1+4.40T+41T2 |
| 43 | 1+5.15T+43T2 |
| 47 | 1+1.15T+47T2 |
| 53 | 1+6.14T+53T2 |
| 59 | 1−8.12T+59T2 |
| 61 | 1−8.82T+61T2 |
| 67 | 1−12.6T+67T2 |
| 71 | 1+15.0T+71T2 |
| 73 | 1−13.0T+73T2 |
| 79 | 1−2.07T+79T2 |
| 83 | 1+8.94T+83T2 |
| 89 | 1−13.9T+89T2 |
| 97 | 1−0.00798T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.73030519142363399042660603829, −6.94221961929963925995740483810, −6.04478043605088898077845986480, −5.37591723460893189669061890469, −4.74336263606720155163104282139, −3.69762718790402184484569366385, −3.37180485772636108063604241743, −2.28524569727403331293985629422, −1.16716977753463265865640322435, 0,
1.16716977753463265865640322435, 2.28524569727403331293985629422, 3.37180485772636108063604241743, 3.69762718790402184484569366385, 4.74336263606720155163104282139, 5.37591723460893189669061890469, 6.04478043605088898077845986480, 6.94221961929963925995740483810, 7.73030519142363399042660603829