Properties

Label 352.2.m.e.225.2
Level $352$
Weight $2$
Character 352.225
Analytic conductor $2.811$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [352,2,Mod(97,352)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(352, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 0, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("352.97");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 352 = 2^{5} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 352.m (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.81073415115\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(3\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 2 x^{11} + 11 x^{10} - 11 x^{9} + 39 x^{8} - 43 x^{7} + 99 x^{6} + 36 x^{5} + 431 x^{4} + \cdots + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 225.2
Root \(0.289142 - 0.889888i\) of defining polynomial
Character \(\chi\) \(=\) 352.225
Dual form 352.2.m.e.97.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.0520331 - 0.0378043i) q^{3} +(0.714760 - 2.19980i) q^{5} +(1.31923 - 0.958478i) q^{7} +(-0.925773 - 2.84924i) q^{9} +(-1.79704 + 2.78759i) q^{11} +(-0.357360 - 1.09984i) q^{13} +(-0.120353 + 0.0874418i) q^{15} +(1.03847 - 3.19609i) q^{17} +(-4.72044 - 3.42960i) q^{19} -0.104878 q^{21} +7.86209 q^{23} +(-0.283172 - 0.205736i) q^{25} +(-0.119167 + 0.366759i) q^{27} +(4.79497 - 3.48375i) q^{29} +(1.11571 + 3.43382i) q^{31} +(0.198888 - 0.0771113i) q^{33} +(-1.16553 - 3.58713i) q^{35} +(0.293146 - 0.212983i) q^{37} +(-0.0229842 + 0.0707380i) q^{39} +(3.56752 + 2.59196i) q^{41} -5.15478 q^{43} -6.92946 q^{45} +(-0.937266 - 0.680964i) q^{47} +(-1.34143 + 4.12849i) q^{49} +(-0.174861 + 0.127044i) q^{51} +(1.89864 + 5.84340i) q^{53} +(4.84770 + 5.94559i) q^{55} +(0.115966 + 0.356906i) q^{57} +(-6.57117 + 4.77424i) q^{59} +(-2.72739 + 8.39403i) q^{61} +(-3.95224 - 2.87147i) q^{63} -2.67486 q^{65} +12.6763 q^{67} +(-0.409089 - 0.297221i) q^{69} +(4.63749 - 14.2727i) q^{71} +(-10.5190 + 7.64250i) q^{73} +(0.00695661 + 0.0214102i) q^{75} +(0.301134 + 5.39990i) q^{77} +(-0.641623 - 1.97471i) q^{79} +(-7.25105 + 5.26819i) q^{81} +(-2.76546 + 8.51121i) q^{83} +(-6.28851 - 4.56887i) q^{85} -0.381198 q^{87} +13.9653 q^{89} +(-1.52562 - 1.10842i) q^{91} +(0.0717589 - 0.220851i) q^{93} +(-10.9184 + 7.93270i) q^{95} +(0.00246842 + 0.00759703i) q^{97} +(9.60615 + 2.53951i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 6 q^{7} - q^{9} + 11 q^{11} - 2 q^{13} - 4 q^{15} + 12 q^{17} - 5 q^{19} + 24 q^{21} + 12 q^{23} + 13 q^{25} - 3 q^{27} - 16 q^{31} - 7 q^{33} + 28 q^{35} - 4 q^{37} - 46 q^{39} - 4 q^{41} + 22 q^{43}+ \cdots + 65 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/352\mathbb{Z}\right)^\times\).

\(n\) \(133\) \(287\) \(321\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.0520331 0.0378043i −0.0300414 0.0218263i 0.572663 0.819791i \(-0.305910\pi\)
−0.602705 + 0.797964i \(0.705910\pi\)
\(4\) 0 0
\(5\) 0.714760 2.19980i 0.319650 0.983782i −0.654148 0.756367i \(-0.726972\pi\)
0.973798 0.227415i \(-0.0730275\pi\)
\(6\) 0 0
\(7\) 1.31923 0.958478i 0.498623 0.362271i −0.309868 0.950780i \(-0.600285\pi\)
0.808491 + 0.588509i \(0.200285\pi\)
\(8\) 0 0
\(9\) −0.925773 2.84924i −0.308591 0.949745i
\(10\) 0 0
\(11\) −1.79704 + 2.78759i −0.541827 + 0.840490i
\(12\) 0 0
\(13\) −0.357360 1.09984i −0.0991139 0.305041i 0.889190 0.457538i \(-0.151269\pi\)
−0.988304 + 0.152497i \(0.951269\pi\)
\(14\) 0 0
\(15\) −0.120353 + 0.0874418i −0.0310751 + 0.0225774i
\(16\) 0 0
\(17\) 1.03847 3.19609i 0.251866 0.775165i −0.742565 0.669774i \(-0.766391\pi\)
0.994431 0.105390i \(-0.0336092\pi\)
\(18\) 0 0
\(19\) −4.72044 3.42960i −1.08294 0.786804i −0.104749 0.994499i \(-0.533404\pi\)
−0.978194 + 0.207695i \(0.933404\pi\)
\(20\) 0 0
\(21\) −0.104878 −0.0228863
\(22\) 0 0
\(23\) 7.86209 1.63936 0.819680 0.572822i \(-0.194152\pi\)
0.819680 + 0.572822i \(0.194152\pi\)
\(24\) 0 0
\(25\) −0.283172 0.205736i −0.0566344 0.0411473i
\(26\) 0 0
\(27\) −0.119167 + 0.366759i −0.0229337 + 0.0705828i
\(28\) 0 0
\(29\) 4.79497 3.48375i 0.890403 0.646916i −0.0455797 0.998961i \(-0.514513\pi\)
0.935983 + 0.352045i \(0.114513\pi\)
\(30\) 0 0
\(31\) 1.11571 + 3.43382i 0.200388 + 0.616732i 0.999871 + 0.0160430i \(0.00510687\pi\)
−0.799483 + 0.600689i \(0.794893\pi\)
\(32\) 0 0
\(33\) 0.198888 0.0771113i 0.0346220 0.0134234i
\(34\) 0 0
\(35\) −1.16553 3.58713i −0.197011 0.606336i
\(36\) 0 0
\(37\) 0.293146 0.212983i 0.0481929 0.0350142i −0.563428 0.826165i \(-0.690518\pi\)
0.611621 + 0.791151i \(0.290518\pi\)
\(38\) 0 0
\(39\) −0.0229842 + 0.0707380i −0.00368041 + 0.0113271i
\(40\) 0 0
\(41\) 3.56752 + 2.59196i 0.557153 + 0.404795i 0.830416 0.557144i \(-0.188103\pi\)
−0.273263 + 0.961939i \(0.588103\pi\)
\(42\) 0 0
\(43\) −5.15478 −0.786097 −0.393049 0.919518i \(-0.628580\pi\)
−0.393049 + 0.919518i \(0.628580\pi\)
\(44\) 0 0
\(45\) −6.92946 −1.03298
\(46\) 0 0
\(47\) −0.937266 0.680964i −0.136714 0.0993288i 0.517326 0.855788i \(-0.326927\pi\)
−0.654040 + 0.756460i \(0.726927\pi\)
\(48\) 0 0
\(49\) −1.34143 + 4.12849i −0.191632 + 0.589784i
\(50\) 0 0
\(51\) −0.174861 + 0.127044i −0.0244854 + 0.0177897i
\(52\) 0 0
\(53\) 1.89864 + 5.84340i 0.260798 + 0.802653i 0.992632 + 0.121170i \(0.0386646\pi\)
−0.731834 + 0.681483i \(0.761335\pi\)
\(54\) 0 0
\(55\) 4.84770 + 5.94559i 0.653664 + 0.801703i
\(56\) 0 0
\(57\) 0.115966 + 0.356906i 0.0153600 + 0.0472733i
\(58\) 0 0
\(59\) −6.57117 + 4.77424i −0.855494 + 0.621553i −0.926655 0.375912i \(-0.877329\pi\)
0.0711616 + 0.997465i \(0.477329\pi\)
\(60\) 0 0
\(61\) −2.72739 + 8.39403i −0.349206 + 1.07475i 0.610087 + 0.792334i \(0.291134\pi\)
−0.959293 + 0.282411i \(0.908866\pi\)
\(62\) 0 0
\(63\) −3.95224 2.87147i −0.497935 0.361771i
\(64\) 0 0
\(65\) −2.67486 −0.331776
\(66\) 0 0
\(67\) 12.6763 1.54865 0.774326 0.632787i \(-0.218089\pi\)
0.774326 + 0.632787i \(0.218089\pi\)
\(68\) 0 0
\(69\) −0.409089 0.297221i −0.0492486 0.0357812i
\(70\) 0 0
\(71\) 4.63749 14.2727i 0.550368 1.69386i −0.157503 0.987518i \(-0.550344\pi\)
0.707872 0.706341i \(-0.249656\pi\)
\(72\) 0 0
\(73\) −10.5190 + 7.64250i −1.23116 + 0.894487i −0.996976 0.0777068i \(-0.975240\pi\)
−0.234179 + 0.972193i \(0.575240\pi\)
\(74\) 0 0
\(75\) 0.00695661 + 0.0214102i 0.000803280 + 0.00247224i
\(76\) 0 0
\(77\) 0.301134 + 5.39990i 0.0343174 + 0.615376i
\(78\) 0 0
\(79\) −0.641623 1.97471i −0.0721882 0.222172i 0.908453 0.417988i \(-0.137265\pi\)
−0.980641 + 0.195816i \(0.937265\pi\)
\(80\) 0 0
\(81\) −7.25105 + 5.26819i −0.805672 + 0.585355i
\(82\) 0 0
\(83\) −2.76546 + 8.51121i −0.303549 + 0.934227i 0.676666 + 0.736290i \(0.263424\pi\)
−0.980215 + 0.197937i \(0.936576\pi\)
\(84\) 0 0
\(85\) −6.28851 4.56887i −0.682084 0.495563i
\(86\) 0 0
\(87\) −0.381198 −0.0408687
\(88\) 0 0
\(89\) 13.9653 1.48032 0.740160 0.672431i \(-0.234750\pi\)
0.740160 + 0.672431i \(0.234750\pi\)
\(90\) 0 0
\(91\) −1.52562 1.10842i −0.159928 0.116195i
\(92\) 0 0
\(93\) 0.0717589 0.220851i 0.00744105 0.0229012i
\(94\) 0 0
\(95\) −10.9184 + 7.93270i −1.12021 + 0.813878i
\(96\) 0 0
\(97\) 0.00246842 + 0.00759703i 0.000250630 + 0.000771361i 0.951182 0.308631i \(-0.0998709\pi\)
−0.950931 + 0.309403i \(0.899871\pi\)
\(98\) 0 0
\(99\) 9.60615 + 2.53951i 0.965454 + 0.255230i
\(100\) 0 0
\(101\) 3.10740 + 9.56358i 0.309197 + 0.951612i 0.978077 + 0.208242i \(0.0667740\pi\)
−0.668880 + 0.743370i \(0.733226\pi\)
\(102\) 0 0
\(103\) −3.94477 + 2.86604i −0.388690 + 0.282400i −0.764918 0.644127i \(-0.777221\pi\)
0.376229 + 0.926527i \(0.377221\pi\)
\(104\) 0 0
\(105\) −0.0749628 + 0.230712i −0.00731562 + 0.0225152i
\(106\) 0 0
\(107\) −4.57351 3.32285i −0.442138 0.321232i 0.344346 0.938843i \(-0.388101\pi\)
−0.786484 + 0.617611i \(0.788101\pi\)
\(108\) 0 0
\(109\) 8.01561 0.767756 0.383878 0.923384i \(-0.374588\pi\)
0.383878 + 0.923384i \(0.374588\pi\)
\(110\) 0 0
\(111\) −0.0233050 −0.00221201
\(112\) 0 0
\(113\) 7.78627 + 5.65706i 0.732471 + 0.532171i 0.890344 0.455288i \(-0.150464\pi\)
−0.157873 + 0.987459i \(0.550464\pi\)
\(114\) 0 0
\(115\) 5.61951 17.2951i 0.524022 1.61277i
\(116\) 0 0
\(117\) −2.80287 + 2.03641i −0.259126 + 0.188266i
\(118\) 0 0
\(119\) −1.69339 5.21173i −0.155233 0.477759i
\(120\) 0 0
\(121\) −4.54131 10.0188i −0.412846 0.910801i
\(122\) 0 0
\(123\) −0.0876423 0.269735i −0.00790244 0.0243212i
\(124\) 0 0
\(125\) 8.70135 6.32190i 0.778272 0.565448i
\(126\) 0 0
\(127\) −6.38611 + 19.6544i −0.566676 + 1.74405i 0.0962444 + 0.995358i \(0.469317\pi\)
−0.662920 + 0.748690i \(0.730683\pi\)
\(128\) 0 0
\(129\) 0.268220 + 0.194873i 0.0236154 + 0.0171576i
\(130\) 0 0
\(131\) 17.9382 1.56727 0.783633 0.621224i \(-0.213364\pi\)
0.783633 + 0.621224i \(0.213364\pi\)
\(132\) 0 0
\(133\) −9.51455 −0.825016
\(134\) 0 0
\(135\) 0.721622 + 0.524289i 0.0621073 + 0.0451236i
\(136\) 0 0
\(137\) −1.37467 + 4.23081i −0.117446 + 0.361463i −0.992449 0.122655i \(-0.960859\pi\)
0.875003 + 0.484117i \(0.160859\pi\)
\(138\) 0 0
\(139\) −4.46850 + 3.24655i −0.379013 + 0.275369i −0.760938 0.648824i \(-0.775261\pi\)
0.381925 + 0.924193i \(0.375261\pi\)
\(140\) 0 0
\(141\) 0.0230256 + 0.0708654i 0.00193910 + 0.00596794i
\(142\) 0 0
\(143\) 3.70810 + 0.980284i 0.310087 + 0.0819755i
\(144\) 0 0
\(145\) −4.23632 13.0380i −0.351807 1.08275i
\(146\) 0 0
\(147\) 0.225873 0.164106i 0.0186297 0.0135353i
\(148\) 0 0
\(149\) 3.74860 11.5370i 0.307097 0.945149i −0.671789 0.740743i \(-0.734474\pi\)
0.978886 0.204406i \(-0.0655262\pi\)
\(150\) 0 0
\(151\) −12.2528 8.90220i −0.997121 0.724451i −0.0356524 0.999364i \(-0.511351\pi\)
−0.961469 + 0.274913i \(0.911351\pi\)
\(152\) 0 0
\(153\) −10.0678 −0.813933
\(154\) 0 0
\(155\) 8.35119 0.670784
\(156\) 0 0
\(157\) −13.3128 9.67231i −1.06248 0.771934i −0.0879313 0.996127i \(-0.528026\pi\)
−0.974545 + 0.224192i \(0.928026\pi\)
\(158\) 0 0
\(159\) 0.122114 0.375827i 0.00968424 0.0298050i
\(160\) 0 0
\(161\) 10.3719 7.53564i 0.817422 0.593892i
\(162\) 0 0
\(163\) −3.84634 11.8378i −0.301268 0.927208i −0.981043 0.193788i \(-0.937923\pi\)
0.679775 0.733420i \(-0.262077\pi\)
\(164\) 0 0
\(165\) −0.0274724 0.492632i −0.00213872 0.0383513i
\(166\) 0 0
\(167\) −4.88568 15.0366i −0.378065 1.16356i −0.941387 0.337328i \(-0.890477\pi\)
0.563322 0.826237i \(-0.309523\pi\)
\(168\) 0 0
\(169\) 9.43527 6.85513i 0.725790 0.527318i
\(170\) 0 0
\(171\) −5.40168 + 16.6247i −0.413077 + 1.27132i
\(172\) 0 0
\(173\) −0.670473 0.487127i −0.0509751 0.0370356i 0.562006 0.827133i \(-0.310030\pi\)
−0.612981 + 0.790098i \(0.710030\pi\)
\(174\) 0 0
\(175\) −0.570764 −0.0431457
\(176\) 0 0
\(177\) 0.522405 0.0392664
\(178\) 0 0
\(179\) 13.6719 + 9.93323i 1.02189 + 0.742444i 0.966669 0.256030i \(-0.0824146\pi\)
0.0552180 + 0.998474i \(0.482415\pi\)
\(180\) 0 0
\(181\) 3.47869 10.7063i 0.258569 0.795794i −0.734536 0.678569i \(-0.762600\pi\)
0.993105 0.117225i \(-0.0373997\pi\)
\(182\) 0 0
\(183\) 0.459245 0.333661i 0.0339484 0.0246649i
\(184\) 0 0
\(185\) −0.258992 0.797095i −0.0190415 0.0586036i
\(186\) 0 0
\(187\) 7.04320 + 8.63832i 0.515050 + 0.631697i
\(188\) 0 0
\(189\) 0.194321 + 0.598059i 0.0141348 + 0.0435024i
\(190\) 0 0
\(191\) −21.0000 + 15.2574i −1.51951 + 1.10399i −0.557778 + 0.829990i \(0.688346\pi\)
−0.961730 + 0.273998i \(0.911654\pi\)
\(192\) 0 0
\(193\) 0.194760 0.599410i 0.0140191 0.0431465i −0.943802 0.330511i \(-0.892779\pi\)
0.957821 + 0.287364i \(0.0927790\pi\)
\(194\) 0 0
\(195\) 0.139182 + 0.101121i 0.00996700 + 0.00724145i
\(196\) 0 0
\(197\) 22.7866 1.62348 0.811741 0.584018i \(-0.198520\pi\)
0.811741 + 0.584018i \(0.198520\pi\)
\(198\) 0 0
\(199\) 17.6443 1.25077 0.625386 0.780316i \(-0.284942\pi\)
0.625386 + 0.780316i \(0.284942\pi\)
\(200\) 0 0
\(201\) −0.659586 0.479217i −0.0465236 0.0338014i
\(202\) 0 0
\(203\) 2.98658 9.19175i 0.209617 0.645134i
\(204\) 0 0
\(205\) 8.25171 5.99522i 0.576325 0.418724i
\(206\) 0 0
\(207\) −7.27851 22.4009i −0.505891 1.55697i
\(208\) 0 0
\(209\) 18.0431 6.99552i 1.24807 0.483890i
\(210\) 0 0
\(211\) −2.69949 8.30817i −0.185840 0.571958i 0.814121 0.580695i \(-0.197219\pi\)
−0.999962 + 0.00873682i \(0.997219\pi\)
\(212\) 0 0
\(213\) −0.780873 + 0.567337i −0.0535045 + 0.0388733i
\(214\) 0 0
\(215\) −3.68443 + 11.3395i −0.251276 + 0.773349i
\(216\) 0 0
\(217\) 4.76313 + 3.46061i 0.323342 + 0.234922i
\(218\) 0 0
\(219\) 0.836256 0.0565089
\(220\) 0 0
\(221\) −3.88630 −0.261421
\(222\) 0 0
\(223\) 6.66560 + 4.84284i 0.446361 + 0.324301i 0.788158 0.615474i \(-0.211035\pi\)
−0.341796 + 0.939774i \(0.611035\pi\)
\(224\) 0 0
\(225\) −0.324039 + 0.997289i −0.0216026 + 0.0664859i
\(226\) 0 0
\(227\) −2.56318 + 1.86226i −0.170124 + 0.123603i −0.669589 0.742731i \(-0.733530\pi\)
0.499465 + 0.866334i \(0.333530\pi\)
\(228\) 0 0
\(229\) −2.47730 7.62433i −0.163704 0.503830i 0.835234 0.549894i \(-0.185332\pi\)
−0.998938 + 0.0460643i \(0.985332\pi\)
\(230\) 0 0
\(231\) 0.188470 0.292358i 0.0124004 0.0192357i
\(232\) 0 0
\(233\) −5.67269 17.4588i −0.371631 1.14376i −0.945724 0.324971i \(-0.894645\pi\)
0.574093 0.818790i \(-0.305355\pi\)
\(234\) 0 0
\(235\) −2.16791 + 1.57508i −0.141419 + 0.102747i
\(236\) 0 0
\(237\) −0.0412669 + 0.127007i −0.00268058 + 0.00824996i
\(238\) 0 0
\(239\) −12.0977 8.78948i −0.782534 0.568544i 0.123204 0.992381i \(-0.460683\pi\)
−0.905739 + 0.423837i \(0.860683\pi\)
\(240\) 0 0
\(241\) −24.4586 −1.57552 −0.787758 0.615984i \(-0.788758\pi\)
−0.787758 + 0.615984i \(0.788758\pi\)
\(242\) 0 0
\(243\) 1.73335 0.111195
\(244\) 0 0
\(245\) 8.12306 + 5.90175i 0.518963 + 0.377049i
\(246\) 0 0
\(247\) −2.08512 + 6.41734i −0.132673 + 0.408326i
\(248\) 0 0
\(249\) 0.465656 0.338319i 0.0295098 0.0214401i
\(250\) 0 0
\(251\) 2.19108 + 6.74344i 0.138300 + 0.425642i 0.996089 0.0883595i \(-0.0281624\pi\)
−0.857789 + 0.514002i \(0.828162\pi\)
\(252\) 0 0
\(253\) −14.1285 + 21.9163i −0.888250 + 1.37786i
\(254\) 0 0
\(255\) 0.154488 + 0.475465i 0.00967441 + 0.0297748i
\(256\) 0 0
\(257\) −15.4384 + 11.2167i −0.963023 + 0.699677i −0.953851 0.300281i \(-0.902920\pi\)
−0.00917198 + 0.999958i \(0.502920\pi\)
\(258\) 0 0
\(259\) 0.182588 0.561947i 0.0113455 0.0349177i
\(260\) 0 0
\(261\) −14.3651 10.4368i −0.889176 0.646024i
\(262\) 0 0
\(263\) 16.3340 1.00720 0.503598 0.863938i \(-0.332009\pi\)
0.503598 + 0.863938i \(0.332009\pi\)
\(264\) 0 0
\(265\) 14.2114 0.873000
\(266\) 0 0
\(267\) −0.726659 0.527949i −0.0444708 0.0323099i
\(268\) 0 0
\(269\) 5.47241 16.8423i 0.333659 1.02690i −0.633720 0.773562i \(-0.718473\pi\)
0.967379 0.253333i \(-0.0815269\pi\)
\(270\) 0 0
\(271\) 7.45427 5.41585i 0.452815 0.328989i −0.337891 0.941185i \(-0.609714\pi\)
0.790706 + 0.612196i \(0.209714\pi\)
\(272\) 0 0
\(273\) 0.0374794 + 0.115350i 0.00226836 + 0.00698128i
\(274\) 0 0
\(275\) 1.08238 0.419651i 0.0652699 0.0253059i
\(276\) 0 0
\(277\) 9.18452 + 28.2671i 0.551845 + 1.69840i 0.704134 + 0.710067i \(0.251335\pi\)
−0.152290 + 0.988336i \(0.548665\pi\)
\(278\) 0 0
\(279\) 8.75085 6.35787i 0.523900 0.380636i
\(280\) 0 0
\(281\) −4.47453 + 13.7712i −0.266928 + 0.821520i 0.724315 + 0.689469i \(0.242156\pi\)
−0.991243 + 0.132050i \(0.957844\pi\)
\(282\) 0 0
\(283\) −18.1000 13.1504i −1.07594 0.781713i −0.0989659 0.995091i \(-0.531553\pi\)
−0.976970 + 0.213378i \(0.931553\pi\)
\(284\) 0 0
\(285\) 0.868010 0.0514165
\(286\) 0 0
\(287\) 7.19072 0.424455
\(288\) 0 0
\(289\) 4.61674 + 3.35426i 0.271573 + 0.197309i
\(290\) 0 0
\(291\) 0.000158760 0 0.000488614i 9.30670e−6 0 2.86431e-5i
\(292\) 0 0
\(293\) −18.8358 + 13.6850i −1.10040 + 0.799487i −0.981125 0.193374i \(-0.938057\pi\)
−0.119274 + 0.992861i \(0.538057\pi\)
\(294\) 0 0
\(295\) 5.80557 + 17.8677i 0.338014 + 1.04030i
\(296\) 0 0
\(297\) −0.808225 0.991269i −0.0468980 0.0575192i
\(298\) 0 0
\(299\) −2.80960 8.64706i −0.162483 0.500072i
\(300\) 0 0
\(301\) −6.80036 + 4.94075i −0.391966 + 0.284780i
\(302\) 0 0
\(303\) 0.199857 0.615096i 0.0114815 0.0353364i
\(304\) 0 0
\(305\) 16.5158 + 11.9994i 0.945692 + 0.687085i
\(306\) 0 0
\(307\) −23.0645 −1.31636 −0.658179 0.752861i \(-0.728673\pi\)
−0.658179 + 0.752861i \(0.728673\pi\)
\(308\) 0 0
\(309\) 0.313608 0.0178405
\(310\) 0 0
\(311\) 2.11848 + 1.53917i 0.120128 + 0.0872780i 0.646227 0.763145i \(-0.276346\pi\)
−0.526099 + 0.850423i \(0.676346\pi\)
\(312\) 0 0
\(313\) −9.76216 + 30.0448i −0.551790 + 1.69823i 0.152484 + 0.988306i \(0.451273\pi\)
−0.704274 + 0.709928i \(0.748727\pi\)
\(314\) 0 0
\(315\) −9.14157 + 6.64174i −0.515069 + 0.374220i
\(316\) 0 0
\(317\) −3.53064 10.8662i −0.198301 0.610307i −0.999922 0.0124749i \(-0.996029\pi\)
0.801621 0.597832i \(-0.203971\pi\)
\(318\) 0 0
\(319\) 1.09452 + 19.6268i 0.0612814 + 1.09889i
\(320\) 0 0
\(321\) 0.112356 + 0.345796i 0.00627110 + 0.0193005i
\(322\) 0 0
\(323\) −15.8633 + 11.5254i −0.882660 + 0.641290i
\(324\) 0 0
\(325\) −0.125083 + 0.384967i −0.00693837 + 0.0213541i
\(326\) 0 0
\(327\) −0.417077 0.303024i −0.0230644 0.0167573i
\(328\) 0 0
\(329\) −1.88916 −0.104153
\(330\) 0 0
\(331\) 19.5632 1.07529 0.537645 0.843171i \(-0.319314\pi\)
0.537645 + 0.843171i \(0.319314\pi\)
\(332\) 0 0
\(333\) −0.878224 0.638067i −0.0481264 0.0349659i
\(334\) 0 0
\(335\) 9.06048 27.8853i 0.495027 1.52354i
\(336\) 0 0
\(337\) 3.20368 2.32761i 0.174516 0.126793i −0.497099 0.867694i \(-0.665601\pi\)
0.671614 + 0.740901i \(0.265601\pi\)
\(338\) 0 0
\(339\) −0.191283 0.588709i −0.0103891 0.0319743i
\(340\) 0 0
\(341\) −11.5771 3.06054i −0.626933 0.165738i
\(342\) 0 0
\(343\) 5.71472 + 17.5881i 0.308566 + 0.949669i
\(344\) 0 0
\(345\) −0.946228 + 0.687475i −0.0509432 + 0.0370124i
\(346\) 0 0
\(347\) 0.585635 1.80240i 0.0314385 0.0967578i −0.934106 0.356996i \(-0.883801\pi\)
0.965544 + 0.260238i \(0.0838010\pi\)
\(348\) 0 0
\(349\) 22.2674 + 16.1782i 1.19195 + 0.866001i 0.993469 0.114104i \(-0.0363997\pi\)
0.198479 + 0.980105i \(0.436400\pi\)
\(350\) 0 0
\(351\) 0.445962 0.0238037
\(352\) 0 0
\(353\) −17.3853 −0.925325 −0.462663 0.886534i \(-0.653106\pi\)
−0.462663 + 0.886534i \(0.653106\pi\)
\(354\) 0 0
\(355\) −28.0825 20.4031i −1.49046 1.08289i
\(356\) 0 0
\(357\) −0.108913 + 0.335200i −0.00576430 + 0.0177407i
\(358\) 0 0
\(359\) 0.780494 0.567062i 0.0411929 0.0299284i −0.566998 0.823719i \(-0.691895\pi\)
0.608191 + 0.793791i \(0.291895\pi\)
\(360\) 0 0
\(361\) 4.64906 + 14.3083i 0.244688 + 0.753071i
\(362\) 0 0
\(363\) −0.142455 + 0.692991i −0.00747697 + 0.0363726i
\(364\) 0 0
\(365\) 9.29344 + 28.6023i 0.486441 + 1.49711i
\(366\) 0 0
\(367\) 16.8081 12.2118i 0.877378 0.637452i −0.0551785 0.998477i \(-0.517573\pi\)
0.932556 + 0.361024i \(0.117573\pi\)
\(368\) 0 0
\(369\) 4.08238 12.5643i 0.212520 0.654070i
\(370\) 0 0
\(371\) 8.10551 + 5.88900i 0.420817 + 0.305742i
\(372\) 0 0
\(373\) −2.62662 −0.136001 −0.0680006 0.997685i \(-0.521662\pi\)
−0.0680006 + 0.997685i \(0.521662\pi\)
\(374\) 0 0
\(375\) −0.691753 −0.0357220
\(376\) 0 0
\(377\) −5.54511 4.02876i −0.285588 0.207491i
\(378\) 0 0
\(379\) 1.48316 4.56471i 0.0761850 0.234473i −0.905711 0.423897i \(-0.860662\pi\)
0.981895 + 0.189424i \(0.0606619\pi\)
\(380\) 0 0
\(381\) 1.07531 0.781259i 0.0550899 0.0400251i
\(382\) 0 0
\(383\) 5.29843 + 16.3069i 0.270737 + 0.833244i 0.990316 + 0.138833i \(0.0443351\pi\)
−0.719578 + 0.694411i \(0.755665\pi\)
\(384\) 0 0
\(385\) 12.0940 + 3.19720i 0.616365 + 0.162944i
\(386\) 0 0
\(387\) 4.77216 + 14.6872i 0.242582 + 0.746592i
\(388\) 0 0
\(389\) 12.5318 9.10485i 0.635385 0.461634i −0.222877 0.974847i \(-0.571545\pi\)
0.858262 + 0.513212i \(0.171545\pi\)
\(390\) 0 0
\(391\) 8.16456 25.1279i 0.412899 1.27077i
\(392\) 0 0
\(393\) −0.933380 0.678140i −0.0470828 0.0342076i
\(394\) 0 0
\(395\) −4.80258 −0.241644
\(396\) 0 0
\(397\) −15.5364 −0.779750 −0.389875 0.920868i \(-0.627482\pi\)
−0.389875 + 0.920868i \(0.627482\pi\)
\(398\) 0 0
\(399\) 0.495072 + 0.359691i 0.0247846 + 0.0180071i
\(400\) 0 0
\(401\) −5.79452 + 17.8337i −0.289365 + 0.890572i 0.695692 + 0.718340i \(0.255098\pi\)
−0.985056 + 0.172232i \(0.944902\pi\)
\(402\) 0 0
\(403\) 3.37794 2.45422i 0.168267 0.122253i
\(404\) 0 0
\(405\) 6.40624 + 19.7164i 0.318329 + 0.979715i
\(406\) 0 0
\(407\) 0.0669147 + 1.19991i 0.00331684 + 0.0594772i
\(408\) 0 0
\(409\) −11.3705 34.9949i −0.562237 1.73039i −0.676020 0.736883i \(-0.736297\pi\)
0.113783 0.993506i \(-0.463703\pi\)
\(410\) 0 0
\(411\) 0.231472 0.168174i 0.0114177 0.00829541i
\(412\) 0 0
\(413\) −4.09290 + 12.5966i −0.201398 + 0.619841i
\(414\) 0 0
\(415\) 16.7464 + 12.1669i 0.822047 + 0.597252i
\(416\) 0 0
\(417\) 0.355244 0.0173964
\(418\) 0 0
\(419\) −18.6797 −0.912565 −0.456283 0.889835i \(-0.650819\pi\)
−0.456283 + 0.889835i \(0.650819\pi\)
\(420\) 0 0
\(421\) 1.46645 + 1.06544i 0.0714702 + 0.0519261i 0.622947 0.782264i \(-0.285935\pi\)
−0.551476 + 0.834190i \(0.685935\pi\)
\(422\) 0 0
\(423\) −1.07253 + 3.30091i −0.0521482 + 0.160496i
\(424\) 0 0
\(425\) −0.951618 + 0.691391i −0.0461602 + 0.0335374i
\(426\) 0 0
\(427\) 4.44744 + 13.6878i 0.215227 + 0.662400i
\(428\) 0 0
\(429\) −0.155885 0.191189i −0.00752620 0.00923071i
\(430\) 0 0
\(431\) −6.13475 18.8808i −0.295500 0.909457i −0.983053 0.183322i \(-0.941315\pi\)
0.687552 0.726135i \(-0.258685\pi\)
\(432\) 0 0
\(433\) −13.5039 + 9.81114i −0.648955 + 0.471493i −0.862915 0.505349i \(-0.831364\pi\)
0.213960 + 0.976842i \(0.431364\pi\)
\(434\) 0 0
\(435\) −0.272465 + 0.838561i −0.0130637 + 0.0402059i
\(436\) 0 0
\(437\) −37.1125 26.9638i −1.77533 1.28985i
\(438\) 0 0
\(439\) −33.3999 −1.59409 −0.797044 0.603921i \(-0.793604\pi\)
−0.797044 + 0.603921i \(0.793604\pi\)
\(440\) 0 0
\(441\) 13.0049 0.619280
\(442\) 0 0
\(443\) −7.35442 5.34330i −0.349419 0.253868i 0.399206 0.916861i \(-0.369286\pi\)
−0.748625 + 0.662993i \(0.769286\pi\)
\(444\) 0 0
\(445\) 9.98184 30.7209i 0.473185 1.45631i
\(446\) 0 0
\(447\) −0.631200 + 0.458594i −0.0298547 + 0.0216907i
\(448\) 0 0
\(449\) −1.58559 4.87996i −0.0748288 0.230299i 0.906645 0.421893i \(-0.138634\pi\)
−0.981474 + 0.191594i \(0.938634\pi\)
\(450\) 0 0
\(451\) −13.6363 + 5.28694i −0.642107 + 0.248952i
\(452\) 0 0
\(453\) 0.301012 + 0.926419i 0.0141428 + 0.0435270i
\(454\) 0 0
\(455\) −3.52877 + 2.56380i −0.165431 + 0.120193i
\(456\) 0 0
\(457\) −1.15130 + 3.54335i −0.0538557 + 0.165751i −0.974367 0.224966i \(-0.927773\pi\)
0.920511 + 0.390717i \(0.127773\pi\)
\(458\) 0 0
\(459\) 1.04844 + 0.761737i 0.0489370 + 0.0355548i
\(460\) 0 0
\(461\) −0.439230 −0.0204570 −0.0102285 0.999948i \(-0.503256\pi\)
−0.0102285 + 0.999948i \(0.503256\pi\)
\(462\) 0 0
\(463\) 26.8109 1.24601 0.623003 0.782219i \(-0.285912\pi\)
0.623003 + 0.782219i \(0.285912\pi\)
\(464\) 0 0
\(465\) −0.434539 0.315711i −0.0201513 0.0146407i
\(466\) 0 0
\(467\) −5.23362 + 16.1074i −0.242183 + 0.745362i 0.753904 + 0.656984i \(0.228168\pi\)
−0.996087 + 0.0883778i \(0.971832\pi\)
\(468\) 0 0
\(469\) 16.7229 12.1499i 0.772193 0.561031i
\(470\) 0 0
\(471\) 0.327052 + 1.00656i 0.0150697 + 0.0463799i
\(472\) 0 0
\(473\) 9.26334 14.3694i 0.425929 0.660707i
\(474\) 0 0
\(475\) 0.631102 + 1.94233i 0.0289570 + 0.0891203i
\(476\) 0 0
\(477\) 14.8915 10.8193i 0.681836 0.495383i
\(478\) 0 0
\(479\) 1.10066 3.38748i 0.0502903 0.154778i −0.922758 0.385381i \(-0.874070\pi\)
0.973048 + 0.230603i \(0.0740700\pi\)
\(480\) 0 0
\(481\) −0.339006 0.246302i −0.0154574 0.0112304i
\(482\) 0 0
\(483\) −0.824563 −0.0375189
\(484\) 0 0
\(485\) 0.0184763 0.000838966
\(486\) 0 0
\(487\) −14.5377 10.5623i −0.658766 0.478622i 0.207480 0.978239i \(-0.433474\pi\)
−0.866246 + 0.499618i \(0.833474\pi\)
\(488\) 0 0
\(489\) −0.247383 + 0.761366i −0.0111870 + 0.0344302i
\(490\) 0 0
\(491\) 9.91237 7.20176i 0.447339 0.325011i −0.341205 0.939989i \(-0.610835\pi\)
0.788544 + 0.614978i \(0.210835\pi\)
\(492\) 0 0
\(493\) −6.15493 18.9429i −0.277204 0.853146i
\(494\) 0 0
\(495\) 12.4525 19.3165i 0.559699 0.868212i
\(496\) 0 0
\(497\) −7.56217 23.2740i −0.339209 1.04398i
\(498\) 0 0
\(499\) 16.3463 11.8763i 0.731762 0.531656i −0.158358 0.987382i \(-0.550620\pi\)
0.890120 + 0.455725i \(0.150620\pi\)
\(500\) 0 0
\(501\) −0.314230 + 0.967100i −0.0140388 + 0.0432068i
\(502\) 0 0
\(503\) 13.2493 + 9.62615i 0.590755 + 0.429209i 0.842586 0.538563i \(-0.181032\pi\)
−0.251830 + 0.967771i \(0.581032\pi\)
\(504\) 0 0
\(505\) 23.2590 1.03501
\(506\) 0 0
\(507\) −0.750100 −0.0333131
\(508\) 0 0
\(509\) −3.73628 2.71456i −0.165608 0.120321i 0.501895 0.864929i \(-0.332637\pi\)
−0.667502 + 0.744608i \(0.732637\pi\)
\(510\) 0 0
\(511\) −6.55183 + 20.1645i −0.289836 + 0.892023i
\(512\) 0 0
\(513\) 1.82036 1.32257i 0.0803707 0.0583927i
\(514\) 0 0
\(515\) 3.48517 + 10.7263i 0.153575 + 0.472655i
\(516\) 0 0
\(517\) 3.58255 1.38900i 0.157560 0.0610879i
\(518\) 0 0
\(519\) 0.0164713 + 0.0506935i 0.000723011 + 0.00222520i
\(520\) 0 0
\(521\) 9.37691 6.81272i 0.410810 0.298471i −0.363120 0.931742i \(-0.618288\pi\)
0.773930 + 0.633272i \(0.218288\pi\)
\(522\) 0 0
\(523\) 9.21116 28.3490i 0.402776 1.23962i −0.519962 0.854189i \(-0.674054\pi\)
0.922738 0.385428i \(-0.125946\pi\)
\(524\) 0 0
\(525\) 0.0296986 + 0.0215773i 0.00129615 + 0.000941711i
\(526\) 0 0
\(527\) 12.1334 0.528540
\(528\) 0 0
\(529\) 38.8125 1.68750
\(530\) 0 0
\(531\) 19.6863 + 14.3030i 0.854314 + 0.620695i
\(532\) 0 0
\(533\) 1.57585 4.84997i 0.0682577 0.210076i
\(534\) 0 0
\(535\) −10.5786 + 7.68578i −0.457351 + 0.332285i
\(536\) 0 0
\(537\) −0.335874 1.03371i −0.0144940 0.0446081i
\(538\) 0 0
\(539\) −9.09793 11.1584i −0.391876 0.480626i
\(540\) 0 0
\(541\) −0.747789 2.30146i −0.0321500 0.0989474i 0.933694 0.358072i \(-0.116566\pi\)
−0.965844 + 0.259125i \(0.916566\pi\)
\(542\) 0 0
\(543\) −0.585752 + 0.425574i −0.0251370 + 0.0182631i
\(544\) 0 0
\(545\) 5.72923 17.6328i 0.245413 0.755305i
\(546\) 0 0
\(547\) −10.8486 7.88196i −0.463852 0.337008i 0.331189 0.943565i \(-0.392550\pi\)
−0.795040 + 0.606556i \(0.792550\pi\)
\(548\) 0 0
\(549\) 26.4415 1.12850
\(550\) 0 0
\(551\) −34.5822 −1.47325
\(552\) 0 0
\(553\) −2.73917 1.99012i −0.116481 0.0846286i
\(554\) 0 0
\(555\) −0.0166574 + 0.0512663i −0.000707069 + 0.00217614i
\(556\) 0 0
\(557\) −6.10060 + 4.43235i −0.258491 + 0.187805i −0.709481 0.704724i \(-0.751071\pi\)
0.450991 + 0.892529i \(0.351071\pi\)
\(558\) 0 0
\(559\) 1.84212 + 5.66945i 0.0779132 + 0.239792i
\(560\) 0 0
\(561\) −0.0399145 0.715742i −0.00168519 0.0302187i
\(562\) 0 0
\(563\) 0.379457 + 1.16785i 0.0159922 + 0.0492190i 0.958734 0.284304i \(-0.0917625\pi\)
−0.942742 + 0.333523i \(0.891763\pi\)
\(564\) 0 0
\(565\) 18.0097 13.0848i 0.757675 0.550483i
\(566\) 0 0
\(567\) −4.51636 + 13.8999i −0.189669 + 0.583743i
\(568\) 0 0
\(569\) −10.8958 7.91626i −0.456775 0.331867i 0.335490 0.942044i \(-0.391098\pi\)
−0.792265 + 0.610177i \(0.791098\pi\)
\(570\) 0 0
\(571\) 11.8746 0.496935 0.248467 0.968640i \(-0.420073\pi\)
0.248467 + 0.968640i \(0.420073\pi\)
\(572\) 0 0
\(573\) 1.66949 0.0697441
\(574\) 0 0
\(575\) −2.22632 1.61752i −0.0928441 0.0674552i
\(576\) 0 0
\(577\) 6.29752 19.3818i 0.262169 0.806874i −0.730163 0.683273i \(-0.760556\pi\)
0.992332 0.123601i \(-0.0394441\pi\)
\(578\) 0 0
\(579\) −0.0327943 + 0.0238264i −0.00136288 + 0.000990192i
\(580\) 0 0
\(581\) 4.50953 + 13.8789i 0.187087 + 0.575794i
\(582\) 0 0
\(583\) −19.7009 5.20819i −0.815929 0.215701i
\(584\) 0 0
\(585\) 2.47632 + 7.62132i 0.102383 + 0.315103i
\(586\) 0 0
\(587\) 19.1775 13.9333i 0.791541 0.575088i −0.116879 0.993146i \(-0.537289\pi\)
0.908420 + 0.418058i \(0.137289\pi\)
\(588\) 0 0
\(589\) 6.50995 20.0356i 0.268238 0.825551i
\(590\) 0 0
\(591\) −1.18566 0.861433i −0.0487716 0.0354346i
\(592\) 0 0
\(593\) −40.7647 −1.67400 −0.837002 0.547199i \(-0.815694\pi\)
−0.837002 + 0.547199i \(0.815694\pi\)
\(594\) 0 0
\(595\) −12.6752 −0.519631
\(596\) 0 0
\(597\) −0.918089 0.667031i −0.0375749 0.0272998i
\(598\) 0 0
\(599\) −7.23216 + 22.2583i −0.295498 + 0.909450i 0.687556 + 0.726132i \(0.258684\pi\)
−0.983054 + 0.183318i \(0.941316\pi\)
\(600\) 0 0
\(601\) −26.1694 + 19.0132i −1.06747 + 0.775563i −0.975456 0.220195i \(-0.929331\pi\)
−0.0920150 + 0.995758i \(0.529331\pi\)
\(602\) 0 0
\(603\) −11.7353 36.1176i −0.477900 1.47082i
\(604\) 0 0
\(605\) −25.2854 + 2.82895i −1.02800 + 0.115013i
\(606\) 0 0
\(607\) 8.66071 + 26.6549i 0.351527 + 1.08189i 0.957996 + 0.286782i \(0.0925855\pi\)
−0.606469 + 0.795107i \(0.707414\pi\)
\(608\) 0 0
\(609\) −0.502889 + 0.365370i −0.0203781 + 0.0148055i
\(610\) 0 0
\(611\) −0.414011 + 1.27419i −0.0167491 + 0.0515484i
\(612\) 0 0
\(613\) −1.91565 1.39180i −0.0773722 0.0562142i 0.548427 0.836199i \(-0.315227\pi\)
−0.625799 + 0.779984i \(0.715227\pi\)
\(614\) 0 0
\(615\) −0.656008 −0.0264528
\(616\) 0 0
\(617\) −10.4196 −0.419477 −0.209738 0.977758i \(-0.567261\pi\)
−0.209738 + 0.977758i \(0.567261\pi\)
\(618\) 0 0
\(619\) 26.5852 + 19.3153i 1.06855 + 0.776347i 0.975651 0.219329i \(-0.0703868\pi\)
0.0928986 + 0.995676i \(0.470387\pi\)
\(620\) 0 0
\(621\) −0.936903 + 2.88349i −0.0375966 + 0.115710i
\(622\) 0 0
\(623\) 18.4235 13.3854i 0.738121 0.536277i
\(624\) 0 0
\(625\) −8.22838 25.3243i −0.329135 1.01297i
\(626\) 0 0
\(627\) −1.20330 0.318108i −0.0480552 0.0127040i
\(628\) 0 0
\(629\) −0.376288 1.15810i −0.0150036 0.0461763i
\(630\) 0 0
\(631\) −16.7872 + 12.1966i −0.668289 + 0.485540i −0.869452 0.494017i \(-0.835528\pi\)
0.201163 + 0.979558i \(0.435528\pi\)
\(632\) 0 0
\(633\) −0.173622 + 0.534352i −0.00690084 + 0.0212386i
\(634\) 0 0
\(635\) 38.6713 + 28.0964i 1.53463 + 1.11497i
\(636\) 0 0
\(637\) 5.02006 0.198902
\(638\) 0 0
\(639\) −44.9596 −1.77857
\(640\) 0 0
\(641\) 0.790786 + 0.574539i 0.0312342 + 0.0226929i 0.603293 0.797520i \(-0.293855\pi\)
−0.572059 + 0.820213i \(0.693855\pi\)
\(642\) 0 0
\(643\) −11.8078 + 36.3406i −0.465653 + 1.43313i 0.392506 + 0.919749i \(0.371608\pi\)
−0.858159 + 0.513384i \(0.828392\pi\)
\(644\) 0 0
\(645\) 0.620395 0.450743i 0.0244280 0.0177480i
\(646\) 0 0
\(647\) −10.8077 33.2625i −0.424893 1.30768i −0.903097 0.429436i \(-0.858712\pi\)
0.478205 0.878248i \(-0.341288\pi\)
\(648\) 0 0
\(649\) −1.49996 26.8972i −0.0588787 1.05581i
\(650\) 0 0
\(651\) −0.117014 0.360133i −0.00458615 0.0141147i
\(652\) 0 0
\(653\) −28.6326 + 20.8028i −1.12048 + 0.814077i −0.984282 0.176604i \(-0.943489\pi\)
−0.136199 + 0.990681i \(0.543489\pi\)
\(654\) 0 0
\(655\) 12.8215 39.4605i 0.500977 1.54185i
\(656\) 0 0
\(657\) 31.5135 + 22.8959i 1.22946 + 0.893253i
\(658\) 0 0
\(659\) 23.8852 0.930437 0.465219 0.885196i \(-0.345976\pi\)
0.465219 + 0.885196i \(0.345976\pi\)
\(660\) 0 0
\(661\) −28.4658 −1.10719 −0.553596 0.832785i \(-0.686745\pi\)
−0.553596 + 0.832785i \(0.686745\pi\)
\(662\) 0 0
\(663\) 0.202216 + 0.146919i 0.00785343 + 0.00570585i
\(664\) 0 0
\(665\) −6.80062 + 20.9301i −0.263717 + 0.811636i
\(666\) 0 0
\(667\) 37.6985 27.3896i 1.45969 1.06053i
\(668\) 0 0
\(669\) −0.163752 0.503976i −0.00633101 0.0194849i
\(670\) 0 0
\(671\) −18.4979 22.6872i −0.714103 0.875831i
\(672\) 0 0
\(673\) 13.8277 + 42.5572i 0.533017 + 1.64046i 0.747895 + 0.663817i \(0.231065\pi\)
−0.214878 + 0.976641i \(0.568935\pi\)
\(674\) 0 0
\(675\) 0.109200 0.0793388i 0.00420313 0.00305375i
\(676\) 0 0
\(677\) −1.82355 + 5.61231i −0.0700847 + 0.215699i −0.979964 0.199174i \(-0.936174\pi\)
0.909879 + 0.414873i \(0.136174\pi\)
\(678\) 0 0
\(679\) 0.0105380 + 0.00765631i 0.000404412 + 0.000293822i
\(680\) 0 0
\(681\) 0.203772 0.00780856
\(682\) 0 0
\(683\) −35.5174 −1.35904 −0.679518 0.733659i \(-0.737811\pi\)
−0.679518 + 0.733659i \(0.737811\pi\)
\(684\) 0 0
\(685\) 8.32440 + 6.04803i 0.318059 + 0.231083i
\(686\) 0 0
\(687\) −0.159331 + 0.490371i −0.00607886 + 0.0187088i
\(688\) 0 0
\(689\) 5.74832 4.17640i 0.218994 0.159108i
\(690\) 0 0
\(691\) 6.53766 + 20.1208i 0.248704 + 0.765433i 0.995005 + 0.0998241i \(0.0318280\pi\)
−0.746301 + 0.665609i \(0.768172\pi\)
\(692\) 0 0
\(693\) 15.1068 5.85708i 0.573860 0.222492i
\(694\) 0 0
\(695\) 3.94788 + 12.1503i 0.149752 + 0.460888i
\(696\) 0 0
\(697\) 11.9889 8.71043i 0.454111 0.329931i
\(698\) 0 0
\(699\) −0.364848 + 1.12289i −0.0137998 + 0.0424715i
\(700\) 0 0
\(701\) 15.6462 + 11.3677i 0.590951 + 0.429351i 0.842655 0.538453i \(-0.180991\pi\)
−0.251705 + 0.967804i \(0.580991\pi\)
\(702\) 0 0
\(703\) −2.11422 −0.0797394
\(704\) 0 0
\(705\) 0.172348 0.00649099
\(706\) 0 0
\(707\) 13.2659 + 9.63821i 0.498914 + 0.362482i
\(708\) 0 0
\(709\) −8.22899 + 25.3262i −0.309046 + 0.951146i 0.669090 + 0.743181i \(0.266684\pi\)
−0.978136 + 0.207965i \(0.933316\pi\)
\(710\) 0 0
\(711\) −5.03242 + 3.65627i −0.188731 + 0.137121i
\(712\) 0 0
\(713\) 8.77185 + 26.9970i 0.328508 + 1.01104i
\(714\) 0 0
\(715\) 4.80683 7.45642i 0.179765 0.278854i
\(716\) 0 0
\(717\) 0.297200 + 0.914689i 0.0110992 + 0.0341597i
\(718\) 0 0
\(719\) 27.7036 20.1278i 1.03317 0.750641i 0.0642283 0.997935i \(-0.479541\pi\)
0.968940 + 0.247294i \(0.0795414\pi\)
\(720\) 0 0
\(721\) −2.45703 + 7.56195i −0.0915045 + 0.281622i
\(722\) 0 0
\(723\) 1.27266 + 0.924640i 0.0473307 + 0.0343877i
\(724\) 0 0
\(725\) −2.07454 −0.0770463
\(726\) 0 0
\(727\) −38.7547 −1.43733 −0.718666 0.695355i \(-0.755247\pi\)
−0.718666 + 0.695355i \(0.755247\pi\)
\(728\) 0 0
\(729\) 21.6630 + 15.7391i 0.802332 + 0.582928i
\(730\) 0 0
\(731\) −5.35310 + 16.4751i −0.197991 + 0.609355i
\(732\) 0 0
\(733\) 22.6174 16.4325i 0.835393 0.606949i −0.0856869 0.996322i \(-0.527308\pi\)
0.921080 + 0.389374i \(0.127308\pi\)
\(734\) 0 0
\(735\) −0.199557 0.614173i −0.00736077 0.0226541i
\(736\) 0 0
\(737\) −22.7797 + 35.3362i −0.839102 + 1.30163i
\(738\) 0 0
\(739\) −0.0121639 0.0374367i −0.000447457 0.00137713i 0.950833 0.309705i \(-0.100230\pi\)
−0.951280 + 0.308328i \(0.900230\pi\)
\(740\) 0 0
\(741\) 0.351098 0.255088i 0.0128979 0.00937089i
\(742\) 0 0
\(743\) −8.08821 + 24.8930i −0.296728 + 0.913234i 0.685908 + 0.727688i \(0.259405\pi\)
−0.982636 + 0.185546i \(0.940595\pi\)
\(744\) 0 0
\(745\) −22.6998 16.4924i −0.831657 0.604234i
\(746\) 0 0
\(747\) 26.8106 0.980950
\(748\) 0 0
\(749\) −9.21839 −0.336833
\(750\) 0 0
\(751\) −15.6085 11.3402i −0.569562 0.413811i 0.265384 0.964143i \(-0.414501\pi\)
−0.834946 + 0.550332i \(0.814501\pi\)
\(752\) 0 0
\(753\) 0.140922 0.433715i 0.00513550 0.0158054i
\(754\) 0 0
\(755\) −28.3409 + 20.5909i −1.03143 + 0.749379i
\(756\) 0 0
\(757\) 14.1487 + 43.5453i 0.514244 + 1.58268i 0.784653 + 0.619936i \(0.212841\pi\)
−0.270408 + 0.962746i \(0.587159\pi\)
\(758\) 0 0
\(759\) 1.56368 0.606256i 0.0567579 0.0220057i
\(760\) 0 0
\(761\) −4.08236 12.5642i −0.147985 0.455452i 0.849397 0.527754i \(-0.176966\pi\)
−0.997383 + 0.0723016i \(0.976966\pi\)
\(762\) 0 0
\(763\) 10.5744 7.68278i 0.382821 0.278135i
\(764\) 0 0
\(765\) −7.19605 + 22.1472i −0.260174 + 0.800733i
\(766\) 0 0
\(767\) 7.59918 + 5.52113i 0.274391 + 0.199356i
\(768\) 0 0
\(769\) −3.36696 −0.121416 −0.0607078 0.998156i \(-0.519336\pi\)
−0.0607078 + 0.998156i \(0.519336\pi\)
\(770\) 0 0
\(771\) 1.22735 0.0442019
\(772\) 0 0
\(773\) −39.0007 28.3357i −1.40276 1.01916i −0.994326 0.106374i \(-0.966076\pi\)
−0.408432 0.912789i \(-0.633924\pi\)
\(774\) 0 0
\(775\) 0.390522 1.20190i 0.0140280 0.0431737i
\(776\) 0 0
\(777\) −0.0307446 + 0.0223373i −0.00110296 + 0.000801346i
\(778\) 0 0
\(779\) −7.95089 24.4703i −0.284870 0.876741i
\(780\) 0 0
\(781\) 31.4527 + 38.5760i 1.12547 + 1.38036i
\(782\) 0 0
\(783\) 0.706293 + 2.17375i 0.0252408 + 0.0776833i
\(784\) 0 0
\(785\) −30.7926 + 22.3722i −1.09904 + 0.798496i
\(786\) 0 0
\(787\) 7.98685 24.5810i 0.284700 0.876218i −0.701788 0.712386i \(-0.747615\pi\)
0.986488 0.163832i \(-0.0523855\pi\)
\(788\) 0 0
\(789\) −0.849908 0.617494i −0.0302575 0.0219834i
\(790\) 0 0
\(791\) 15.6941 0.558017
\(792\) 0 0
\(793\) 10.2068 0.362453
\(794\) 0 0
\(795\) −0.739464 0.537252i −0.0262261 0.0190544i
\(796\) 0 0
\(797\) 0.0666498 0.205127i 0.00236086 0.00726597i −0.949869 0.312648i \(-0.898784\pi\)
0.952230 + 0.305382i \(0.0987841\pi\)
\(798\) 0 0
\(799\) −3.14974 + 2.28842i −0.111430 + 0.0809586i
\(800\) 0 0
\(801\) −12.9287 39.7905i −0.456813 1.40593i
\(802\) 0 0
\(803\) −2.40111 43.0565i −0.0847334 1.51943i
\(804\) 0 0
\(805\) −9.16350 28.2024i −0.322971 0.994003i
\(806\) 0 0
\(807\) −0.921459 + 0.669479i −0.0324369 + 0.0235668i
\(808\) 0 0
\(809\) −7.30467 + 22.4815i −0.256819 + 0.790406i 0.736647 + 0.676277i \(0.236408\pi\)
−0.993466 + 0.114129i \(0.963592\pi\)
\(810\) 0 0
\(811\) 30.6038 + 22.2350i 1.07465 + 0.780776i 0.976742 0.214420i \(-0.0687861\pi\)
0.0979043 + 0.995196i \(0.468786\pi\)
\(812\) 0 0
\(813\) −0.592612 −0.0207838
\(814\) 0 0
\(815\) −28.7901 −1.00847
\(816\) 0 0
\(817\) 24.3328 + 17.6788i 0.851298 + 0.618504i
\(818\) 0 0
\(819\) −1.74579 + 5.37299i −0.0610028 + 0.187747i
\(820\) 0 0
\(821\) −21.6139 + 15.7034i −0.754331 + 0.548053i −0.897166 0.441693i \(-0.854378\pi\)
0.142835 + 0.989746i \(0.454378\pi\)
\(822\) 0 0
\(823\) 6.04233 + 18.5964i 0.210622 + 0.648229i 0.999435 + 0.0335960i \(0.0106960\pi\)
−0.788813 + 0.614633i \(0.789304\pi\)
\(824\) 0 0
\(825\) −0.0721842 0.0190828i −0.00251313 0.000664379i
\(826\) 0 0
\(827\) 8.27460 + 25.4666i 0.287736 + 0.885560i 0.985565 + 0.169296i \(0.0541494\pi\)
−0.697829 + 0.716264i \(0.745851\pi\)
\(828\) 0 0
\(829\) −27.9174 + 20.2832i −0.969612 + 0.704464i −0.955363 0.295434i \(-0.904536\pi\)
−0.0142486 + 0.999898i \(0.504536\pi\)
\(830\) 0 0
\(831\) 0.590716 1.81804i 0.0204917 0.0630671i
\(832\) 0 0
\(833\) 11.8020 + 8.57463i 0.408914 + 0.297093i
\(834\) 0 0
\(835\) −36.5696 −1.26554
\(836\) 0 0
\(837\) −1.39234 −0.0481263
\(838\) 0 0
\(839\) 26.5571 + 19.2948i 0.916851 + 0.666132i 0.942738 0.333533i \(-0.108241\pi\)
−0.0258869 + 0.999665i \(0.508241\pi\)
\(840\) 0 0
\(841\) 1.89373 5.82831i 0.0653011 0.200976i
\(842\) 0 0
\(843\) 0.753433 0.547401i 0.0259496 0.0188535i
\(844\) 0 0
\(845\) −8.33599 25.6555i −0.286767 0.882577i
\(846\) 0 0
\(847\) −15.5938 8.86439i −0.535811 0.304584i
\(848\) 0 0
\(849\) 0.444659 + 1.36852i 0.0152606 + 0.0469674i
\(850\) 0 0
\(851\) 2.30474 1.67449i 0.0790054 0.0574008i
\(852\) 0 0
\(853\) −9.36132 + 28.8112i −0.320525 + 0.986476i 0.652895 + 0.757449i \(0.273554\pi\)
−0.973420 + 0.229027i \(0.926446\pi\)
\(854\) 0 0
\(855\) 32.7101 + 23.7653i 1.11866 + 0.812756i
\(856\) 0 0
\(857\) −22.7328 −0.776538 −0.388269 0.921546i \(-0.626927\pi\)
−0.388269 + 0.921546i \(0.626927\pi\)
\(858\) 0 0
\(859\) −18.4958 −0.631068 −0.315534 0.948914i \(-0.602184\pi\)
−0.315534 + 0.948914i \(0.602184\pi\)
\(860\) 0 0
\(861\) −0.374156 0.271840i −0.0127512 0.00926429i
\(862\) 0 0
\(863\) −12.3132 + 37.8961i −0.419146 + 1.29000i 0.489344 + 0.872091i \(0.337236\pi\)
−0.908490 + 0.417908i \(0.862764\pi\)
\(864\) 0 0
\(865\) −1.55081 + 1.12673i −0.0527292 + 0.0383100i
\(866\) 0 0
\(867\) −0.113418 0.349065i −0.00385188 0.0118549i
\(868\) 0 0
\(869\) 6.65770 + 1.76005i 0.225847 + 0.0597056i
\(870\) 0 0
\(871\) −4.52999 13.9419i −0.153493 0.472403i
\(872\) 0 0
\(873\) 0.0193605 0.0140662i 0.000655254 0.000476070i
\(874\) 0 0
\(875\) 5.41969 16.6801i 0.183219 0.563890i
\(876\) 0 0
\(877\) −0.146583 0.106498i −0.00494974 0.00359620i 0.585308 0.810811i \(-0.300974\pi\)
−0.590257 + 0.807215i \(0.700974\pi\)
\(878\) 0 0
\(879\) 1.49744 0.0505073
\(880\) 0 0
\(881\) −2.32439 −0.0783108 −0.0391554 0.999233i \(-0.512467\pi\)
−0.0391554 + 0.999233i \(0.512467\pi\)
\(882\) 0 0
\(883\) −46.5566 33.8253i −1.56675 1.13831i −0.930184 0.367093i \(-0.880353\pi\)
−0.636569 0.771220i \(-0.719647\pi\)
\(884\) 0 0
\(885\) 0.373394 1.14919i 0.0125515 0.0386296i
\(886\) 0 0
\(887\) −7.44033 + 5.40572i −0.249822 + 0.181506i −0.705648 0.708563i \(-0.749344\pi\)
0.455826 + 0.890069i \(0.349344\pi\)
\(888\) 0 0
\(889\) 10.4136 + 32.0497i 0.349260 + 1.07491i
\(890\) 0 0
\(891\) −1.65516 29.6801i −0.0554498 0.994320i
\(892\) 0 0
\(893\) 2.08887 + 6.42889i 0.0699015 + 0.215135i
\(894\) 0 0
\(895\) 31.6233 22.9757i 1.05705 0.767992i
\(896\) 0 0
\(897\) −0.180704 + 0.556149i −0.00603352 + 0.0185693i
\(898\) 0 0
\(899\) 17.3124 + 12.5782i 0.577400 + 0.419506i
\(900\) 0 0
\(901\) 20.6477 0.687874
\(902\) 0 0
\(903\) 0.540626 0.0179909
\(904\) 0 0
\(905\) −21.0654 15.3049i −0.700236 0.508751i
\(906\) 0 0
\(907\) −6.60183 + 20.3183i −0.219210 + 0.674659i 0.779618 + 0.626256i \(0.215413\pi\)
−0.998828 + 0.0484035i \(0.984587\pi\)
\(908\) 0 0
\(909\) 24.3722 17.7074i 0.808373 0.587318i
\(910\) 0 0
\(911\) −2.43738 7.50147i −0.0807538 0.248535i 0.902526 0.430635i \(-0.141710\pi\)
−0.983280 + 0.182100i \(0.941710\pi\)
\(912\) 0 0
\(913\) −18.7561 23.0039i −0.620737 0.761319i
\(914\) 0 0
\(915\) −0.405739 1.24874i −0.0134133 0.0412820i
\(916\) 0 0
\(917\) 23.6646 17.1933i 0.781474 0.567774i
\(918\) 0 0
\(919\) 13.6579 42.0345i 0.450531 1.38659i −0.425772 0.904831i \(-0.639997\pi\)
0.876303 0.481761i \(-0.160003\pi\)
\(920\) 0 0
\(921\) 1.20012 + 0.871936i 0.0395452 + 0.0287313i
\(922\) 0 0
\(923\) −17.3550 −0.571246
\(924\) 0 0
\(925\) −0.126829 −0.00417011
\(926\) 0 0
\(927\) 11.8180 + 8.58628i 0.388154 + 0.282010i
\(928\) 0 0
\(929\) 11.5674 35.6009i 0.379515 1.16803i −0.560866 0.827906i \(-0.689532\pi\)
0.940382 0.340121i \(-0.110468\pi\)
\(930\) 0 0
\(931\) 20.4912 14.8877i 0.671571 0.487925i
\(932\) 0 0
\(933\) −0.0520441 0.160175i −0.00170385 0.00524390i
\(934\) 0 0
\(935\) 24.0368 9.31935i 0.786088 0.304775i
\(936\) 0 0
\(937\) 12.0708 + 37.1502i 0.394337 + 1.21365i 0.929476 + 0.368882i \(0.120259\pi\)
−0.535139 + 0.844764i \(0.679741\pi\)
\(938\) 0 0
\(939\) 1.64378 1.19428i 0.0536427 0.0389737i
\(940\) 0 0
\(941\) 17.8264 54.8639i 0.581123 1.78851i −0.0331893 0.999449i \(-0.510566\pi\)
0.614312 0.789063i \(-0.289434\pi\)
\(942\) 0 0
\(943\) 28.0482 + 20.3782i 0.913374 + 0.663605i
\(944\) 0 0
\(945\) 1.45451 0.0473151
\(946\) 0 0
\(947\) −28.2809 −0.919007 −0.459503 0.888176i \(-0.651973\pi\)
−0.459503 + 0.888176i \(0.651973\pi\)
\(948\) 0 0
\(949\) 12.1646 + 8.83811i 0.394880 + 0.286897i
\(950\) 0 0
\(951\) −0.227079 + 0.698876i −0.00736353 + 0.0226626i
\(952\) 0 0
\(953\) 6.31132 4.58544i 0.204444 0.148537i −0.480852 0.876802i \(-0.659673\pi\)
0.685296 + 0.728264i \(0.259673\pi\)
\(954\) 0 0
\(955\) 18.5533 + 57.1013i 0.600372 + 1.84776i
\(956\) 0 0
\(957\) 0.685027 1.06262i 0.0221438 0.0343497i
\(958\) 0 0
\(959\) 2.24163 + 6.89902i 0.0723859 + 0.222781i
\(960\) 0 0
\(961\) 14.5332 10.5590i 0.468814 0.340614i
\(962\) 0 0
\(963\) −5.23355 + 16.1072i −0.168649 + 0.519047i
\(964\) 0 0
\(965\) −1.17938 0.856868i −0.0379655 0.0275836i
\(966\) 0 0
\(967\) −21.5958 −0.694475 −0.347237 0.937777i \(-0.612880\pi\)
−0.347237 + 0.937777i \(0.612880\pi\)
\(968\) 0 0
\(969\) 1.26113 0.0405133
\(970\) 0 0
\(971\) −24.6230 17.8897i −0.790190 0.574107i 0.117830 0.993034i \(-0.462406\pi\)
−0.908020 + 0.418927i \(0.862406\pi\)
\(972\) 0 0
\(973\) −2.78324 + 8.56592i −0.0892264 + 0.274611i
\(974\) 0 0
\(975\) 0.0210619 0.0153023i 0.000674520 0.000490067i
\(976\) 0 0
\(977\) −9.02534 27.7772i −0.288746 0.888670i −0.985251 0.171117i \(-0.945262\pi\)
0.696504 0.717553i \(-0.254738\pi\)
\(978\) 0 0
\(979\) −25.0962 + 38.9296i −0.802078 + 1.24419i
\(980\) 0 0
\(981\) −7.42063 22.8384i −0.236922 0.729172i
\(982\) 0 0
\(983\) 4.38749 3.18770i 0.139939 0.101672i −0.515613 0.856822i \(-0.672436\pi\)
0.655552 + 0.755150i \(0.272436\pi\)
\(984\) 0 0
\(985\) 16.2870 50.1262i 0.518946 1.59715i
\(986\) 0 0
\(987\) 0.0982990 + 0.0714184i 0.00312889 + 0.00227327i
\(988\) 0 0
\(989\) −40.5274 −1.28870
\(990\) 0 0
\(991\) 27.9224 0.886985 0.443492 0.896278i \(-0.353739\pi\)
0.443492 + 0.896278i \(0.353739\pi\)
\(992\) 0 0
\(993\) −1.01793 0.739572i −0.0323032 0.0234696i
\(994\) 0 0
\(995\) 12.6114 38.8140i 0.399810 1.23049i
\(996\) 0 0
\(997\) −10.3584 + 7.52580i −0.328053 + 0.238344i −0.739604 0.673042i \(-0.764987\pi\)
0.411551 + 0.911387i \(0.364987\pi\)
\(998\) 0 0
\(999\) 0.0431800 + 0.132894i 0.00136615 + 0.00420459i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 352.2.m.e.225.2 yes 12
4.3 odd 2 352.2.m.f.225.2 yes 12
8.3 odd 2 704.2.m.n.577.2 12
8.5 even 2 704.2.m.m.577.2 12
11.3 even 5 3872.2.a.bq.1.3 6
11.8 odd 10 3872.2.a.bp.1.3 6
11.9 even 5 inner 352.2.m.e.97.2 12
44.3 odd 10 3872.2.a.bn.1.4 6
44.19 even 10 3872.2.a.bo.1.4 6
44.31 odd 10 352.2.m.f.97.2 yes 12
88.3 odd 10 7744.2.a.dv.1.3 6
88.19 even 10 7744.2.a.dw.1.3 6
88.53 even 10 704.2.m.m.449.2 12
88.69 even 10 7744.2.a.du.1.4 6
88.75 odd 10 704.2.m.n.449.2 12
88.85 odd 10 7744.2.a.dt.1.4 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
352.2.m.e.97.2 12 11.9 even 5 inner
352.2.m.e.225.2 yes 12 1.1 even 1 trivial
352.2.m.f.97.2 yes 12 44.31 odd 10
352.2.m.f.225.2 yes 12 4.3 odd 2
704.2.m.m.449.2 12 88.53 even 10
704.2.m.m.577.2 12 8.5 even 2
704.2.m.n.449.2 12 88.75 odd 10
704.2.m.n.577.2 12 8.3 odd 2
3872.2.a.bn.1.4 6 44.3 odd 10
3872.2.a.bo.1.4 6 44.19 even 10
3872.2.a.bp.1.3 6 11.8 odd 10
3872.2.a.bq.1.3 6 11.3 even 5
7744.2.a.dt.1.4 6 88.85 odd 10
7744.2.a.du.1.4 6 88.69 even 10
7744.2.a.dv.1.3 6 88.3 odd 10
7744.2.a.dw.1.3 6 88.19 even 10