Properties

Label 2-775-5.4-c1-0-19
Degree $2$
Conductor $775$
Sign $-0.447 - 0.894i$
Analytic cond. $6.18840$
Root an. cond. $2.48765$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.618i·2-s + 1.23i·3-s + 1.61·4-s − 0.763·6-s + 4.23i·7-s + 2.23i·8-s + 1.47·9-s + 2·11-s + 2.00i·12-s + 1.23i·13-s − 2.61·14-s + 1.85·16-s − 5.23i·17-s + 0.909i·18-s − 2.23·19-s + ⋯
L(s)  = 1  + 0.437i·2-s + 0.713i·3-s + 0.809·4-s − 0.311·6-s + 1.60i·7-s + 0.790i·8-s + 0.490·9-s + 0.603·11-s + 0.577i·12-s + 0.342i·13-s − 0.699·14-s + 0.463·16-s − 1.26i·17-s + 0.214i·18-s − 0.512·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 775 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.447 - 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 775 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(775\)    =    \(5^{2} \cdot 31\)
Sign: $-0.447 - 0.894i$
Analytic conductor: \(6.18840\)
Root analytic conductor: \(2.48765\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{775} (249, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 775,\ (\ :1/2),\ -0.447 - 0.894i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.05338 + 1.70441i\)
\(L(\frac12)\) \(\approx\) \(1.05338 + 1.70441i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
31 \( 1 - T \)
good2 \( 1 - 0.618iT - 2T^{2} \)
3 \( 1 - 1.23iT - 3T^{2} \)
7 \( 1 - 4.23iT - 7T^{2} \)
11 \( 1 - 2T + 11T^{2} \)
13 \( 1 - 1.23iT - 13T^{2} \)
17 \( 1 + 5.23iT - 17T^{2} \)
19 \( 1 + 2.23T + 19T^{2} \)
23 \( 1 + 7.70iT - 23T^{2} \)
29 \( 1 + 7.23T + 29T^{2} \)
37 \( 1 - 2iT - 37T^{2} \)
41 \( 1 - 7T + 41T^{2} \)
43 \( 1 + 3.23iT - 43T^{2} \)
47 \( 1 - 6.47iT - 47T^{2} \)
53 \( 1 + 1.52iT - 53T^{2} \)
59 \( 1 - 2.23T + 59T^{2} \)
61 \( 1 + 14.1T + 61T^{2} \)
67 \( 1 + 8iT - 67T^{2} \)
71 \( 1 - 13.1T + 71T^{2} \)
73 \( 1 + 0.472iT - 73T^{2} \)
79 \( 1 + 1.70T + 79T^{2} \)
83 \( 1 - 2.94iT - 83T^{2} \)
89 \( 1 - 1.70T + 89T^{2} \)
97 \( 1 + 1.94iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.67642082135070259998986765159, −9.479445446389611621460684200274, −9.059948352083836517861650829432, −8.039695517886971027097047983794, −6.96400736414583977095726956002, −6.22142516575542009858670129554, −5.32298073444073179859727169069, −4.39586386883283072388372367154, −2.95097733758648596568312654931, −1.99419830754532092397817370743, 1.09490794912294377570184876855, 1.89156114847696632872255296589, 3.56655761800560413284489452849, 4.14003559294332340495888200381, 5.88989678311578975235857402178, 6.72614078004165344112620265171, 7.41534415278134864976179208463, 7.918711522066346171742924589414, 9.445673154040015306846335322221, 10.27098456016237301317007727803

Graph of the $Z$-function along the critical line