Properties

Label 7744.2.a.dv.1.3
Level $7744$
Weight $2$
Character 7744.1
Self dual yes
Analytic conductor $61.836$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7744,2,Mod(1,7744)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7744, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7744.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7744 = 2^{6} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7744.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(61.8361513253\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.19898000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 10x^{4} + 7x^{3} + 24x^{2} - 15x - 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 352)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(0.935683\) of defining polynomial
Character \(\chi\) \(=\) 7744.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.0643165 q^{3} -2.31301 q^{5} +1.63066 q^{7} -2.99586 q^{9} +1.15644 q^{13} -0.148765 q^{15} +3.36056 q^{17} +5.83478 q^{19} +0.104878 q^{21} -7.86209 q^{23} +0.350020 q^{25} -0.385633 q^{27} +5.92691 q^{29} -3.61053 q^{31} -3.77174 q^{35} +0.362348 q^{37} +0.0743784 q^{39} -4.40970 q^{41} -5.15478 q^{43} +6.92946 q^{45} -1.15852 q^{47} -4.34095 q^{49} +0.216140 q^{51} -6.14411 q^{53} +0.375273 q^{57} +8.12241 q^{59} +8.82601 q^{61} -4.88524 q^{63} -2.67486 q^{65} +12.6763 q^{67} -0.505662 q^{69} -15.0072 q^{71} +13.0022 q^{73} +0.0225121 q^{75} +2.07633 q^{79} +8.96279 q^{81} -8.94922 q^{83} -7.77302 q^{85} +0.381198 q^{87} +13.9653 q^{89} +1.88577 q^{91} -0.232217 q^{93} -13.4959 q^{95} +0.00798799 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 5 q^{3} - 2 q^{7} + 7 q^{9} - 4 q^{13} - 8 q^{15} - 9 q^{17} + 5 q^{19} - 12 q^{21} - 6 q^{23} + 4 q^{25} + 26 q^{27} - 10 q^{29} - 12 q^{31} - 26 q^{35} + 12 q^{37} - 2 q^{39} - 17 q^{41} + 11 q^{43}+ \cdots - 21 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.0643165 0.0371332 0.0185666 0.999828i \(-0.494090\pi\)
0.0185666 + 0.999828i \(0.494090\pi\)
\(4\) 0 0
\(5\) −2.31301 −1.03441 −0.517205 0.855862i \(-0.673028\pi\)
−0.517205 + 0.855862i \(0.673028\pi\)
\(6\) 0 0
\(7\) 1.63066 0.616332 0.308166 0.951333i \(-0.400285\pi\)
0.308166 + 0.951333i \(0.400285\pi\)
\(8\) 0 0
\(9\) −2.99586 −0.998621
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) 1.15644 0.320739 0.160370 0.987057i \(-0.448731\pi\)
0.160370 + 0.987057i \(0.448731\pi\)
\(14\) 0 0
\(15\) −0.148765 −0.0384109
\(16\) 0 0
\(17\) 3.36056 0.815057 0.407528 0.913193i \(-0.366391\pi\)
0.407528 + 0.913193i \(0.366391\pi\)
\(18\) 0 0
\(19\) 5.83478 1.33859 0.669295 0.742996i \(-0.266596\pi\)
0.669295 + 0.742996i \(0.266596\pi\)
\(20\) 0 0
\(21\) 0.104878 0.0228863
\(22\) 0 0
\(23\) −7.86209 −1.63936 −0.819680 0.572822i \(-0.805848\pi\)
−0.819680 + 0.572822i \(0.805848\pi\)
\(24\) 0 0
\(25\) 0.350020 0.0700040
\(26\) 0 0
\(27\) −0.385633 −0.0742151
\(28\) 0 0
\(29\) 5.92691 1.10060 0.550300 0.834967i \(-0.314513\pi\)
0.550300 + 0.834967i \(0.314513\pi\)
\(30\) 0 0
\(31\) −3.61053 −0.648470 −0.324235 0.945977i \(-0.605107\pi\)
−0.324235 + 0.945977i \(0.605107\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −3.77174 −0.637540
\(36\) 0 0
\(37\) 0.362348 0.0595696 0.0297848 0.999556i \(-0.490518\pi\)
0.0297848 + 0.999556i \(0.490518\pi\)
\(38\) 0 0
\(39\) 0.0743784 0.0119101
\(40\) 0 0
\(41\) −4.40970 −0.688679 −0.344340 0.938845i \(-0.611897\pi\)
−0.344340 + 0.938845i \(0.611897\pi\)
\(42\) 0 0
\(43\) −5.15478 −0.786097 −0.393049 0.919518i \(-0.628580\pi\)
−0.393049 + 0.919518i \(0.628580\pi\)
\(44\) 0 0
\(45\) 6.92946 1.03298
\(46\) 0 0
\(47\) −1.15852 −0.168988 −0.0844941 0.996424i \(-0.526927\pi\)
−0.0844941 + 0.996424i \(0.526927\pi\)
\(48\) 0 0
\(49\) −4.34095 −0.620135
\(50\) 0 0
\(51\) 0.216140 0.0302656
\(52\) 0 0
\(53\) −6.14411 −0.843959 −0.421980 0.906605i \(-0.638665\pi\)
−0.421980 + 0.906605i \(0.638665\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0.375273 0.0497061
\(58\) 0 0
\(59\) 8.12241 1.05745 0.528724 0.848794i \(-0.322671\pi\)
0.528724 + 0.848794i \(0.322671\pi\)
\(60\) 0 0
\(61\) 8.82601 1.13005 0.565027 0.825072i \(-0.308866\pi\)
0.565027 + 0.825072i \(0.308866\pi\)
\(62\) 0 0
\(63\) −4.88524 −0.615482
\(64\) 0 0
\(65\) −2.67486 −0.331776
\(66\) 0 0
\(67\) 12.6763 1.54865 0.774326 0.632787i \(-0.218089\pi\)
0.774326 + 0.632787i \(0.218089\pi\)
\(68\) 0 0
\(69\) −0.505662 −0.0608746
\(70\) 0 0
\(71\) −15.0072 −1.78103 −0.890515 0.454955i \(-0.849656\pi\)
−0.890515 + 0.454955i \(0.849656\pi\)
\(72\) 0 0
\(73\) 13.0022 1.52179 0.760896 0.648874i \(-0.224760\pi\)
0.760896 + 0.648874i \(0.224760\pi\)
\(74\) 0 0
\(75\) 0.0225121 0.00259947
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 2.07633 0.233606 0.116803 0.993155i \(-0.462735\pi\)
0.116803 + 0.993155i \(0.462735\pi\)
\(80\) 0 0
\(81\) 8.96279 0.995865
\(82\) 0 0
\(83\) −8.94922 −0.982305 −0.491152 0.871074i \(-0.663424\pi\)
−0.491152 + 0.871074i \(0.663424\pi\)
\(84\) 0 0
\(85\) −7.77302 −0.843103
\(86\) 0 0
\(87\) 0.381198 0.0408687
\(88\) 0 0
\(89\) 13.9653 1.48032 0.740160 0.672431i \(-0.234750\pi\)
0.740160 + 0.672431i \(0.234750\pi\)
\(90\) 0 0
\(91\) 1.88577 0.197682
\(92\) 0 0
\(93\) −0.232217 −0.0240797
\(94\) 0 0
\(95\) −13.4959 −1.38465
\(96\) 0 0
\(97\) 0.00798799 0.000811057 0 0.000405529 1.00000i \(-0.499871\pi\)
0.000405529 1.00000i \(0.499871\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −10.0557 −1.00058 −0.500292 0.865857i \(-0.666774\pi\)
−0.500292 + 0.865857i \(0.666774\pi\)
\(102\) 0 0
\(103\) −4.87601 −0.480447 −0.240224 0.970718i \(-0.577221\pi\)
−0.240224 + 0.970718i \(0.577221\pi\)
\(104\) 0 0
\(105\) −0.242585 −0.0236739
\(106\) 0 0
\(107\) 5.65316 0.546512 0.273256 0.961941i \(-0.411899\pi\)
0.273256 + 0.961941i \(0.411899\pi\)
\(108\) 0 0
\(109\) −8.01561 −0.767756 −0.383878 0.923384i \(-0.625412\pi\)
−0.383878 + 0.923384i \(0.625412\pi\)
\(110\) 0 0
\(111\) 0.0233050 0.00221201
\(112\) 0 0
\(113\) −9.62436 −0.905384 −0.452692 0.891667i \(-0.649536\pi\)
−0.452692 + 0.891667i \(0.649536\pi\)
\(114\) 0 0
\(115\) 18.1851 1.69577
\(116\) 0 0
\(117\) −3.46454 −0.320297
\(118\) 0 0
\(119\) 5.47994 0.502345
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) −0.283616 −0.0255728
\(124\) 0 0
\(125\) 10.7555 0.961997
\(126\) 0 0
\(127\) 20.6659 1.83380 0.916900 0.399116i \(-0.130683\pi\)
0.916900 + 0.399116i \(0.130683\pi\)
\(128\) 0 0
\(129\) −0.331538 −0.0291903
\(130\) 0 0
\(131\) 17.9382 1.56727 0.783633 0.621224i \(-0.213364\pi\)
0.783633 + 0.621224i \(0.213364\pi\)
\(132\) 0 0
\(133\) 9.51455 0.825016
\(134\) 0 0
\(135\) 0.891973 0.0767688
\(136\) 0 0
\(137\) −4.44854 −0.380064 −0.190032 0.981778i \(-0.560859\pi\)
−0.190032 + 0.981778i \(0.560859\pi\)
\(138\) 0 0
\(139\) 5.52337 0.468486 0.234243 0.972178i \(-0.424739\pi\)
0.234243 + 0.972178i \(0.424739\pi\)
\(140\) 0 0
\(141\) −0.0745123 −0.00627506
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −13.7090 −1.13847
\(146\) 0 0
\(147\) −0.279195 −0.0230276
\(148\) 0 0
\(149\) −12.1307 −0.993788 −0.496894 0.867811i \(-0.665526\pi\)
−0.496894 + 0.867811i \(0.665526\pi\)
\(150\) 0 0
\(151\) −15.1453 −1.23251 −0.616255 0.787547i \(-0.711351\pi\)
−0.616255 + 0.787547i \(0.711351\pi\)
\(152\) 0 0
\(153\) −10.0678 −0.813933
\(154\) 0 0
\(155\) 8.35119 0.670784
\(156\) 0 0
\(157\) −16.4555 −1.31329 −0.656646 0.754199i \(-0.728026\pi\)
−0.656646 + 0.754199i \(0.728026\pi\)
\(158\) 0 0
\(159\) −0.395168 −0.0313389
\(160\) 0 0
\(161\) −12.8204 −1.01039
\(162\) 0 0
\(163\) −12.4470 −0.974924 −0.487462 0.873144i \(-0.662077\pi\)
−0.487462 + 0.873144i \(0.662077\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 15.8104 1.22344 0.611722 0.791073i \(-0.290477\pi\)
0.611722 + 0.791073i \(0.290477\pi\)
\(168\) 0 0
\(169\) −11.6626 −0.897126
\(170\) 0 0
\(171\) −17.4802 −1.33675
\(172\) 0 0
\(173\) −0.828750 −0.0630087 −0.0315044 0.999504i \(-0.510030\pi\)
−0.0315044 + 0.999504i \(0.510030\pi\)
\(174\) 0 0
\(175\) 0.570764 0.0431457
\(176\) 0 0
\(177\) 0.522405 0.0392664
\(178\) 0 0
\(179\) −16.8994 −1.26312 −0.631561 0.775326i \(-0.717585\pi\)
−0.631561 + 0.775326i \(0.717585\pi\)
\(180\) 0 0
\(181\) −11.2573 −0.836747 −0.418374 0.908275i \(-0.637400\pi\)
−0.418374 + 0.908275i \(0.637400\pi\)
\(182\) 0 0
\(183\) 0.567658 0.0419625
\(184\) 0 0
\(185\) −0.838115 −0.0616194
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −0.628837 −0.0457411
\(190\) 0 0
\(191\) −25.9575 −1.87822 −0.939108 0.343622i \(-0.888346\pi\)
−0.939108 + 0.343622i \(0.888346\pi\)
\(192\) 0 0
\(193\) 0.630257 0.0453669 0.0226835 0.999743i \(-0.492779\pi\)
0.0226835 + 0.999743i \(0.492779\pi\)
\(194\) 0 0
\(195\) −0.172038 −0.0123199
\(196\) 0 0
\(197\) −22.7866 −1.62348 −0.811741 0.584018i \(-0.801480\pi\)
−0.811741 + 0.584018i \(0.801480\pi\)
\(198\) 0 0
\(199\) −17.6443 −1.25077 −0.625386 0.780316i \(-0.715058\pi\)
−0.625386 + 0.780316i \(0.715058\pi\)
\(200\) 0 0
\(201\) 0.815293 0.0575063
\(202\) 0 0
\(203\) 9.66478 0.678334
\(204\) 0 0
\(205\) 10.1997 0.712377
\(206\) 0 0
\(207\) 23.5537 1.63710
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −8.73572 −0.601392 −0.300696 0.953720i \(-0.597219\pi\)
−0.300696 + 0.953720i \(0.597219\pi\)
\(212\) 0 0
\(213\) −0.965212 −0.0661352
\(214\) 0 0
\(215\) 11.9231 0.813147
\(216\) 0 0
\(217\) −5.88755 −0.399673
\(218\) 0 0
\(219\) 0.836256 0.0565089
\(220\) 0 0
\(221\) 3.88630 0.261421
\(222\) 0 0
\(223\) 8.23913 0.551733 0.275867 0.961196i \(-0.411035\pi\)
0.275867 + 0.961196i \(0.411035\pi\)
\(224\) 0 0
\(225\) −1.04861 −0.0699074
\(226\) 0 0
\(227\) 3.16827 0.210285 0.105143 0.994457i \(-0.466470\pi\)
0.105143 + 0.994457i \(0.466470\pi\)
\(228\) 0 0
\(229\) 8.01670 0.529758 0.264879 0.964282i \(-0.414668\pi\)
0.264879 + 0.964282i \(0.414668\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −18.3572 −1.20262 −0.601311 0.799015i \(-0.705355\pi\)
−0.601311 + 0.799015i \(0.705355\pi\)
\(234\) 0 0
\(235\) 2.67968 0.174803
\(236\) 0 0
\(237\) 0.133543 0.00867452
\(238\) 0 0
\(239\) −14.9536 −0.967266 −0.483633 0.875271i \(-0.660683\pi\)
−0.483633 + 0.875271i \(0.660683\pi\)
\(240\) 0 0
\(241\) −24.4586 −1.57552 −0.787758 0.615984i \(-0.788758\pi\)
−0.787758 + 0.615984i \(0.788758\pi\)
\(242\) 0 0
\(243\) 1.73335 0.111195
\(244\) 0 0
\(245\) 10.0407 0.641474
\(246\) 0 0
\(247\) 6.74759 0.429339
\(248\) 0 0
\(249\) −0.575583 −0.0364761
\(250\) 0 0
\(251\) 7.09048 0.447547 0.223773 0.974641i \(-0.428162\pi\)
0.223773 + 0.974641i \(0.428162\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −0.499934 −0.0313071
\(256\) 0 0
\(257\) 19.0829 1.19036 0.595181 0.803592i \(-0.297080\pi\)
0.595181 + 0.803592i \(0.297080\pi\)
\(258\) 0 0
\(259\) 0.590867 0.0367147
\(260\) 0 0
\(261\) −17.7562 −1.09908
\(262\) 0 0
\(263\) −16.3340 −1.00720 −0.503598 0.863938i \(-0.667991\pi\)
−0.503598 + 0.863938i \(0.667991\pi\)
\(264\) 0 0
\(265\) 14.2114 0.873000
\(266\) 0 0
\(267\) 0.898200 0.0549689
\(268\) 0 0
\(269\) −17.7091 −1.07974 −0.539871 0.841748i \(-0.681527\pi\)
−0.539871 + 0.841748i \(0.681527\pi\)
\(270\) 0 0
\(271\) 9.21399 0.559710 0.279855 0.960042i \(-0.409714\pi\)
0.279855 + 0.960042i \(0.409714\pi\)
\(272\) 0 0
\(273\) 0.121286 0.00734055
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −29.7217 −1.78581 −0.892903 0.450249i \(-0.851335\pi\)
−0.892903 + 0.450249i \(0.851335\pi\)
\(278\) 0 0
\(279\) 10.8167 0.647576
\(280\) 0 0
\(281\) −14.4799 −0.863797 −0.431898 0.901922i \(-0.642156\pi\)
−0.431898 + 0.901922i \(0.642156\pi\)
\(282\) 0 0
\(283\) 22.3729 1.32993 0.664965 0.746875i \(-0.268447\pi\)
0.664965 + 0.746875i \(0.268447\pi\)
\(284\) 0 0
\(285\) −0.868010 −0.0514165
\(286\) 0 0
\(287\) −7.19072 −0.424455
\(288\) 0 0
\(289\) −5.70661 −0.335683
\(290\) 0 0
\(291\) 0.000513759 0 3.01171e−5 0
\(292\) 0 0
\(293\) −23.2823 −1.36017 −0.680084 0.733134i \(-0.738057\pi\)
−0.680084 + 0.733134i \(0.738057\pi\)
\(294\) 0 0
\(295\) −18.7872 −1.09384
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −9.09206 −0.525807
\(300\) 0 0
\(301\) −8.40570 −0.484497
\(302\) 0 0
\(303\) −0.646750 −0.0371548
\(304\) 0 0
\(305\) −20.4147 −1.16894
\(306\) 0 0
\(307\) −23.0645 −1.31636 −0.658179 0.752861i \(-0.728673\pi\)
−0.658179 + 0.752861i \(0.728673\pi\)
\(308\) 0 0
\(309\) −0.313608 −0.0178405
\(310\) 0 0
\(311\) 2.61858 0.148486 0.0742431 0.997240i \(-0.476346\pi\)
0.0742431 + 0.997240i \(0.476346\pi\)
\(312\) 0 0
\(313\) −31.5910 −1.78563 −0.892815 0.450424i \(-0.851273\pi\)
−0.892815 + 0.450424i \(0.851273\pi\)
\(314\) 0 0
\(315\) 11.2996 0.636661
\(316\) 0 0
\(317\) 11.4254 0.641715 0.320857 0.947128i \(-0.396029\pi\)
0.320857 + 0.947128i \(0.396029\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0.363592 0.0202937
\(322\) 0 0
\(323\) 19.6082 1.09103
\(324\) 0 0
\(325\) 0.404778 0.0224530
\(326\) 0 0
\(327\) −0.515536 −0.0285092
\(328\) 0 0
\(329\) −1.88916 −0.104153
\(330\) 0 0
\(331\) 19.5632 1.07529 0.537645 0.843171i \(-0.319314\pi\)
0.537645 + 0.843171i \(0.319314\pi\)
\(332\) 0 0
\(333\) −1.08555 −0.0594875
\(334\) 0 0
\(335\) −29.3203 −1.60194
\(336\) 0 0
\(337\) −3.95997 −0.215713 −0.107857 0.994166i \(-0.534399\pi\)
−0.107857 + 0.994166i \(0.534399\pi\)
\(338\) 0 0
\(339\) −0.619006 −0.0336198
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −18.4932 −0.998541
\(344\) 0 0
\(345\) 1.16960 0.0629693
\(346\) 0 0
\(347\) 1.89515 0.101737 0.0508686 0.998705i \(-0.483801\pi\)
0.0508686 + 0.998705i \(0.483801\pi\)
\(348\) 0 0
\(349\) 27.5241 1.47333 0.736664 0.676258i \(-0.236400\pi\)
0.736664 + 0.676258i \(0.236400\pi\)
\(350\) 0 0
\(351\) −0.445962 −0.0238037
\(352\) 0 0
\(353\) −17.3853 −0.925325 −0.462663 0.886534i \(-0.653106\pi\)
−0.462663 + 0.886534i \(0.653106\pi\)
\(354\) 0 0
\(355\) 34.7119 1.84231
\(356\) 0 0
\(357\) 0.352451 0.0186537
\(358\) 0 0
\(359\) 0.964744 0.0509172 0.0254586 0.999676i \(-0.491895\pi\)
0.0254586 + 0.999676i \(0.491895\pi\)
\(360\) 0 0
\(361\) 15.0447 0.791825
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −30.0742 −1.57416
\(366\) 0 0
\(367\) 20.7760 1.08450 0.542249 0.840218i \(-0.317573\pi\)
0.542249 + 0.840218i \(0.317573\pi\)
\(368\) 0 0
\(369\) 13.2109 0.687729
\(370\) 0 0
\(371\) −10.0190 −0.520159
\(372\) 0 0
\(373\) 2.62662 0.136001 0.0680006 0.997685i \(-0.478338\pi\)
0.0680006 + 0.997685i \(0.478338\pi\)
\(374\) 0 0
\(375\) 0.691753 0.0357220
\(376\) 0 0
\(377\) 6.85413 0.353006
\(378\) 0 0
\(379\) 4.79962 0.246540 0.123270 0.992373i \(-0.460662\pi\)
0.123270 + 0.992373i \(0.460662\pi\)
\(380\) 0 0
\(381\) 1.32916 0.0680948
\(382\) 0 0
\(383\) −17.1461 −0.876125 −0.438062 0.898945i \(-0.644335\pi\)
−0.438062 + 0.898945i \(0.644335\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 15.4430 0.785013
\(388\) 0 0
\(389\) 15.4901 0.785379 0.392690 0.919671i \(-0.371545\pi\)
0.392690 + 0.919671i \(0.371545\pi\)
\(390\) 0 0
\(391\) −26.4211 −1.33617
\(392\) 0 0
\(393\) 1.15372 0.0581975
\(394\) 0 0
\(395\) −4.80258 −0.241644
\(396\) 0 0
\(397\) 15.5364 0.779750 0.389875 0.920868i \(-0.372518\pi\)
0.389875 + 0.920868i \(0.372518\pi\)
\(398\) 0 0
\(399\) 0.611943 0.0306354
\(400\) 0 0
\(401\) −18.7515 −0.936403 −0.468202 0.883622i \(-0.655098\pi\)
−0.468202 + 0.883622i \(0.655098\pi\)
\(402\) 0 0
\(403\) −4.17537 −0.207990
\(404\) 0 0
\(405\) −20.7310 −1.03013
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −36.7959 −1.81944 −0.909719 0.415224i \(-0.863703\pi\)
−0.909719 + 0.415224i \(0.863703\pi\)
\(410\) 0 0
\(411\) −0.286115 −0.0141130
\(412\) 0 0
\(413\) 13.2449 0.651739
\(414\) 0 0
\(415\) 20.6996 1.01611
\(416\) 0 0
\(417\) 0.355244 0.0173964
\(418\) 0 0
\(419\) −18.6797 −0.912565 −0.456283 0.889835i \(-0.650819\pi\)
−0.456283 + 0.889835i \(0.650819\pi\)
\(420\) 0 0
\(421\) 1.81263 0.0883420 0.0441710 0.999024i \(-0.485935\pi\)
0.0441710 + 0.999024i \(0.485935\pi\)
\(422\) 0 0
\(423\) 3.47078 0.168755
\(424\) 0 0
\(425\) 1.17626 0.0570572
\(426\) 0 0
\(427\) 14.3922 0.696488
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 19.8525 0.956260 0.478130 0.878289i \(-0.341315\pi\)
0.478130 + 0.878289i \(0.341315\pi\)
\(432\) 0 0
\(433\) 16.6917 0.802153 0.401076 0.916045i \(-0.368636\pi\)
0.401076 + 0.916045i \(0.368636\pi\)
\(434\) 0 0
\(435\) −0.881715 −0.0422750
\(436\) 0 0
\(437\) −45.8736 −2.19443
\(438\) 0 0
\(439\) 33.3999 1.59409 0.797044 0.603921i \(-0.206396\pi\)
0.797044 + 0.603921i \(0.206396\pi\)
\(440\) 0 0
\(441\) 13.0049 0.619280
\(442\) 0 0
\(443\) 9.09056 0.431906 0.215953 0.976404i \(-0.430714\pi\)
0.215953 + 0.976404i \(0.430714\pi\)
\(444\) 0 0
\(445\) −32.3019 −1.53126
\(446\) 0 0
\(447\) −0.780206 −0.0369025
\(448\) 0 0
\(449\) −5.13109 −0.242151 −0.121076 0.992643i \(-0.538634\pi\)
−0.121076 + 0.992643i \(0.538634\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −0.974095 −0.0457670
\(454\) 0 0
\(455\) −4.36180 −0.204484
\(456\) 0 0
\(457\) −3.72570 −0.174281 −0.0871404 0.996196i \(-0.527773\pi\)
−0.0871404 + 0.996196i \(0.527773\pi\)
\(458\) 0 0
\(459\) −1.29594 −0.0604895
\(460\) 0 0
\(461\) 0.439230 0.0204570 0.0102285 0.999948i \(-0.496744\pi\)
0.0102285 + 0.999948i \(0.496744\pi\)
\(462\) 0 0
\(463\) −26.8109 −1.24601 −0.623003 0.782219i \(-0.714088\pi\)
−0.623003 + 0.782219i \(0.714088\pi\)
\(464\) 0 0
\(465\) 0.537120 0.0249083
\(466\) 0 0
\(467\) −16.9363 −0.783720 −0.391860 0.920025i \(-0.628168\pi\)
−0.391860 + 0.920025i \(0.628168\pi\)
\(468\) 0 0
\(469\) 20.6707 0.954483
\(470\) 0 0
\(471\) −1.05836 −0.0487667
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 2.04229 0.0937067
\(476\) 0 0
\(477\) 18.4069 0.842795
\(478\) 0 0
\(479\) −3.56180 −0.162743 −0.0813715 0.996684i \(-0.525930\pi\)
−0.0813715 + 0.996684i \(0.525930\pi\)
\(480\) 0 0
\(481\) 0.419035 0.0191063
\(482\) 0 0
\(483\) −0.824563 −0.0375189
\(484\) 0 0
\(485\) −0.0184763 −0.000838966 0
\(486\) 0 0
\(487\) −17.9696 −0.814280 −0.407140 0.913366i \(-0.633474\pi\)
−0.407140 + 0.913366i \(0.633474\pi\)
\(488\) 0 0
\(489\) −0.800548 −0.0362020
\(490\) 0 0
\(491\) −12.2524 −0.552941 −0.276471 0.961022i \(-0.589165\pi\)
−0.276471 + 0.961022i \(0.589165\pi\)
\(492\) 0 0
\(493\) 19.9178 0.897051
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −24.4717 −1.09770
\(498\) 0 0
\(499\) −20.2052 −0.904508 −0.452254 0.891889i \(-0.649380\pi\)
−0.452254 + 0.891889i \(0.649380\pi\)
\(500\) 0 0
\(501\) 1.01687 0.0454304
\(502\) 0 0
\(503\) 16.3770 0.730214 0.365107 0.930966i \(-0.381032\pi\)
0.365107 + 0.930966i \(0.381032\pi\)
\(504\) 0 0
\(505\) 23.2590 1.03501
\(506\) 0 0
\(507\) −0.750100 −0.0333131
\(508\) 0 0
\(509\) −4.61829 −0.204702 −0.102351 0.994748i \(-0.532637\pi\)
−0.102351 + 0.994748i \(0.532637\pi\)
\(510\) 0 0
\(511\) 21.2022 0.937928
\(512\) 0 0
\(513\) −2.25008 −0.0993437
\(514\) 0 0
\(515\) 11.2783 0.496979
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −0.0533023 −0.00233971
\(520\) 0 0
\(521\) −11.5905 −0.507789 −0.253894 0.967232i \(-0.581712\pi\)
−0.253894 + 0.967232i \(0.581712\pi\)
\(522\) 0 0
\(523\) 29.8079 1.30341 0.651705 0.758472i \(-0.274054\pi\)
0.651705 + 0.758472i \(0.274054\pi\)
\(524\) 0 0
\(525\) 0.0367095 0.00160213
\(526\) 0 0
\(527\) −12.1334 −0.528540
\(528\) 0 0
\(529\) 38.8125 1.68750
\(530\) 0 0
\(531\) −24.3336 −1.05599
\(532\) 0 0
\(533\) −5.09956 −0.220887
\(534\) 0 0
\(535\) −13.0758 −0.565317
\(536\) 0 0
\(537\) −1.08691 −0.0469037
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 2.41990 0.104039 0.0520197 0.998646i \(-0.483434\pi\)
0.0520197 + 0.998646i \(0.483434\pi\)
\(542\) 0 0
\(543\) −0.724029 −0.0310711
\(544\) 0 0
\(545\) 18.5402 0.794174
\(546\) 0 0
\(547\) 13.4096 0.573352 0.286676 0.958028i \(-0.407450\pi\)
0.286676 + 0.958028i \(0.407450\pi\)
\(548\) 0 0
\(549\) −26.4415 −1.12850
\(550\) 0 0
\(551\) 34.5822 1.47325
\(552\) 0 0
\(553\) 3.38580 0.143979
\(554\) 0 0
\(555\) −0.0539046 −0.00228812
\(556\) 0 0
\(557\) −7.54076 −0.319512 −0.159756 0.987157i \(-0.551071\pi\)
−0.159756 + 0.987157i \(0.551071\pi\)
\(558\) 0 0
\(559\) −5.96121 −0.252132
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 1.22795 0.0517519 0.0258759 0.999665i \(-0.491763\pi\)
0.0258759 + 0.999665i \(0.491763\pi\)
\(564\) 0 0
\(565\) 22.2613 0.936538
\(566\) 0 0
\(567\) 14.6153 0.613783
\(568\) 0 0
\(569\) 13.4679 0.564605 0.282303 0.959325i \(-0.408902\pi\)
0.282303 + 0.959325i \(0.408902\pi\)
\(570\) 0 0
\(571\) 11.8746 0.496935 0.248467 0.968640i \(-0.420073\pi\)
0.248467 + 0.968640i \(0.420073\pi\)
\(572\) 0 0
\(573\) −1.66949 −0.0697441
\(574\) 0 0
\(575\) −2.75189 −0.114762
\(576\) 0 0
\(577\) 20.3792 0.848397 0.424199 0.905569i \(-0.360556\pi\)
0.424199 + 0.905569i \(0.360556\pi\)
\(578\) 0 0
\(579\) 0.0405359 0.00168462
\(580\) 0 0
\(581\) −14.5931 −0.605425
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 8.01353 0.331319
\(586\) 0 0
\(587\) −23.7047 −0.978399 −0.489199 0.872172i \(-0.662711\pi\)
−0.489199 + 0.872172i \(0.662711\pi\)
\(588\) 0 0
\(589\) −21.0666 −0.868036
\(590\) 0 0
\(591\) −1.46556 −0.0602850
\(592\) 0 0
\(593\) −40.7647 −1.67400 −0.837002 0.547199i \(-0.815694\pi\)
−0.837002 + 0.547199i \(0.815694\pi\)
\(594\) 0 0
\(595\) −12.6752 −0.519631
\(596\) 0 0
\(597\) −1.13482 −0.0464451
\(598\) 0 0
\(599\) 23.4038 0.956252 0.478126 0.878291i \(-0.341316\pi\)
0.478126 + 0.878291i \(0.341316\pi\)
\(600\) 0 0
\(601\) 32.3471 1.31947 0.659733 0.751500i \(-0.270669\pi\)
0.659733 + 0.751500i \(0.270669\pi\)
\(602\) 0 0
\(603\) −37.9763 −1.54652
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −28.0266 −1.13757 −0.568783 0.822488i \(-0.692586\pi\)
−0.568783 + 0.822488i \(0.692586\pi\)
\(608\) 0 0
\(609\) 0.621605 0.0251887
\(610\) 0 0
\(611\) −1.33977 −0.0542012
\(612\) 0 0
\(613\) −2.36787 −0.0956373 −0.0478186 0.998856i \(-0.515227\pi\)
−0.0478186 + 0.998856i \(0.515227\pi\)
\(614\) 0 0
\(615\) 0.656008 0.0264528
\(616\) 0 0
\(617\) −10.4196 −0.419477 −0.209738 0.977758i \(-0.567261\pi\)
−0.209738 + 0.977758i \(0.567261\pi\)
\(618\) 0 0
\(619\) −32.8611 −1.32080 −0.660400 0.750914i \(-0.729613\pi\)
−0.660400 + 0.750914i \(0.729613\pi\)
\(620\) 0 0
\(621\) 3.03188 0.121665
\(622\) 0 0
\(623\) 22.7727 0.912368
\(624\) 0 0
\(625\) −26.6276 −1.06510
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 1.21769 0.0485526
\(630\) 0 0
\(631\) −20.7502 −0.826050 −0.413025 0.910720i \(-0.635528\pi\)
−0.413025 + 0.910720i \(0.635528\pi\)
\(632\) 0 0
\(633\) −0.561851 −0.0223316
\(634\) 0 0
\(635\) −47.8004 −1.89690
\(636\) 0 0
\(637\) −5.02006 −0.198902
\(638\) 0 0
\(639\) 44.9596 1.77857
\(640\) 0 0
\(641\) −0.977465 −0.0386075 −0.0193038 0.999814i \(-0.506145\pi\)
−0.0193038 + 0.999814i \(0.506145\pi\)
\(642\) 0 0
\(643\) −38.2108 −1.50689 −0.753443 0.657514i \(-0.771608\pi\)
−0.753443 + 0.657514i \(0.771608\pi\)
\(644\) 0 0
\(645\) 0.766850 0.0301947
\(646\) 0 0
\(647\) 34.9743 1.37498 0.687491 0.726193i \(-0.258712\pi\)
0.687491 + 0.726193i \(0.258712\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) −0.378666 −0.0148411
\(652\) 0 0
\(653\) −35.3919 −1.38499 −0.692496 0.721422i \(-0.743489\pi\)
−0.692496 + 0.721422i \(0.743489\pi\)
\(654\) 0 0
\(655\) −41.4912 −1.62120
\(656\) 0 0
\(657\) −38.9528 −1.51969
\(658\) 0 0
\(659\) 23.8852 0.930437 0.465219 0.885196i \(-0.345976\pi\)
0.465219 + 0.885196i \(0.345976\pi\)
\(660\) 0 0
\(661\) 28.4658 1.10719 0.553596 0.832785i \(-0.313255\pi\)
0.553596 + 0.832785i \(0.313255\pi\)
\(662\) 0 0
\(663\) 0.249953 0.00970738
\(664\) 0 0
\(665\) −22.0073 −0.853405
\(666\) 0 0
\(667\) −46.5979 −1.80428
\(668\) 0 0
\(669\) 0.529912 0.0204876
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 44.7473 1.72488 0.862440 0.506159i \(-0.168935\pi\)
0.862440 + 0.506159i \(0.168935\pi\)
\(674\) 0 0
\(675\) −0.134979 −0.00519535
\(676\) 0 0
\(677\) 5.90113 0.226799 0.113399 0.993549i \(-0.463826\pi\)
0.113399 + 0.993549i \(0.463826\pi\)
\(678\) 0 0
\(679\) 0.0130257 0.000499880 0
\(680\) 0 0
\(681\) 0.203772 0.00780856
\(682\) 0 0
\(683\) −35.5174 −1.35904 −0.679518 0.733659i \(-0.737811\pi\)
−0.679518 + 0.733659i \(0.737811\pi\)
\(684\) 0 0
\(685\) 10.2895 0.393142
\(686\) 0 0
\(687\) 0.515606 0.0196716
\(688\) 0 0
\(689\) −7.10532 −0.270691
\(690\) 0 0
\(691\) 21.1563 0.804824 0.402412 0.915459i \(-0.368172\pi\)
0.402412 + 0.915459i \(0.368172\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −12.7756 −0.484607
\(696\) 0 0
\(697\) −14.8191 −0.561312
\(698\) 0 0
\(699\) −1.18067 −0.0446571
\(700\) 0 0
\(701\) 19.3398 0.730455 0.365228 0.930918i \(-0.380991\pi\)
0.365228 + 0.930918i \(0.380991\pi\)
\(702\) 0 0
\(703\) 2.11422 0.0797394
\(704\) 0 0
\(705\) 0.172348 0.00649099
\(706\) 0 0
\(707\) −16.3975 −0.616692
\(708\) 0 0
\(709\) 26.6296 1.00009 0.500047 0.865998i \(-0.333316\pi\)
0.500047 + 0.865998i \(0.333316\pi\)
\(710\) 0 0
\(711\) −6.22041 −0.233284
\(712\) 0 0
\(713\) 28.3863 1.06308
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −0.961761 −0.0359176
\(718\) 0 0
\(719\) 34.2435 1.27707 0.638533 0.769594i \(-0.279541\pi\)
0.638533 + 0.769594i \(0.279541\pi\)
\(720\) 0 0
\(721\) −7.95111 −0.296115
\(722\) 0 0
\(723\) −1.57309 −0.0585039
\(724\) 0 0
\(725\) 2.07454 0.0770463
\(726\) 0 0
\(727\) 38.7547 1.43733 0.718666 0.695355i \(-0.244753\pi\)
0.718666 + 0.695355i \(0.244753\pi\)
\(728\) 0 0
\(729\) −26.7769 −0.991736
\(730\) 0 0
\(731\) −17.3230 −0.640714
\(732\) 0 0
\(733\) 27.9567 1.03260 0.516301 0.856407i \(-0.327308\pi\)
0.516301 + 0.856407i \(0.327308\pi\)
\(734\) 0 0
\(735\) 0.645780 0.0238200
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −0.0393633 −0.00144800 −0.000724001 1.00000i \(-0.500230\pi\)
−0.000724001 1.00000i \(0.500230\pi\)
\(740\) 0 0
\(741\) 0.433981 0.0159427
\(742\) 0 0
\(743\) 26.1740 0.960231 0.480116 0.877205i \(-0.340595\pi\)
0.480116 + 0.877205i \(0.340595\pi\)
\(744\) 0 0
\(745\) 28.0585 1.02798
\(746\) 0 0
\(747\) 26.8106 0.980950
\(748\) 0 0
\(749\) 9.21839 0.336833
\(750\) 0 0
\(751\) −19.2932 −0.704017 −0.352009 0.935997i \(-0.614501\pi\)
−0.352009 + 0.935997i \(0.614501\pi\)
\(752\) 0 0
\(753\) 0.456035 0.0166188
\(754\) 0 0
\(755\) 35.0313 1.27492
\(756\) 0 0
\(757\) −45.7863 −1.66413 −0.832065 0.554678i \(-0.812841\pi\)
−0.832065 + 0.554678i \(0.812841\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −13.2108 −0.478891 −0.239445 0.970910i \(-0.576966\pi\)
−0.239445 + 0.970910i \(0.576966\pi\)
\(762\) 0 0
\(763\) −13.0707 −0.473192
\(764\) 0 0
\(765\) 23.2869 0.841940
\(766\) 0 0
\(767\) 9.39311 0.339165
\(768\) 0 0
\(769\) −3.36696 −0.121416 −0.0607078 0.998156i \(-0.519336\pi\)
−0.0607078 + 0.998156i \(0.519336\pi\)
\(770\) 0 0
\(771\) 1.22735 0.0442019
\(772\) 0 0
\(773\) −48.2075 −1.73390 −0.866952 0.498392i \(-0.833924\pi\)
−0.866952 + 0.498392i \(0.833924\pi\)
\(774\) 0 0
\(775\) −1.26376 −0.0453955
\(776\) 0 0
\(777\) 0.0380025 0.00136333
\(778\) 0 0
\(779\) −25.7296 −0.921860
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −2.28561 −0.0816811
\(784\) 0 0
\(785\) 38.0618 1.35848
\(786\) 0 0
\(787\) 25.8460 0.921310 0.460655 0.887579i \(-0.347615\pi\)
0.460655 + 0.887579i \(0.347615\pi\)
\(788\) 0 0
\(789\) −1.05054 −0.0374004
\(790\) 0 0
\(791\) −15.6941 −0.558017
\(792\) 0 0
\(793\) 10.2068 0.362453
\(794\) 0 0
\(795\) 0.914028 0.0324172
\(796\) 0 0
\(797\) −0.215683 −0.00763990 −0.00381995 0.999993i \(-0.501216\pi\)
−0.00381995 + 0.999993i \(0.501216\pi\)
\(798\) 0 0
\(799\) −3.89330 −0.137735
\(800\) 0 0
\(801\) −41.8382 −1.47828
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 29.6537 1.04516
\(806\) 0 0
\(807\) −1.13899 −0.0400942
\(808\) 0 0
\(809\) −23.6384 −0.831082 −0.415541 0.909574i \(-0.636408\pi\)
−0.415541 + 0.909574i \(0.636408\pi\)
\(810\) 0 0
\(811\) −37.8284 −1.32834 −0.664168 0.747584i \(-0.731214\pi\)
−0.664168 + 0.747584i \(0.731214\pi\)
\(812\) 0 0
\(813\) 0.592612 0.0207838
\(814\) 0 0
\(815\) 28.7901 1.00847
\(816\) 0 0
\(817\) −30.0770 −1.05226
\(818\) 0 0
\(819\) −5.64950 −0.197409
\(820\) 0 0
\(821\) −26.7163 −0.932404 −0.466202 0.884678i \(-0.654378\pi\)
−0.466202 + 0.884678i \(0.654378\pi\)
\(822\) 0 0
\(823\) −19.5534 −0.681589 −0.340794 0.940138i \(-0.610696\pi\)
−0.340794 + 0.940138i \(0.610696\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 26.7772 0.931133 0.465567 0.885013i \(-0.345851\pi\)
0.465567 + 0.885013i \(0.345851\pi\)
\(828\) 0 0
\(829\) −34.5078 −1.19851 −0.599253 0.800560i \(-0.704536\pi\)
−0.599253 + 0.800560i \(0.704536\pi\)
\(830\) 0 0
\(831\) −1.91160 −0.0663126
\(832\) 0 0
\(833\) −14.5880 −0.505445
\(834\) 0 0
\(835\) −36.5696 −1.26554
\(836\) 0 0
\(837\) 1.39234 0.0481263
\(838\) 0 0
\(839\) 32.8263 1.13329 0.566645 0.823962i \(-0.308241\pi\)
0.566645 + 0.823962i \(0.308241\pi\)
\(840\) 0 0
\(841\) 6.12824 0.211319
\(842\) 0 0
\(843\) −0.931295 −0.0320755
\(844\) 0 0
\(845\) 26.9758 0.927996
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 1.43895 0.0493845
\(850\) 0 0
\(851\) −2.84881 −0.0976560
\(852\) 0 0
\(853\) 30.2939 1.03724 0.518621 0.855004i \(-0.326446\pi\)
0.518621 + 0.855004i \(0.326446\pi\)
\(854\) 0 0
\(855\) 40.4319 1.38274
\(856\) 0 0
\(857\) −22.7328 −0.776538 −0.388269 0.921546i \(-0.626927\pi\)
−0.388269 + 0.921546i \(0.626927\pi\)
\(858\) 0 0
\(859\) −18.4958 −0.631068 −0.315534 0.948914i \(-0.602184\pi\)
−0.315534 + 0.948914i \(0.602184\pi\)
\(860\) 0 0
\(861\) −0.462482 −0.0157613
\(862\) 0 0
\(863\) 39.8463 1.35638 0.678192 0.734884i \(-0.262764\pi\)
0.678192 + 0.734884i \(0.262764\pi\)
\(864\) 0 0
\(865\) 1.91691 0.0651769
\(866\) 0 0
\(867\) −0.367029 −0.0124650
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 14.6594 0.496714
\(872\) 0 0
\(873\) −0.0239309 −0.000809939 0
\(874\) 0 0
\(875\) 17.5385 0.592909
\(876\) 0 0
\(877\) −0.181186 −0.00611822 −0.00305911 0.999995i \(-0.500974\pi\)
−0.00305911 + 0.999995i \(0.500974\pi\)
\(878\) 0 0
\(879\) −1.49744 −0.0505073
\(880\) 0 0
\(881\) −2.32439 −0.0783108 −0.0391554 0.999233i \(-0.512467\pi\)
−0.0391554 + 0.999233i \(0.512467\pi\)
\(882\) 0 0
\(883\) 57.5471 1.93661 0.968307 0.249764i \(-0.0803530\pi\)
0.968307 + 0.249764i \(0.0803530\pi\)
\(884\) 0 0
\(885\) −1.20833 −0.0406175
\(886\) 0 0
\(887\) −9.19676 −0.308797 −0.154398 0.988009i \(-0.549344\pi\)
−0.154398 + 0.988009i \(0.549344\pi\)
\(888\) 0 0
\(889\) 33.6990 1.13023
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −6.75974 −0.226206
\(894\) 0 0
\(895\) 39.0885 1.30659
\(896\) 0 0
\(897\) −0.584769 −0.0195249
\(898\) 0 0
\(899\) −21.3993 −0.713706
\(900\) 0 0
\(901\) −20.6477 −0.687874
\(902\) 0 0
\(903\) −0.540626 −0.0179909
\(904\) 0 0
\(905\) 26.0382 0.865540
\(906\) 0 0
\(907\) −21.3640 −0.709379 −0.354689 0.934984i \(-0.615413\pi\)
−0.354689 + 0.934984i \(0.615413\pi\)
\(908\) 0 0
\(909\) 30.1256 0.999204
\(910\) 0 0
\(911\) 7.88751 0.261325 0.130662 0.991427i \(-0.458290\pi\)
0.130662 + 0.991427i \(0.458290\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) −1.31300 −0.0434064
\(916\) 0 0
\(917\) 29.2511 0.965956
\(918\) 0 0
\(919\) −44.1977 −1.45795 −0.728974 0.684541i \(-0.760003\pi\)
−0.728974 + 0.684541i \(0.760003\pi\)
\(920\) 0 0
\(921\) −1.48343 −0.0488806
\(922\) 0 0
\(923\) −17.3550 −0.571246
\(924\) 0 0
\(925\) 0.126829 0.00417011
\(926\) 0 0
\(927\) 14.6078 0.479785
\(928\) 0 0
\(929\) 37.4330 1.22814 0.614069 0.789253i \(-0.289532\pi\)
0.614069 + 0.789253i \(0.289532\pi\)
\(930\) 0 0
\(931\) −25.3285 −0.830107
\(932\) 0 0
\(933\) 0.168418 0.00551376
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 39.0621 1.27610 0.638051 0.769994i \(-0.279741\pi\)
0.638051 + 0.769994i \(0.279741\pi\)
\(938\) 0 0
\(939\) −2.03182 −0.0663060
\(940\) 0 0
\(941\) −57.6873 −1.88055 −0.940277 0.340412i \(-0.889434\pi\)
−0.940277 + 0.340412i \(0.889434\pi\)
\(942\) 0 0
\(943\) 34.6694 1.12899
\(944\) 0 0
\(945\) 1.45451 0.0473151
\(946\) 0 0
\(947\) −28.2809 −0.919007 −0.459503 0.888176i \(-0.651973\pi\)
−0.459503 + 0.888176i \(0.651973\pi\)
\(948\) 0 0
\(949\) 15.0363 0.488099
\(950\) 0 0
\(951\) 0.734842 0.0238289
\(952\) 0 0
\(953\) −7.80122 −0.252706 −0.126353 0.991985i \(-0.540327\pi\)
−0.126353 + 0.991985i \(0.540327\pi\)
\(954\) 0 0
\(955\) 60.0399 1.94285
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −7.25406 −0.234246
\(960\) 0 0
\(961\) −17.9641 −0.579487
\(962\) 0 0
\(963\) −16.9361 −0.545758
\(964\) 0 0
\(965\) −1.45779 −0.0469280
\(966\) 0 0
\(967\) 21.5958 0.694475 0.347237 0.937777i \(-0.387120\pi\)
0.347237 + 0.937777i \(0.387120\pi\)
\(968\) 0 0
\(969\) 1.26113 0.0405133
\(970\) 0 0
\(971\) 30.4357 0.976729 0.488364 0.872640i \(-0.337594\pi\)
0.488364 + 0.872640i \(0.337594\pi\)
\(972\) 0 0
\(973\) 9.00674 0.288743
\(974\) 0 0
\(975\) 0.0260339 0.000833752 0
\(976\) 0 0
\(977\) −29.2066 −0.934403 −0.467201 0.884151i \(-0.654738\pi\)
−0.467201 + 0.884151i \(0.654738\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 24.0137 0.766697
\(982\) 0 0
\(983\) 5.42324 0.172975 0.0864873 0.996253i \(-0.472436\pi\)
0.0864873 + 0.996253i \(0.472436\pi\)
\(984\) 0 0
\(985\) 52.7058 1.67935
\(986\) 0 0
\(987\) −0.121504 −0.00386752
\(988\) 0 0
\(989\) 40.5274 1.28870
\(990\) 0 0
\(991\) −27.9224 −0.886985 −0.443492 0.896278i \(-0.646261\pi\)
−0.443492 + 0.896278i \(0.646261\pi\)
\(992\) 0 0
\(993\) 1.25824 0.0399289
\(994\) 0 0
\(995\) 40.8115 1.29381
\(996\) 0 0
\(997\) −12.8037 −0.405496 −0.202748 0.979231i \(-0.564987\pi\)
−0.202748 + 0.979231i \(0.564987\pi\)
\(998\) 0 0
\(999\) −0.139733 −0.00442097
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7744.2.a.dv.1.3 6
4.3 odd 2 7744.2.a.du.1.4 6
8.3 odd 2 3872.2.a.bq.1.3 6
8.5 even 2 3872.2.a.bn.1.4 6
11.3 even 5 704.2.m.n.449.2 12
11.4 even 5 704.2.m.n.577.2 12
11.10 odd 2 7744.2.a.dw.1.3 6
44.3 odd 10 704.2.m.m.449.2 12
44.15 odd 10 704.2.m.m.577.2 12
44.43 even 2 7744.2.a.dt.1.4 6
88.3 odd 10 352.2.m.e.97.2 12
88.21 odd 2 3872.2.a.bo.1.4 6
88.37 even 10 352.2.m.f.225.2 yes 12
88.43 even 2 3872.2.a.bp.1.3 6
88.59 odd 10 352.2.m.e.225.2 yes 12
88.69 even 10 352.2.m.f.97.2 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
352.2.m.e.97.2 12 88.3 odd 10
352.2.m.e.225.2 yes 12 88.59 odd 10
352.2.m.f.97.2 yes 12 88.69 even 10
352.2.m.f.225.2 yes 12 88.37 even 10
704.2.m.m.449.2 12 44.3 odd 10
704.2.m.m.577.2 12 44.15 odd 10
704.2.m.n.449.2 12 11.3 even 5
704.2.m.n.577.2 12 11.4 even 5
3872.2.a.bn.1.4 6 8.5 even 2
3872.2.a.bo.1.4 6 88.21 odd 2
3872.2.a.bp.1.3 6 88.43 even 2
3872.2.a.bq.1.3 6 8.3 odd 2
7744.2.a.dt.1.4 6 44.43 even 2
7744.2.a.du.1.4 6 4.3 odd 2
7744.2.a.dv.1.3 6 1.1 even 1 trivial
7744.2.a.dw.1.3 6 11.10 odd 2