Properties

Label 775.2.b.d.249.3
Level $775$
Weight $2$
Character 775.249
Analytic conductor $6.188$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [775,2,Mod(249,775)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(775, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("775.249");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 775 = 5^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 775.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.18840615665\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 3x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 31)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 249.3
Root \(0.618034i\) of defining polynomial
Character \(\chi\) \(=\) 775.249
Dual form 775.2.b.d.249.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.618034i q^{2} +1.23607i q^{3} +1.61803 q^{4} -0.763932 q^{6} +4.23607i q^{7} +2.23607i q^{8} +1.47214 q^{9} +2.00000 q^{11} +2.00000i q^{12} +1.23607i q^{13} -2.61803 q^{14} +1.85410 q^{16} -5.23607i q^{17} +0.909830i q^{18} -2.23607 q^{19} -5.23607 q^{21} +1.23607i q^{22} -7.70820i q^{23} -2.76393 q^{24} -0.763932 q^{26} +5.52786i q^{27} +6.85410i q^{28} -7.23607 q^{29} +1.00000 q^{31} +5.61803i q^{32} +2.47214i q^{33} +3.23607 q^{34} +2.38197 q^{36} +2.00000i q^{37} -1.38197i q^{38} -1.52786 q^{39} +7.00000 q^{41} -3.23607i q^{42} -3.23607i q^{43} +3.23607 q^{44} +4.76393 q^{46} +6.47214i q^{47} +2.29180i q^{48} -10.9443 q^{49} +6.47214 q^{51} +2.00000i q^{52} -1.52786i q^{53} -3.41641 q^{54} -9.47214 q^{56} -2.76393i q^{57} -4.47214i q^{58} +2.23607 q^{59} -14.1803 q^{61} +0.618034i q^{62} +6.23607i q^{63} +0.236068 q^{64} -1.52786 q^{66} -8.00000i q^{67} -8.47214i q^{68} +9.52786 q^{69} +13.1803 q^{71} +3.29180i q^{72} -0.472136i q^{73} -1.23607 q^{74} -3.61803 q^{76} +8.47214i q^{77} -0.944272i q^{78} -1.70820 q^{79} -2.41641 q^{81} +4.32624i q^{82} +2.94427i q^{83} -8.47214 q^{84} +2.00000 q^{86} -8.94427i q^{87} +4.47214i q^{88} +1.70820 q^{89} -5.23607 q^{91} -12.4721i q^{92} +1.23607i q^{93} -4.00000 q^{94} -6.94427 q^{96} -1.94427i q^{97} -6.76393i q^{98} +2.94427 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{4} - 12 q^{6} - 12 q^{9} + 8 q^{11} - 6 q^{14} - 6 q^{16} - 12 q^{21} - 20 q^{24} - 12 q^{26} - 20 q^{29} + 4 q^{31} + 4 q^{34} + 14 q^{36} - 24 q^{39} + 28 q^{41} + 4 q^{44} + 28 q^{46} - 8 q^{49}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/775\mathbb{Z}\right)^\times\).

\(n\) \(251\) \(652\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.618034i 0.437016i 0.975835 + 0.218508i \(0.0701190\pi\)
−0.975835 + 0.218508i \(0.929881\pi\)
\(3\) 1.23607i 0.713644i 0.934172 + 0.356822i \(0.116140\pi\)
−0.934172 + 0.356822i \(0.883860\pi\)
\(4\) 1.61803 0.809017
\(5\) 0 0
\(6\) −0.763932 −0.311874
\(7\) 4.23607i 1.60108i 0.599277 + 0.800542i \(0.295455\pi\)
−0.599277 + 0.800542i \(0.704545\pi\)
\(8\) 2.23607i 0.790569i
\(9\) 1.47214 0.490712
\(10\) 0 0
\(11\) 2.00000 0.603023 0.301511 0.953463i \(-0.402509\pi\)
0.301511 + 0.953463i \(0.402509\pi\)
\(12\) 2.00000i 0.577350i
\(13\) 1.23607i 0.342824i 0.985199 + 0.171412i \(0.0548329\pi\)
−0.985199 + 0.171412i \(0.945167\pi\)
\(14\) −2.61803 −0.699699
\(15\) 0 0
\(16\) 1.85410 0.463525
\(17\) − 5.23607i − 1.26993i −0.772540 0.634967i \(-0.781014\pi\)
0.772540 0.634967i \(-0.218986\pi\)
\(18\) 0.909830i 0.214449i
\(19\) −2.23607 −0.512989 −0.256495 0.966546i \(-0.582568\pi\)
−0.256495 + 0.966546i \(0.582568\pi\)
\(20\) 0 0
\(21\) −5.23607 −1.14260
\(22\) 1.23607i 0.263531i
\(23\) − 7.70820i − 1.60727i −0.595121 0.803636i \(-0.702896\pi\)
0.595121 0.803636i \(-0.297104\pi\)
\(24\) −2.76393 −0.564185
\(25\) 0 0
\(26\) −0.763932 −0.149819
\(27\) 5.52786i 1.06384i
\(28\) 6.85410i 1.29530i
\(29\) −7.23607 −1.34370 −0.671852 0.740685i \(-0.734501\pi\)
−0.671852 + 0.740685i \(0.734501\pi\)
\(30\) 0 0
\(31\) 1.00000 0.179605
\(32\) 5.61803i 0.993137i
\(33\) 2.47214i 0.430344i
\(34\) 3.23607 0.554981
\(35\) 0 0
\(36\) 2.38197 0.396994
\(37\) 2.00000i 0.328798i 0.986394 + 0.164399i \(0.0525685\pi\)
−0.986394 + 0.164399i \(0.947432\pi\)
\(38\) − 1.38197i − 0.224184i
\(39\) −1.52786 −0.244654
\(40\) 0 0
\(41\) 7.00000 1.09322 0.546608 0.837389i \(-0.315919\pi\)
0.546608 + 0.837389i \(0.315919\pi\)
\(42\) − 3.23607i − 0.499336i
\(43\) − 3.23607i − 0.493496i −0.969080 0.246748i \(-0.920638\pi\)
0.969080 0.246748i \(-0.0793619\pi\)
\(44\) 3.23607 0.487856
\(45\) 0 0
\(46\) 4.76393 0.702403
\(47\) 6.47214i 0.944058i 0.881583 + 0.472029i \(0.156478\pi\)
−0.881583 + 0.472029i \(0.843522\pi\)
\(48\) 2.29180i 0.330792i
\(49\) −10.9443 −1.56347
\(50\) 0 0
\(51\) 6.47214 0.906280
\(52\) 2.00000i 0.277350i
\(53\) − 1.52786i − 0.209868i −0.994479 0.104934i \(-0.966537\pi\)
0.994479 0.104934i \(-0.0334632\pi\)
\(54\) −3.41641 −0.464914
\(55\) 0 0
\(56\) −9.47214 −1.26577
\(57\) − 2.76393i − 0.366092i
\(58\) − 4.47214i − 0.587220i
\(59\) 2.23607 0.291111 0.145556 0.989350i \(-0.453503\pi\)
0.145556 + 0.989350i \(0.453503\pi\)
\(60\) 0 0
\(61\) −14.1803 −1.81561 −0.907803 0.419396i \(-0.862242\pi\)
−0.907803 + 0.419396i \(0.862242\pi\)
\(62\) 0.618034i 0.0784904i
\(63\) 6.23607i 0.785671i
\(64\) 0.236068 0.0295085
\(65\) 0 0
\(66\) −1.52786 −0.188067
\(67\) − 8.00000i − 0.977356i −0.872464 0.488678i \(-0.837479\pi\)
0.872464 0.488678i \(-0.162521\pi\)
\(68\) − 8.47214i − 1.02740i
\(69\) 9.52786 1.14702
\(70\) 0 0
\(71\) 13.1803 1.56422 0.782109 0.623141i \(-0.214144\pi\)
0.782109 + 0.623141i \(0.214144\pi\)
\(72\) 3.29180i 0.387942i
\(73\) − 0.472136i − 0.0552593i −0.999618 0.0276297i \(-0.991204\pi\)
0.999618 0.0276297i \(-0.00879592\pi\)
\(74\) −1.23607 −0.143690
\(75\) 0 0
\(76\) −3.61803 −0.415017
\(77\) 8.47214i 0.965489i
\(78\) − 0.944272i − 0.106918i
\(79\) −1.70820 −0.192188 −0.0960940 0.995372i \(-0.530635\pi\)
−0.0960940 + 0.995372i \(0.530635\pi\)
\(80\) 0 0
\(81\) −2.41641 −0.268490
\(82\) 4.32624i 0.477753i
\(83\) 2.94427i 0.323176i 0.986858 + 0.161588i \(0.0516615\pi\)
−0.986858 + 0.161588i \(0.948338\pi\)
\(84\) −8.47214 −0.924386
\(85\) 0 0
\(86\) 2.00000 0.215666
\(87\) − 8.94427i − 0.958927i
\(88\) 4.47214i 0.476731i
\(89\) 1.70820 0.181069 0.0905346 0.995893i \(-0.471142\pi\)
0.0905346 + 0.995893i \(0.471142\pi\)
\(90\) 0 0
\(91\) −5.23607 −0.548889
\(92\) − 12.4721i − 1.30031i
\(93\) 1.23607i 0.128174i
\(94\) −4.00000 −0.412568
\(95\) 0 0
\(96\) −6.94427 −0.708747
\(97\) − 1.94427i − 0.197411i −0.995117 0.0987055i \(-0.968530\pi\)
0.995117 0.0987055i \(-0.0314702\pi\)
\(98\) − 6.76393i − 0.683260i
\(99\) 2.94427 0.295910
\(100\) 0 0
\(101\) −3.00000 −0.298511 −0.149256 0.988799i \(-0.547688\pi\)
−0.149256 + 0.988799i \(0.547688\pi\)
\(102\) 4.00000i 0.396059i
\(103\) 1.76393i 0.173805i 0.996217 + 0.0869027i \(0.0276969\pi\)
−0.996217 + 0.0869027i \(0.972303\pi\)
\(104\) −2.76393 −0.271026
\(105\) 0 0
\(106\) 0.944272 0.0917158
\(107\) − 10.2361i − 0.989558i −0.869019 0.494779i \(-0.835249\pi\)
0.869019 0.494779i \(-0.164751\pi\)
\(108\) 8.94427i 0.860663i
\(109\) −3.94427 −0.377793 −0.188896 0.981997i \(-0.560491\pi\)
−0.188896 + 0.981997i \(0.560491\pi\)
\(110\) 0 0
\(111\) −2.47214 −0.234645
\(112\) 7.85410i 0.742143i
\(113\) − 5.47214i − 0.514775i −0.966308 0.257388i \(-0.917138\pi\)
0.966308 0.257388i \(-0.0828617\pi\)
\(114\) 1.70820 0.159988
\(115\) 0 0
\(116\) −11.7082 −1.08708
\(117\) 1.81966i 0.168228i
\(118\) 1.38197i 0.127220i
\(119\) 22.1803 2.03327
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) − 8.76393i − 0.793449i
\(123\) 8.65248i 0.780167i
\(124\) 1.61803 0.145304
\(125\) 0 0
\(126\) −3.85410 −0.343351
\(127\) − 3.52786i − 0.313047i −0.987674 0.156524i \(-0.949971\pi\)
0.987674 0.156524i \(-0.0500287\pi\)
\(128\) 11.3820i 1.00603i
\(129\) 4.00000 0.352180
\(130\) 0 0
\(131\) 12.0000 1.04844 0.524222 0.851581i \(-0.324356\pi\)
0.524222 + 0.851581i \(0.324356\pi\)
\(132\) 4.00000i 0.348155i
\(133\) − 9.47214i − 0.821338i
\(134\) 4.94427 0.427120
\(135\) 0 0
\(136\) 11.7082 1.00397
\(137\) − 19.7082i − 1.68379i −0.539645 0.841893i \(-0.681441\pi\)
0.539645 0.841893i \(-0.318559\pi\)
\(138\) 5.88854i 0.501266i
\(139\) 13.4164 1.13796 0.568982 0.822350i \(-0.307337\pi\)
0.568982 + 0.822350i \(0.307337\pi\)
\(140\) 0 0
\(141\) −8.00000 −0.673722
\(142\) 8.14590i 0.683589i
\(143\) 2.47214i 0.206730i
\(144\) 2.72949 0.227458
\(145\) 0 0
\(146\) 0.291796 0.0241492
\(147\) − 13.5279i − 1.11576i
\(148\) 3.23607i 0.266003i
\(149\) −10.0000 −0.819232 −0.409616 0.912258i \(-0.634337\pi\)
−0.409616 + 0.912258i \(0.634337\pi\)
\(150\) 0 0
\(151\) 8.18034 0.665707 0.332853 0.942979i \(-0.391989\pi\)
0.332853 + 0.942979i \(0.391989\pi\)
\(152\) − 5.00000i − 0.405554i
\(153\) − 7.70820i − 0.623171i
\(154\) −5.23607 −0.421934
\(155\) 0 0
\(156\) −2.47214 −0.197929
\(157\) 14.8885i 1.18824i 0.804378 + 0.594118i \(0.202499\pi\)
−0.804378 + 0.594118i \(0.797501\pi\)
\(158\) − 1.05573i − 0.0839892i
\(159\) 1.88854 0.149771
\(160\) 0 0
\(161\) 32.6525 2.57338
\(162\) − 1.49342i − 0.117334i
\(163\) − 2.70820i − 0.212123i −0.994360 0.106061i \(-0.966176\pi\)
0.994360 0.106061i \(-0.0338240\pi\)
\(164\) 11.3262 0.884431
\(165\) 0 0
\(166\) −1.81966 −0.141233
\(167\) − 2.47214i − 0.191300i −0.995415 0.0956498i \(-0.969507\pi\)
0.995415 0.0956498i \(-0.0304929\pi\)
\(168\) − 11.7082i − 0.903308i
\(169\) 11.4721 0.882472
\(170\) 0 0
\(171\) −3.29180 −0.251730
\(172\) − 5.23607i − 0.399246i
\(173\) − 14.9443i − 1.13619i −0.822962 0.568096i \(-0.807680\pi\)
0.822962 0.568096i \(-0.192320\pi\)
\(174\) 5.52786 0.419066
\(175\) 0 0
\(176\) 3.70820 0.279516
\(177\) 2.76393i 0.207750i
\(178\) 1.05573i 0.0791302i
\(179\) 11.7082 0.875112 0.437556 0.899191i \(-0.355844\pi\)
0.437556 + 0.899191i \(0.355844\pi\)
\(180\) 0 0
\(181\) 18.1803 1.35133 0.675667 0.737207i \(-0.263856\pi\)
0.675667 + 0.737207i \(0.263856\pi\)
\(182\) − 3.23607i − 0.239873i
\(183\) − 17.5279i − 1.29570i
\(184\) 17.2361 1.27066
\(185\) 0 0
\(186\) −0.763932 −0.0560142
\(187\) − 10.4721i − 0.765798i
\(188\) 10.4721i 0.763759i
\(189\) −23.4164 −1.70329
\(190\) 0 0
\(191\) 3.18034 0.230121 0.115061 0.993358i \(-0.463294\pi\)
0.115061 + 0.993358i \(0.463294\pi\)
\(192\) 0.291796i 0.0210586i
\(193\) − 5.47214i − 0.393893i −0.980414 0.196946i \(-0.936897\pi\)
0.980414 0.196946i \(-0.0631025\pi\)
\(194\) 1.20163 0.0862717
\(195\) 0 0
\(196\) −17.7082 −1.26487
\(197\) 15.4164i 1.09837i 0.835700 + 0.549187i \(0.185062\pi\)
−0.835700 + 0.549187i \(0.814938\pi\)
\(198\) 1.81966i 0.129318i
\(199\) 1.05573 0.0748386 0.0374193 0.999300i \(-0.488086\pi\)
0.0374193 + 0.999300i \(0.488086\pi\)
\(200\) 0 0
\(201\) 9.88854 0.697484
\(202\) − 1.85410i − 0.130454i
\(203\) − 30.6525i − 2.15138i
\(204\) 10.4721 0.733196
\(205\) 0 0
\(206\) −1.09017 −0.0759557
\(207\) − 11.3475i − 0.788707i
\(208\) 2.29180i 0.158907i
\(209\) −4.47214 −0.309344
\(210\) 0 0
\(211\) 0.819660 0.0564277 0.0282139 0.999602i \(-0.491018\pi\)
0.0282139 + 0.999602i \(0.491018\pi\)
\(212\) − 2.47214i − 0.169787i
\(213\) 16.2918i 1.11630i
\(214\) 6.32624 0.432453
\(215\) 0 0
\(216\) −12.3607 −0.841038
\(217\) 4.23607i 0.287563i
\(218\) − 2.43769i − 0.165101i
\(219\) 0.583592 0.0394355
\(220\) 0 0
\(221\) 6.47214 0.435363
\(222\) − 1.52786i − 0.102544i
\(223\) 4.00000i 0.267860i 0.990991 + 0.133930i \(0.0427597\pi\)
−0.990991 + 0.133930i \(0.957240\pi\)
\(224\) −23.7984 −1.59010
\(225\) 0 0
\(226\) 3.38197 0.224965
\(227\) − 2.47214i − 0.164081i −0.996629 0.0820407i \(-0.973856\pi\)
0.996629 0.0820407i \(-0.0261438\pi\)
\(228\) − 4.47214i − 0.296174i
\(229\) −13.4164 −0.886581 −0.443291 0.896378i \(-0.646189\pi\)
−0.443291 + 0.896378i \(0.646189\pi\)
\(230\) 0 0
\(231\) −10.4721 −0.689016
\(232\) − 16.1803i − 1.06229i
\(233\) 0.0557281i 0.00365087i 0.999998 + 0.00182543i \(0.000581054\pi\)
−0.999998 + 0.00182543i \(0.999419\pi\)
\(234\) −1.12461 −0.0735182
\(235\) 0 0
\(236\) 3.61803 0.235514
\(237\) − 2.11146i − 0.137154i
\(238\) 13.7082i 0.888571i
\(239\) −1.70820 −0.110495 −0.0552473 0.998473i \(-0.517595\pi\)
−0.0552473 + 0.998473i \(0.517595\pi\)
\(240\) 0 0
\(241\) −30.3607 −1.95570 −0.977852 0.209299i \(-0.932882\pi\)
−0.977852 + 0.209299i \(0.932882\pi\)
\(242\) − 4.32624i − 0.278101i
\(243\) 13.5967i 0.872232i
\(244\) −22.9443 −1.46886
\(245\) 0 0
\(246\) −5.34752 −0.340946
\(247\) − 2.76393i − 0.175865i
\(248\) 2.23607i 0.141990i
\(249\) −3.63932 −0.230633
\(250\) 0 0
\(251\) −24.1803 −1.52625 −0.763125 0.646251i \(-0.776336\pi\)
−0.763125 + 0.646251i \(0.776336\pi\)
\(252\) 10.0902i 0.635621i
\(253\) − 15.4164i − 0.969221i
\(254\) 2.18034 0.136807
\(255\) 0 0
\(256\) −6.56231 −0.410144
\(257\) 15.9443i 0.994576i 0.867585 + 0.497288i \(0.165671\pi\)
−0.867585 + 0.497288i \(0.834329\pi\)
\(258\) 2.47214i 0.153908i
\(259\) −8.47214 −0.526433
\(260\) 0 0
\(261\) −10.6525 −0.659372
\(262\) 7.41641i 0.458187i
\(263\) − 18.7639i − 1.15703i −0.815670 0.578517i \(-0.803632\pi\)
0.815670 0.578517i \(-0.196368\pi\)
\(264\) −5.52786 −0.340217
\(265\) 0 0
\(266\) 5.85410 0.358938
\(267\) 2.11146i 0.129219i
\(268\) − 12.9443i − 0.790697i
\(269\) 28.9443 1.76476 0.882382 0.470534i \(-0.155939\pi\)
0.882382 + 0.470534i \(0.155939\pi\)
\(270\) 0 0
\(271\) 8.18034 0.496920 0.248460 0.968642i \(-0.420076\pi\)
0.248460 + 0.968642i \(0.420076\pi\)
\(272\) − 9.70820i − 0.588646i
\(273\) − 6.47214i − 0.391711i
\(274\) 12.1803 0.735841
\(275\) 0 0
\(276\) 15.4164 0.927959
\(277\) − 18.6525i − 1.12072i −0.828250 0.560359i \(-0.810663\pi\)
0.828250 0.560359i \(-0.189337\pi\)
\(278\) 8.29180i 0.497309i
\(279\) 1.47214 0.0881345
\(280\) 0 0
\(281\) 17.0000 1.01413 0.507067 0.861906i \(-0.330729\pi\)
0.507067 + 0.861906i \(0.330729\pi\)
\(282\) − 4.94427i − 0.294427i
\(283\) 21.8885i 1.30114i 0.759447 + 0.650569i \(0.225470\pi\)
−0.759447 + 0.650569i \(0.774530\pi\)
\(284\) 21.3262 1.26548
\(285\) 0 0
\(286\) −1.52786 −0.0903445
\(287\) 29.6525i 1.75033i
\(288\) 8.27051i 0.487344i
\(289\) −10.4164 −0.612730
\(290\) 0 0
\(291\) 2.40325 0.140881
\(292\) − 0.763932i − 0.0447057i
\(293\) 8.47214i 0.494947i 0.968895 + 0.247474i \(0.0796004\pi\)
−0.968895 + 0.247474i \(0.920400\pi\)
\(294\) 8.36068 0.487605
\(295\) 0 0
\(296\) −4.47214 −0.259938
\(297\) 11.0557i 0.641518i
\(298\) − 6.18034i − 0.358017i
\(299\) 9.52786 0.551011
\(300\) 0 0
\(301\) 13.7082 0.790128
\(302\) 5.05573i 0.290924i
\(303\) − 3.70820i − 0.213031i
\(304\) −4.14590 −0.237784
\(305\) 0 0
\(306\) 4.76393 0.272336
\(307\) 15.2918i 0.872749i 0.899765 + 0.436374i \(0.143738\pi\)
−0.899765 + 0.436374i \(0.856262\pi\)
\(308\) 13.7082i 0.781097i
\(309\) −2.18034 −0.124035
\(310\) 0 0
\(311\) −6.81966 −0.386707 −0.193354 0.981129i \(-0.561936\pi\)
−0.193354 + 0.981129i \(0.561936\pi\)
\(312\) − 3.41641i − 0.193416i
\(313\) 21.2361i 1.20033i 0.799875 + 0.600167i \(0.204899\pi\)
−0.799875 + 0.600167i \(0.795101\pi\)
\(314\) −9.20163 −0.519278
\(315\) 0 0
\(316\) −2.76393 −0.155483
\(317\) − 21.9443i − 1.23251i −0.787545 0.616257i \(-0.788648\pi\)
0.787545 0.616257i \(-0.211352\pi\)
\(318\) 1.16718i 0.0654524i
\(319\) −14.4721 −0.810284
\(320\) 0 0
\(321\) 12.6525 0.706192
\(322\) 20.1803i 1.12461i
\(323\) 11.7082i 0.651462i
\(324\) −3.90983 −0.217213
\(325\) 0 0
\(326\) 1.67376 0.0927011
\(327\) − 4.87539i − 0.269610i
\(328\) 15.6525i 0.864263i
\(329\) −27.4164 −1.51152
\(330\) 0 0
\(331\) 2.00000 0.109930 0.0549650 0.998488i \(-0.482495\pi\)
0.0549650 + 0.998488i \(0.482495\pi\)
\(332\) 4.76393i 0.261455i
\(333\) 2.94427i 0.161345i
\(334\) 1.52786 0.0836010
\(335\) 0 0
\(336\) −9.70820 −0.529626
\(337\) 19.2361i 1.04786i 0.851763 + 0.523928i \(0.175534\pi\)
−0.851763 + 0.523928i \(0.824466\pi\)
\(338\) 7.09017i 0.385654i
\(339\) 6.76393 0.367366
\(340\) 0 0
\(341\) 2.00000 0.108306
\(342\) − 2.03444i − 0.110010i
\(343\) − 16.7082i − 0.902158i
\(344\) 7.23607 0.390143
\(345\) 0 0
\(346\) 9.23607 0.496534
\(347\) − 1.81966i − 0.0976845i −0.998807 0.0488422i \(-0.984447\pi\)
0.998807 0.0488422i \(-0.0155532\pi\)
\(348\) − 14.4721i − 0.775788i
\(349\) −27.8885 −1.49284 −0.746420 0.665475i \(-0.768229\pi\)
−0.746420 + 0.665475i \(0.768229\pi\)
\(350\) 0 0
\(351\) −6.83282 −0.364709
\(352\) 11.2361i 0.598884i
\(353\) − 19.4164i − 1.03343i −0.856157 0.516716i \(-0.827154\pi\)
0.856157 0.516716i \(-0.172846\pi\)
\(354\) −1.70820 −0.0907900
\(355\) 0 0
\(356\) 2.76393 0.146488
\(357\) 27.4164i 1.45103i
\(358\) 7.23607i 0.382438i
\(359\) −17.7639 −0.937544 −0.468772 0.883319i \(-0.655303\pi\)
−0.468772 + 0.883319i \(0.655303\pi\)
\(360\) 0 0
\(361\) −14.0000 −0.736842
\(362\) 11.2361i 0.590555i
\(363\) − 8.65248i − 0.454137i
\(364\) −8.47214 −0.444061
\(365\) 0 0
\(366\) 10.8328 0.566240
\(367\) − 18.0000i − 0.939592i −0.882775 0.469796i \(-0.844327\pi\)
0.882775 0.469796i \(-0.155673\pi\)
\(368\) − 14.2918i − 0.745011i
\(369\) 10.3050 0.536454
\(370\) 0 0
\(371\) 6.47214 0.336017
\(372\) 2.00000i 0.103695i
\(373\) 19.0000i 0.983783i 0.870657 + 0.491891i \(0.163694\pi\)
−0.870657 + 0.491891i \(0.836306\pi\)
\(374\) 6.47214 0.334666
\(375\) 0 0
\(376\) −14.4721 −0.746343
\(377\) − 8.94427i − 0.460653i
\(378\) − 14.4721i − 0.744366i
\(379\) 37.8885 1.94620 0.973102 0.230375i \(-0.0739953\pi\)
0.973102 + 0.230375i \(0.0739953\pi\)
\(380\) 0 0
\(381\) 4.36068 0.223404
\(382\) 1.96556i 0.100567i
\(383\) 11.8885i 0.607476i 0.952756 + 0.303738i \(0.0982348\pi\)
−0.952756 + 0.303738i \(0.901765\pi\)
\(384\) −14.0689 −0.717950
\(385\) 0 0
\(386\) 3.38197 0.172138
\(387\) − 4.76393i − 0.242164i
\(388\) − 3.14590i − 0.159709i
\(389\) −17.8885 −0.906985 −0.453493 0.891260i \(-0.649822\pi\)
−0.453493 + 0.891260i \(0.649822\pi\)
\(390\) 0 0
\(391\) −40.3607 −2.04113
\(392\) − 24.4721i − 1.23603i
\(393\) 14.8328i 0.748217i
\(394\) −9.52786 −0.480007
\(395\) 0 0
\(396\) 4.76393 0.239397
\(397\) 7.00000i 0.351320i 0.984451 + 0.175660i \(0.0562059\pi\)
−0.984451 + 0.175660i \(0.943794\pi\)
\(398\) 0.652476i 0.0327057i
\(399\) 11.7082 0.586143
\(400\) 0 0
\(401\) 15.8197 0.789996 0.394998 0.918682i \(-0.370745\pi\)
0.394998 + 0.918682i \(0.370745\pi\)
\(402\) 6.11146i 0.304812i
\(403\) 1.23607i 0.0615729i
\(404\) −4.85410 −0.241501
\(405\) 0 0
\(406\) 18.9443 0.940188
\(407\) 4.00000i 0.198273i
\(408\) 14.4721i 0.716477i
\(409\) 26.1803 1.29453 0.647267 0.762263i \(-0.275912\pi\)
0.647267 + 0.762263i \(0.275912\pi\)
\(410\) 0 0
\(411\) 24.3607 1.20162
\(412\) 2.85410i 0.140612i
\(413\) 9.47214i 0.466093i
\(414\) 7.01316 0.344678
\(415\) 0 0
\(416\) −6.94427 −0.340471
\(417\) 16.5836i 0.812102i
\(418\) − 2.76393i − 0.135188i
\(419\) −30.1246 −1.47168 −0.735842 0.677153i \(-0.763213\pi\)
−0.735842 + 0.677153i \(0.763213\pi\)
\(420\) 0 0
\(421\) −15.3607 −0.748634 −0.374317 0.927301i \(-0.622123\pi\)
−0.374317 + 0.927301i \(0.622123\pi\)
\(422\) 0.506578i 0.0246598i
\(423\) 9.52786i 0.463261i
\(424\) 3.41641 0.165915
\(425\) 0 0
\(426\) −10.0689 −0.487839
\(427\) − 60.0689i − 2.90694i
\(428\) − 16.5623i − 0.800569i
\(429\) −3.05573 −0.147532
\(430\) 0 0
\(431\) 12.0000 0.578020 0.289010 0.957326i \(-0.406674\pi\)
0.289010 + 0.957326i \(0.406674\pi\)
\(432\) 10.2492i 0.493116i
\(433\) − 12.1803i − 0.585350i −0.956212 0.292675i \(-0.905455\pi\)
0.956212 0.292675i \(-0.0945454\pi\)
\(434\) −2.61803 −0.125670
\(435\) 0 0
\(436\) −6.38197 −0.305641
\(437\) 17.2361i 0.824513i
\(438\) 0.360680i 0.0172339i
\(439\) −21.1803 −1.01088 −0.505441 0.862861i \(-0.668670\pi\)
−0.505441 + 0.862861i \(0.668670\pi\)
\(440\) 0 0
\(441\) −16.1115 −0.767212
\(442\) 4.00000i 0.190261i
\(443\) 17.2918i 0.821558i 0.911735 + 0.410779i \(0.134743\pi\)
−0.911735 + 0.410779i \(0.865257\pi\)
\(444\) −4.00000 −0.189832
\(445\) 0 0
\(446\) −2.47214 −0.117059
\(447\) − 12.3607i − 0.584640i
\(448\) 1.00000i 0.0472456i
\(449\) −31.3050 −1.47737 −0.738686 0.674050i \(-0.764553\pi\)
−0.738686 + 0.674050i \(0.764553\pi\)
\(450\) 0 0
\(451\) 14.0000 0.659234
\(452\) − 8.85410i − 0.416462i
\(453\) 10.1115i 0.475078i
\(454\) 1.52786 0.0717062
\(455\) 0 0
\(456\) 6.18034 0.289421
\(457\) 20.9443i 0.979732i 0.871798 + 0.489866i \(0.162954\pi\)
−0.871798 + 0.489866i \(0.837046\pi\)
\(458\) − 8.29180i − 0.387450i
\(459\) 28.9443 1.35100
\(460\) 0 0
\(461\) −10.3607 −0.482545 −0.241272 0.970457i \(-0.577565\pi\)
−0.241272 + 0.970457i \(0.577565\pi\)
\(462\) − 6.47214i − 0.301111i
\(463\) − 29.4164i − 1.36710i −0.729905 0.683548i \(-0.760436\pi\)
0.729905 0.683548i \(-0.239564\pi\)
\(464\) −13.4164 −0.622841
\(465\) 0 0
\(466\) −0.0344419 −0.00159549
\(467\) 8.70820i 0.402968i 0.979492 + 0.201484i \(0.0645763\pi\)
−0.979492 + 0.201484i \(0.935424\pi\)
\(468\) 2.94427i 0.136099i
\(469\) 33.8885 1.56483
\(470\) 0 0
\(471\) −18.4033 −0.847977
\(472\) 5.00000i 0.230144i
\(473\) − 6.47214i − 0.297589i
\(474\) 1.30495 0.0599384
\(475\) 0 0
\(476\) 35.8885 1.64495
\(477\) − 2.24922i − 0.102985i
\(478\) − 1.05573i − 0.0482879i
\(479\) −36.7082 −1.67724 −0.838620 0.544716i \(-0.816637\pi\)
−0.838620 + 0.544716i \(0.816637\pi\)
\(480\) 0 0
\(481\) −2.47214 −0.112720
\(482\) − 18.7639i − 0.854674i
\(483\) 40.3607i 1.83647i
\(484\) −11.3262 −0.514829
\(485\) 0 0
\(486\) −8.40325 −0.381179
\(487\) 14.7639i 0.669018i 0.942393 + 0.334509i \(0.108570\pi\)
−0.942393 + 0.334509i \(0.891430\pi\)
\(488\) − 31.7082i − 1.43536i
\(489\) 3.34752 0.151380
\(490\) 0 0
\(491\) −40.3607 −1.82145 −0.910726 0.413011i \(-0.864477\pi\)
−0.910726 + 0.413011i \(0.864477\pi\)
\(492\) 14.0000i 0.631169i
\(493\) 37.8885i 1.70641i
\(494\) 1.70820 0.0768557
\(495\) 0 0
\(496\) 1.85410 0.0832516
\(497\) 55.8328i 2.50444i
\(498\) − 2.24922i − 0.100790i
\(499\) 33.4164 1.49592 0.747962 0.663742i \(-0.231033\pi\)
0.747962 + 0.663742i \(0.231033\pi\)
\(500\) 0 0
\(501\) 3.05573 0.136520
\(502\) − 14.9443i − 0.666995i
\(503\) − 1.65248i − 0.0736803i −0.999321 0.0368401i \(-0.988271\pi\)
0.999321 0.0368401i \(-0.0117292\pi\)
\(504\) −13.9443 −0.621127
\(505\) 0 0
\(506\) 9.52786 0.423565
\(507\) 14.1803i 0.629771i
\(508\) − 5.70820i − 0.253261i
\(509\) 19.5967 0.868611 0.434305 0.900766i \(-0.356994\pi\)
0.434305 + 0.900766i \(0.356994\pi\)
\(510\) 0 0
\(511\) 2.00000 0.0884748
\(512\) 18.7082i 0.826794i
\(513\) − 12.3607i − 0.545737i
\(514\) −9.85410 −0.434646
\(515\) 0 0
\(516\) 6.47214 0.284920
\(517\) 12.9443i 0.569288i
\(518\) − 5.23607i − 0.230060i
\(519\) 18.4721 0.810837
\(520\) 0 0
\(521\) 2.00000 0.0876216 0.0438108 0.999040i \(-0.486050\pi\)
0.0438108 + 0.999040i \(0.486050\pi\)
\(522\) − 6.58359i − 0.288156i
\(523\) − 4.29180i − 0.187667i −0.995588 0.0938336i \(-0.970088\pi\)
0.995588 0.0938336i \(-0.0299122\pi\)
\(524\) 19.4164 0.848210
\(525\) 0 0
\(526\) 11.5967 0.505642
\(527\) − 5.23607i − 0.228087i
\(528\) 4.58359i 0.199475i
\(529\) −36.4164 −1.58332
\(530\) 0 0
\(531\) 3.29180 0.142852
\(532\) − 15.3262i − 0.664477i
\(533\) 8.65248i 0.374780i
\(534\) −1.30495 −0.0564708
\(535\) 0 0
\(536\) 17.8885 0.772667
\(537\) 14.4721i 0.624519i
\(538\) 17.8885i 0.771230i
\(539\) −21.8885 −0.942806
\(540\) 0 0
\(541\) 19.3607 0.832381 0.416190 0.909278i \(-0.363365\pi\)
0.416190 + 0.909278i \(0.363365\pi\)
\(542\) 5.05573i 0.217162i
\(543\) 22.4721i 0.964372i
\(544\) 29.4164 1.26122
\(545\) 0 0
\(546\) 4.00000 0.171184
\(547\) − 28.1246i − 1.20252i −0.799053 0.601261i \(-0.794665\pi\)
0.799053 0.601261i \(-0.205335\pi\)
\(548\) − 31.8885i − 1.36221i
\(549\) −20.8754 −0.890940
\(550\) 0 0
\(551\) 16.1803 0.689306
\(552\) 21.3050i 0.906799i
\(553\) − 7.23607i − 0.307709i
\(554\) 11.5279 0.489772
\(555\) 0 0
\(556\) 21.7082 0.920633
\(557\) 12.0000i 0.508456i 0.967144 + 0.254228i \(0.0818214\pi\)
−0.967144 + 0.254228i \(0.918179\pi\)
\(558\) 0.909830i 0.0385162i
\(559\) 4.00000 0.169182
\(560\) 0 0
\(561\) 12.9443 0.546508
\(562\) 10.5066i 0.443193i
\(563\) − 39.5410i − 1.66646i −0.552930 0.833228i \(-0.686490\pi\)
0.552930 0.833228i \(-0.313510\pi\)
\(564\) −12.9443 −0.545052
\(565\) 0 0
\(566\) −13.5279 −0.568619
\(567\) − 10.2361i − 0.429874i
\(568\) 29.4721i 1.23662i
\(569\) −14.4721 −0.606704 −0.303352 0.952879i \(-0.598106\pi\)
−0.303352 + 0.952879i \(0.598106\pi\)
\(570\) 0 0
\(571\) 5.81966 0.243545 0.121773 0.992558i \(-0.461142\pi\)
0.121773 + 0.992558i \(0.461142\pi\)
\(572\) 4.00000i 0.167248i
\(573\) 3.93112i 0.164225i
\(574\) −18.3262 −0.764922
\(575\) 0 0
\(576\) 0.347524 0.0144802
\(577\) − 24.8328i − 1.03380i −0.856045 0.516902i \(-0.827085\pi\)
0.856045 0.516902i \(-0.172915\pi\)
\(578\) − 6.43769i − 0.267773i
\(579\) 6.76393 0.281099
\(580\) 0 0
\(581\) −12.4721 −0.517431
\(582\) 1.48529i 0.0615673i
\(583\) − 3.05573i − 0.126555i
\(584\) 1.05573 0.0436863
\(585\) 0 0
\(586\) −5.23607 −0.216300
\(587\) − 2.47214i − 0.102036i −0.998698 0.0510180i \(-0.983753\pi\)
0.998698 0.0510180i \(-0.0162466\pi\)
\(588\) − 21.8885i − 0.902668i
\(589\) −2.23607 −0.0921356
\(590\) 0 0
\(591\) −19.0557 −0.783848
\(592\) 3.70820i 0.152406i
\(593\) − 15.4721i − 0.635364i −0.948197 0.317682i \(-0.897095\pi\)
0.948197 0.317682i \(-0.102905\pi\)
\(594\) −6.83282 −0.280354
\(595\) 0 0
\(596\) −16.1803 −0.662773
\(597\) 1.30495i 0.0534081i
\(598\) 5.88854i 0.240800i
\(599\) −34.5967 −1.41358 −0.706792 0.707421i \(-0.749859\pi\)
−0.706792 + 0.707421i \(0.749859\pi\)
\(600\) 0 0
\(601\) −36.5410 −1.49054 −0.745270 0.666763i \(-0.767679\pi\)
−0.745270 + 0.666763i \(0.767679\pi\)
\(602\) 8.47214i 0.345298i
\(603\) − 11.7771i − 0.479600i
\(604\) 13.2361 0.538568
\(605\) 0 0
\(606\) 2.29180 0.0930979
\(607\) − 13.5279i − 0.549079i −0.961576 0.274540i \(-0.911475\pi\)
0.961576 0.274540i \(-0.0885254\pi\)
\(608\) − 12.5623i − 0.509469i
\(609\) 37.8885 1.53532
\(610\) 0 0
\(611\) −8.00000 −0.323645
\(612\) − 12.4721i − 0.504156i
\(613\) − 8.11146i − 0.327619i −0.986492 0.163809i \(-0.947622\pi\)
0.986492 0.163809i \(-0.0523782\pi\)
\(614\) −9.45085 −0.381405
\(615\) 0 0
\(616\) −18.9443 −0.763286
\(617\) − 23.5279i − 0.947196i −0.880741 0.473598i \(-0.842955\pi\)
0.880741 0.473598i \(-0.157045\pi\)
\(618\) − 1.34752i − 0.0542054i
\(619\) 16.1803 0.650343 0.325171 0.945655i \(-0.394578\pi\)
0.325171 + 0.945655i \(0.394578\pi\)
\(620\) 0 0
\(621\) 42.6099 1.70988
\(622\) − 4.21478i − 0.168997i
\(623\) 7.23607i 0.289907i
\(624\) −2.83282 −0.113403
\(625\) 0 0
\(626\) −13.1246 −0.524565
\(627\) − 5.52786i − 0.220762i
\(628\) 24.0902i 0.961302i
\(629\) 10.4721 0.417551
\(630\) 0 0
\(631\) −10.3607 −0.412452 −0.206226 0.978504i \(-0.566118\pi\)
−0.206226 + 0.978504i \(0.566118\pi\)
\(632\) − 3.81966i − 0.151938i
\(633\) 1.01316i 0.0402693i
\(634\) 13.5623 0.538628
\(635\) 0 0
\(636\) 3.05573 0.121168
\(637\) − 13.5279i − 0.535993i
\(638\) − 8.94427i − 0.354107i
\(639\) 19.4033 0.767581
\(640\) 0 0
\(641\) 12.0000 0.473972 0.236986 0.971513i \(-0.423841\pi\)
0.236986 + 0.971513i \(0.423841\pi\)
\(642\) 7.81966i 0.308617i
\(643\) 28.4721i 1.12283i 0.827534 + 0.561416i \(0.189743\pi\)
−0.827534 + 0.561416i \(0.810257\pi\)
\(644\) 52.8328 2.08190
\(645\) 0 0
\(646\) −7.23607 −0.284699
\(647\) − 16.9443i − 0.666148i −0.942901 0.333074i \(-0.891914\pi\)
0.942901 0.333074i \(-0.108086\pi\)
\(648\) − 5.40325i − 0.212260i
\(649\) 4.47214 0.175547
\(650\) 0 0
\(651\) −5.23607 −0.205218
\(652\) − 4.38197i − 0.171611i
\(653\) 15.3050i 0.598929i 0.954107 + 0.299465i \(0.0968080\pi\)
−0.954107 + 0.299465i \(0.903192\pi\)
\(654\) 3.01316 0.117824
\(655\) 0 0
\(656\) 12.9787 0.506734
\(657\) − 0.695048i − 0.0271164i
\(658\) − 16.9443i − 0.660556i
\(659\) 5.65248 0.220189 0.110095 0.993921i \(-0.464885\pi\)
0.110095 + 0.993921i \(0.464885\pi\)
\(660\) 0 0
\(661\) −45.3607 −1.76433 −0.882163 0.470944i \(-0.843913\pi\)
−0.882163 + 0.470944i \(0.843913\pi\)
\(662\) 1.23607i 0.0480411i
\(663\) 8.00000i 0.310694i
\(664\) −6.58359 −0.255493
\(665\) 0 0
\(666\) −1.81966 −0.0705104
\(667\) 55.7771i 2.15970i
\(668\) − 4.00000i − 0.154765i
\(669\) −4.94427 −0.191157
\(670\) 0 0
\(671\) −28.3607 −1.09485
\(672\) − 29.4164i − 1.13476i
\(673\) 47.0132i 1.81222i 0.423038 + 0.906112i \(0.360964\pi\)
−0.423038 + 0.906112i \(0.639036\pi\)
\(674\) −11.8885 −0.457930
\(675\) 0 0
\(676\) 18.5623 0.713935
\(677\) − 42.7214i − 1.64192i −0.570989 0.820958i \(-0.693440\pi\)
0.570989 0.820958i \(-0.306560\pi\)
\(678\) 4.18034i 0.160545i
\(679\) 8.23607 0.316071
\(680\) 0 0
\(681\) 3.05573 0.117096
\(682\) 1.23607i 0.0473315i
\(683\) − 17.1803i − 0.657387i −0.944437 0.328694i \(-0.893392\pi\)
0.944437 0.328694i \(-0.106608\pi\)
\(684\) −5.32624 −0.203654
\(685\) 0 0
\(686\) 10.3262 0.394258
\(687\) − 16.5836i − 0.632704i
\(688\) − 6.00000i − 0.228748i
\(689\) 1.88854 0.0719478
\(690\) 0 0
\(691\) −19.1803 −0.729655 −0.364827 0.931075i \(-0.618872\pi\)
−0.364827 + 0.931075i \(0.618872\pi\)
\(692\) − 24.1803i − 0.919199i
\(693\) 12.4721i 0.473777i
\(694\) 1.12461 0.0426897
\(695\) 0 0
\(696\) 20.0000 0.758098
\(697\) − 36.6525i − 1.38831i
\(698\) − 17.2361i − 0.652395i
\(699\) −0.0688837 −0.00260542
\(700\) 0 0
\(701\) 7.00000 0.264386 0.132193 0.991224i \(-0.457798\pi\)
0.132193 + 0.991224i \(0.457798\pi\)
\(702\) − 4.22291i − 0.159384i
\(703\) − 4.47214i − 0.168670i
\(704\) 0.472136 0.0177943
\(705\) 0 0
\(706\) 12.0000 0.451626
\(707\) − 12.7082i − 0.477941i
\(708\) 4.47214i 0.168073i
\(709\) −34.4721 −1.29463 −0.647314 0.762223i \(-0.724108\pi\)
−0.647314 + 0.762223i \(0.724108\pi\)
\(710\) 0 0
\(711\) −2.51471 −0.0943089
\(712\) 3.81966i 0.143148i
\(713\) − 7.70820i − 0.288675i
\(714\) −16.9443 −0.634123
\(715\) 0 0
\(716\) 18.9443 0.707981
\(717\) − 2.11146i − 0.0788538i
\(718\) − 10.9787i − 0.409722i
\(719\) 36.1803 1.34930 0.674649 0.738138i \(-0.264295\pi\)
0.674649 + 0.738138i \(0.264295\pi\)
\(720\) 0 0
\(721\) −7.47214 −0.278277
\(722\) − 8.65248i − 0.322012i
\(723\) − 37.5279i − 1.39568i
\(724\) 29.4164 1.09325
\(725\) 0 0
\(726\) 5.34752 0.198465
\(727\) 39.7639i 1.47476i 0.675477 + 0.737381i \(0.263938\pi\)
−0.675477 + 0.737381i \(0.736062\pi\)
\(728\) − 11.7082i − 0.433935i
\(729\) −24.0557 −0.890953
\(730\) 0 0
\(731\) −16.9443 −0.626707
\(732\) − 28.3607i − 1.04824i
\(733\) − 5.47214i − 0.202118i −0.994880 0.101059i \(-0.967777\pi\)
0.994880 0.101059i \(-0.0322231\pi\)
\(734\) 11.1246 0.410617
\(735\) 0 0
\(736\) 43.3050 1.59624
\(737\) − 16.0000i − 0.589368i
\(738\) 6.36881i 0.234439i
\(739\) 16.1803 0.595203 0.297602 0.954690i \(-0.403813\pi\)
0.297602 + 0.954690i \(0.403813\pi\)
\(740\) 0 0
\(741\) 3.41641 0.125505
\(742\) 4.00000i 0.146845i
\(743\) 27.8197i 1.02060i 0.859995 + 0.510302i \(0.170466\pi\)
−0.859995 + 0.510302i \(0.829534\pi\)
\(744\) −2.76393 −0.101331
\(745\) 0 0
\(746\) −11.7426 −0.429929
\(747\) 4.33437i 0.158586i
\(748\) − 16.9443i − 0.619544i
\(749\) 43.3607 1.58436
\(750\) 0 0
\(751\) 45.5410 1.66182 0.830908 0.556410i \(-0.187822\pi\)
0.830908 + 0.556410i \(0.187822\pi\)
\(752\) 12.0000i 0.437595i
\(753\) − 29.8885i − 1.08920i
\(754\) 5.52786 0.201313
\(755\) 0 0
\(756\) −37.8885 −1.37799
\(757\) 22.6525i 0.823318i 0.911338 + 0.411659i \(0.135051\pi\)
−0.911338 + 0.411659i \(0.864949\pi\)
\(758\) 23.4164i 0.850522i
\(759\) 19.0557 0.691679
\(760\) 0 0
\(761\) 2.00000 0.0724999 0.0362500 0.999343i \(-0.488459\pi\)
0.0362500 + 0.999343i \(0.488459\pi\)
\(762\) 2.69505i 0.0976313i
\(763\) − 16.7082i − 0.604878i
\(764\) 5.14590 0.186172
\(765\) 0 0
\(766\) −7.34752 −0.265477
\(767\) 2.76393i 0.0997998i
\(768\) − 8.11146i − 0.292697i
\(769\) 2.63932 0.0951763 0.0475882 0.998867i \(-0.484846\pi\)
0.0475882 + 0.998867i \(0.484846\pi\)
\(770\) 0 0
\(771\) −19.7082 −0.709774
\(772\) − 8.85410i − 0.318666i
\(773\) 29.1246i 1.04754i 0.851860 + 0.523770i \(0.175475\pi\)
−0.851860 + 0.523770i \(0.824525\pi\)
\(774\) 2.94427 0.105830
\(775\) 0 0
\(776\) 4.34752 0.156067
\(777\) − 10.4721i − 0.375686i
\(778\) − 11.0557i − 0.396367i
\(779\) −15.6525 −0.560808
\(780\) 0 0
\(781\) 26.3607 0.943259
\(782\) − 24.9443i − 0.892005i
\(783\) − 40.0000i − 1.42948i
\(784\) −20.2918 −0.724707
\(785\) 0 0
\(786\) −9.16718 −0.326983
\(787\) − 38.6525i − 1.37781i −0.724851 0.688906i \(-0.758091\pi\)
0.724851 0.688906i \(-0.241909\pi\)
\(788\) 24.9443i 0.888603i
\(789\) 23.1935 0.825710
\(790\) 0 0
\(791\) 23.1803 0.824198
\(792\) 6.58359i 0.233938i
\(793\) − 17.5279i − 0.622433i
\(794\) −4.32624 −0.153532
\(795\) 0 0
\(796\) 1.70820 0.0605457
\(797\) 28.5836i 1.01248i 0.862392 + 0.506241i \(0.168966\pi\)
−0.862392 + 0.506241i \(0.831034\pi\)
\(798\) 7.23607i 0.256154i
\(799\) 33.8885 1.19889
\(800\) 0 0
\(801\) 2.51471 0.0888529
\(802\) 9.77709i 0.345241i
\(803\) − 0.944272i − 0.0333226i
\(804\) 16.0000 0.564276
\(805\) 0 0
\(806\) −0.763932 −0.0269084
\(807\) 35.7771i 1.25941i
\(808\) − 6.70820i − 0.235994i
\(809\) 3.41641 0.120115 0.0600573 0.998195i \(-0.480872\pi\)
0.0600573 + 0.998195i \(0.480872\pi\)
\(810\) 0 0
\(811\) −28.0000 −0.983213 −0.491606 0.870817i \(-0.663590\pi\)
−0.491606 + 0.870817i \(0.663590\pi\)
\(812\) − 49.5967i − 1.74050i
\(813\) 10.1115i 0.354624i
\(814\) −2.47214 −0.0866483
\(815\) 0 0
\(816\) 12.0000 0.420084
\(817\) 7.23607i 0.253158i
\(818\) 16.1803i 0.565732i
\(819\) −7.70820 −0.269346
\(820\) 0 0
\(821\) −36.5410 −1.27529 −0.637645 0.770330i \(-0.720091\pi\)
−0.637645 + 0.770330i \(0.720091\pi\)
\(822\) 15.0557i 0.525129i
\(823\) − 27.7082i − 0.965847i −0.875662 0.482924i \(-0.839575\pi\)
0.875662 0.482924i \(-0.160425\pi\)
\(824\) −3.94427 −0.137405
\(825\) 0 0
\(826\) −5.85410 −0.203690
\(827\) − 48.6525i − 1.69181i −0.533332 0.845906i \(-0.679060\pi\)
0.533332 0.845906i \(-0.320940\pi\)
\(828\) − 18.3607i − 0.638078i
\(829\) 36.8328 1.27926 0.639628 0.768684i \(-0.279088\pi\)
0.639628 + 0.768684i \(0.279088\pi\)
\(830\) 0 0
\(831\) 23.0557 0.799794
\(832\) 0.291796i 0.0101162i
\(833\) 57.3050i 1.98550i
\(834\) −10.2492 −0.354902
\(835\) 0 0
\(836\) −7.23607 −0.250265
\(837\) 5.52786i 0.191071i
\(838\) − 18.6180i − 0.643149i
\(839\) −11.0557 −0.381686 −0.190843 0.981621i \(-0.561122\pi\)
−0.190843 + 0.981621i \(0.561122\pi\)
\(840\) 0 0
\(841\) 23.3607 0.805541
\(842\) − 9.49342i − 0.327165i
\(843\) 21.0132i 0.723732i
\(844\) 1.32624 0.0456510
\(845\) 0 0
\(846\) −5.88854 −0.202452
\(847\) − 29.6525i − 1.01887i
\(848\) − 2.83282i − 0.0972793i
\(849\) −27.0557 −0.928550
\(850\) 0 0
\(851\) 15.4164 0.528468
\(852\) 26.3607i 0.903102i
\(853\) 37.4164i 1.28111i 0.767911 + 0.640557i \(0.221296\pi\)
−0.767911 + 0.640557i \(0.778704\pi\)
\(854\) 37.1246 1.27038
\(855\) 0 0
\(856\) 22.8885 0.782314
\(857\) − 51.6656i − 1.76486i −0.470440 0.882432i \(-0.655905\pi\)
0.470440 0.882432i \(-0.344095\pi\)
\(858\) − 1.88854i − 0.0644738i
\(859\) −37.8885 −1.29274 −0.646370 0.763024i \(-0.723714\pi\)
−0.646370 + 0.763024i \(0.723714\pi\)
\(860\) 0 0
\(861\) −36.6525 −1.24911
\(862\) 7.41641i 0.252604i
\(863\) − 32.1803i − 1.09543i −0.836664 0.547716i \(-0.815498\pi\)
0.836664 0.547716i \(-0.184502\pi\)
\(864\) −31.0557 −1.05654
\(865\) 0 0
\(866\) 7.52786 0.255807
\(867\) − 12.8754i − 0.437271i
\(868\) 6.85410i 0.232643i
\(869\) −3.41641 −0.115894
\(870\) 0 0
\(871\) 9.88854 0.335061
\(872\) − 8.81966i − 0.298671i
\(873\) − 2.86223i − 0.0968719i
\(874\) −10.6525 −0.360325
\(875\) 0 0
\(876\) 0.944272 0.0319040
\(877\) 35.9443i 1.21375i 0.794797 + 0.606876i \(0.207578\pi\)
−0.794797 + 0.606876i \(0.792422\pi\)
\(878\) − 13.0902i − 0.441772i
\(879\) −10.4721 −0.353216
\(880\) 0 0
\(881\) 24.3607 0.820732 0.410366 0.911921i \(-0.365401\pi\)
0.410366 + 0.911921i \(0.365401\pi\)
\(882\) − 9.95743i − 0.335284i
\(883\) 39.7771i 1.33861i 0.742990 + 0.669303i \(0.233407\pi\)
−0.742990 + 0.669303i \(0.766593\pi\)
\(884\) 10.4721 0.352216
\(885\) 0 0
\(886\) −10.6869 −0.359034
\(887\) 31.0689i 1.04319i 0.853193 + 0.521596i \(0.174663\pi\)
−0.853193 + 0.521596i \(0.825337\pi\)
\(888\) − 5.52786i − 0.185503i
\(889\) 14.9443 0.501215
\(890\) 0 0
\(891\) −4.83282 −0.161905
\(892\) 6.47214i 0.216703i
\(893\) − 14.4721i − 0.484292i
\(894\) 7.63932 0.255497
\(895\) 0 0
\(896\) −48.2148 −1.61074
\(897\) 11.7771i 0.393226i
\(898\) − 19.3475i − 0.645635i
\(899\) −7.23607 −0.241336
\(900\) 0 0
\(901\) −8.00000 −0.266519
\(902\) 8.65248i 0.288096i
\(903\) 16.9443i 0.563870i
\(904\) 12.2361 0.406966
\(905\) 0 0
\(906\) −6.24922 −0.207617
\(907\) 19.7639i 0.656251i 0.944634 + 0.328125i \(0.106417\pi\)
−0.944634 + 0.328125i \(0.893583\pi\)
\(908\) − 4.00000i − 0.132745i
\(909\) −4.41641 −0.146483
\(910\) 0 0
\(911\) −4.18034 −0.138501 −0.0692504 0.997599i \(-0.522061\pi\)
−0.0692504 + 0.997599i \(0.522061\pi\)
\(912\) − 5.12461i − 0.169693i
\(913\) 5.88854i 0.194882i
\(914\) −12.9443 −0.428158
\(915\) 0 0
\(916\) −21.7082 −0.717259
\(917\) 50.8328i 1.67865i
\(918\) 17.8885i 0.590410i
\(919\) 5.52786 0.182347 0.0911737 0.995835i \(-0.470938\pi\)
0.0911737 + 0.995835i \(0.470938\pi\)
\(920\) 0 0
\(921\) −18.9017 −0.622832
\(922\) − 6.40325i − 0.210880i
\(923\) 16.2918i 0.536251i
\(924\) −16.9443 −0.557426
\(925\) 0 0
\(926\) 18.1803 0.597443
\(927\) 2.59675i 0.0852884i
\(928\) − 40.6525i − 1.33448i
\(929\) 20.0000 0.656179 0.328089 0.944647i \(-0.393595\pi\)
0.328089 + 0.944647i \(0.393595\pi\)
\(930\) 0 0
\(931\) 24.4721 0.802042
\(932\) 0.0901699i 0.00295361i
\(933\) − 8.42956i − 0.275972i
\(934\) −5.38197 −0.176103
\(935\) 0 0
\(936\) −4.06888 −0.132996
\(937\) − 26.9443i − 0.880231i −0.897941 0.440115i \(-0.854937\pi\)
0.897941 0.440115i \(-0.145063\pi\)
\(938\) 20.9443i 0.683855i
\(939\) −26.2492 −0.856611
\(940\) 0 0
\(941\) −38.0000 −1.23876 −0.619382 0.785090i \(-0.712617\pi\)
−0.619382 + 0.785090i \(0.712617\pi\)
\(942\) − 11.3738i − 0.370580i
\(943\) − 53.9574i − 1.75710i
\(944\) 4.14590 0.134937
\(945\) 0 0
\(946\) 4.00000 0.130051
\(947\) 30.9443i 1.00555i 0.864416 + 0.502777i \(0.167688\pi\)
−0.864416 + 0.502777i \(0.832312\pi\)
\(948\) − 3.41641i − 0.110960i
\(949\) 0.583592 0.0189442
\(950\) 0 0
\(951\) 27.1246 0.879576
\(952\) 49.5967i 1.60744i
\(953\) 32.2918i 1.04603i 0.852322 + 0.523017i \(0.175194\pi\)
−0.852322 + 0.523017i \(0.824806\pi\)
\(954\) 1.39010 0.0450060
\(955\) 0 0
\(956\) −2.76393 −0.0893920
\(957\) − 17.8885i − 0.578254i
\(958\) − 22.6869i − 0.732981i
\(959\) 83.4853 2.69588
\(960\) 0 0
\(961\) 1.00000 0.0322581
\(962\) − 1.52786i − 0.0492603i
\(963\) − 15.0689i − 0.485588i
\(964\) −49.1246 −1.58220
\(965\) 0 0
\(966\) −24.9443 −0.802569
\(967\) − 15.6393i − 0.502927i −0.967867 0.251463i \(-0.919088\pi\)
0.967867 0.251463i \(-0.0809118\pi\)
\(968\) − 15.6525i − 0.503090i
\(969\) −14.4721 −0.464912
\(970\) 0 0
\(971\) −28.0000 −0.898563 −0.449281 0.893390i \(-0.648320\pi\)
−0.449281 + 0.893390i \(0.648320\pi\)
\(972\) 22.0000i 0.705650i
\(973\) 56.8328i 1.82198i
\(974\) −9.12461 −0.292371
\(975\) 0 0
\(976\) −26.2918 −0.841580
\(977\) − 33.2492i − 1.06374i −0.846827 0.531868i \(-0.821490\pi\)
0.846827 0.531868i \(-0.178510\pi\)
\(978\) 2.06888i 0.0661556i
\(979\) 3.41641 0.109189
\(980\) 0 0
\(981\) −5.80650 −0.185387
\(982\) − 24.9443i − 0.796004i
\(983\) 48.4721i 1.54602i 0.634393 + 0.773011i \(0.281250\pi\)
−0.634393 + 0.773011i \(0.718750\pi\)
\(984\) −19.3475 −0.616777
\(985\) 0 0
\(986\) −23.4164 −0.745730
\(987\) − 33.8885i − 1.07868i
\(988\) − 4.47214i − 0.142278i
\(989\) −24.9443 −0.793182
\(990\) 0 0
\(991\) 50.5410 1.60549 0.802744 0.596324i \(-0.203372\pi\)
0.802744 + 0.596324i \(0.203372\pi\)
\(992\) 5.61803i 0.178373i
\(993\) 2.47214i 0.0784509i
\(994\) −34.5066 −1.09448
\(995\) 0 0
\(996\) −5.88854 −0.186586
\(997\) − 15.3607i − 0.486478i −0.969966 0.243239i \(-0.921790\pi\)
0.969966 0.243239i \(-0.0782099\pi\)
\(998\) 20.6525i 0.653743i
\(999\) −11.0557 −0.349788
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 775.2.b.d.249.3 4
5.2 odd 4 31.2.a.a.1.1 2
5.3 odd 4 775.2.a.d.1.2 2
5.4 even 2 inner 775.2.b.d.249.2 4
15.2 even 4 279.2.a.a.1.2 2
15.8 even 4 6975.2.a.y.1.1 2
20.7 even 4 496.2.a.i.1.1 2
35.27 even 4 1519.2.a.a.1.1 2
40.27 even 4 1984.2.a.n.1.2 2
40.37 odd 4 1984.2.a.r.1.1 2
55.32 even 4 3751.2.a.b.1.2 2
60.47 odd 4 4464.2.a.bf.1.2 2
65.12 odd 4 5239.2.a.f.1.2 2
85.67 odd 4 8959.2.a.b.1.1 2
155.2 odd 20 961.2.d.c.531.1 4
155.7 odd 60 961.2.g.h.235.1 8
155.12 even 60 961.2.g.d.547.1 8
155.17 even 60 961.2.g.e.816.1 8
155.22 even 60 961.2.g.e.732.1 8
155.27 even 20 961.2.d.g.388.1 4
155.37 even 12 961.2.c.c.439.1 4
155.42 even 60 961.2.g.e.338.1 8
155.47 odd 20 961.2.d.c.628.1 4
155.52 even 60 961.2.g.d.844.1 8
155.57 even 12 961.2.c.c.521.1 4
155.67 odd 12 961.2.c.e.521.1 4
155.72 odd 60 961.2.g.a.844.1 8
155.77 even 20 961.2.d.a.628.1 4
155.82 odd 60 961.2.g.h.338.1 8
155.87 odd 12 961.2.c.e.439.1 4
155.92 even 4 961.2.a.f.1.1 2
155.97 odd 20 961.2.d.d.388.1 4
155.102 odd 60 961.2.g.h.732.1 8
155.107 odd 60 961.2.g.h.816.1 8
155.112 odd 60 961.2.g.a.547.1 8
155.117 even 60 961.2.g.e.235.1 8
155.122 even 20 961.2.d.a.531.1 4
155.127 even 60 961.2.g.d.846.1 8
155.132 odd 20 961.2.d.d.374.1 4
155.137 even 60 961.2.g.d.448.1 8
155.142 odd 60 961.2.g.a.448.1 8
155.147 even 20 961.2.d.g.374.1 4
155.152 odd 60 961.2.g.a.846.1 8
465.92 odd 4 8649.2.a.c.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.a.a.1.1 2 5.2 odd 4
279.2.a.a.1.2 2 15.2 even 4
496.2.a.i.1.1 2 20.7 even 4
775.2.a.d.1.2 2 5.3 odd 4
775.2.b.d.249.2 4 5.4 even 2 inner
775.2.b.d.249.3 4 1.1 even 1 trivial
961.2.a.f.1.1 2 155.92 even 4
961.2.c.c.439.1 4 155.37 even 12
961.2.c.c.521.1 4 155.57 even 12
961.2.c.e.439.1 4 155.87 odd 12
961.2.c.e.521.1 4 155.67 odd 12
961.2.d.a.531.1 4 155.122 even 20
961.2.d.a.628.1 4 155.77 even 20
961.2.d.c.531.1 4 155.2 odd 20
961.2.d.c.628.1 4 155.47 odd 20
961.2.d.d.374.1 4 155.132 odd 20
961.2.d.d.388.1 4 155.97 odd 20
961.2.d.g.374.1 4 155.147 even 20
961.2.d.g.388.1 4 155.27 even 20
961.2.g.a.448.1 8 155.142 odd 60
961.2.g.a.547.1 8 155.112 odd 60
961.2.g.a.844.1 8 155.72 odd 60
961.2.g.a.846.1 8 155.152 odd 60
961.2.g.d.448.1 8 155.137 even 60
961.2.g.d.547.1 8 155.12 even 60
961.2.g.d.844.1 8 155.52 even 60
961.2.g.d.846.1 8 155.127 even 60
961.2.g.e.235.1 8 155.117 even 60
961.2.g.e.338.1 8 155.42 even 60
961.2.g.e.732.1 8 155.22 even 60
961.2.g.e.816.1 8 155.17 even 60
961.2.g.h.235.1 8 155.7 odd 60
961.2.g.h.338.1 8 155.82 odd 60
961.2.g.h.732.1 8 155.102 odd 60
961.2.g.h.816.1 8 155.107 odd 60
1519.2.a.a.1.1 2 35.27 even 4
1984.2.a.n.1.2 2 40.27 even 4
1984.2.a.r.1.1 2 40.37 odd 4
3751.2.a.b.1.2 2 55.32 even 4
4464.2.a.bf.1.2 2 60.47 odd 4
5239.2.a.f.1.2 2 65.12 odd 4
6975.2.a.y.1.1 2 15.8 even 4
8649.2.a.c.1.2 2 465.92 odd 4
8959.2.a.b.1.1 2 85.67 odd 4