Properties

Label 5239.2.a.f.1.2
Level $5239$
Weight $2$
Character 5239.1
Self dual yes
Analytic conductor $41.834$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5239,2,Mod(1,5239)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5239, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5239.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5239 = 13^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5239.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(41.8336256189\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 31)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-0.618034\) of defining polynomial
Character \(\chi\) \(=\) 5239.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.618034 q^{2} +1.23607 q^{3} -1.61803 q^{4} -1.00000 q^{5} +0.763932 q^{6} +4.23607 q^{7} -2.23607 q^{8} -1.47214 q^{9} -0.618034 q^{10} -2.00000 q^{11} -2.00000 q^{12} +2.61803 q^{14} -1.23607 q^{15} +1.85410 q^{16} +5.23607 q^{17} -0.909830 q^{18} -2.23607 q^{19} +1.61803 q^{20} +5.23607 q^{21} -1.23607 q^{22} -7.70820 q^{23} -2.76393 q^{24} -4.00000 q^{25} -5.52786 q^{27} -6.85410 q^{28} +7.23607 q^{29} -0.763932 q^{30} -1.00000 q^{31} +5.61803 q^{32} -2.47214 q^{33} +3.23607 q^{34} -4.23607 q^{35} +2.38197 q^{36} +2.00000 q^{37} -1.38197 q^{38} +2.23607 q^{40} -7.00000 q^{41} +3.23607 q^{42} -3.23607 q^{43} +3.23607 q^{44} +1.47214 q^{45} -4.76393 q^{46} +6.47214 q^{47} +2.29180 q^{48} +10.9443 q^{49} -2.47214 q^{50} +6.47214 q^{51} -1.52786 q^{53} -3.41641 q^{54} +2.00000 q^{55} -9.47214 q^{56} -2.76393 q^{57} +4.47214 q^{58} +2.23607 q^{59} +2.00000 q^{60} -14.1803 q^{61} -0.618034 q^{62} -6.23607 q^{63} -0.236068 q^{64} -1.52786 q^{66} -8.00000 q^{67} -8.47214 q^{68} -9.52786 q^{69} -2.61803 q^{70} -13.1803 q^{71} +3.29180 q^{72} +0.472136 q^{73} +1.23607 q^{74} -4.94427 q^{75} +3.61803 q^{76} -8.47214 q^{77} +1.70820 q^{79} -1.85410 q^{80} -2.41641 q^{81} -4.32624 q^{82} -2.94427 q^{83} -8.47214 q^{84} -5.23607 q^{85} -2.00000 q^{86} +8.94427 q^{87} +4.47214 q^{88} +1.70820 q^{89} +0.909830 q^{90} +12.4721 q^{92} -1.23607 q^{93} +4.00000 q^{94} +2.23607 q^{95} +6.94427 q^{96} -1.94427 q^{97} +6.76393 q^{98} +2.94427 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} - 2 q^{3} - q^{4} - 2 q^{5} + 6 q^{6} + 4 q^{7} + 6 q^{9} + q^{10} - 4 q^{11} - 4 q^{12} + 3 q^{14} + 2 q^{15} - 3 q^{16} + 6 q^{17} - 13 q^{18} + q^{20} + 6 q^{21} + 2 q^{22} - 2 q^{23}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.618034 0.437016 0.218508 0.975835i \(-0.429881\pi\)
0.218508 + 0.975835i \(0.429881\pi\)
\(3\) 1.23607 0.713644 0.356822 0.934172i \(-0.383860\pi\)
0.356822 + 0.934172i \(0.383860\pi\)
\(4\) −1.61803 −0.809017
\(5\) −1.00000 −0.447214 −0.223607 0.974679i \(-0.571783\pi\)
−0.223607 + 0.974679i \(0.571783\pi\)
\(6\) 0.763932 0.311874
\(7\) 4.23607 1.60108 0.800542 0.599277i \(-0.204545\pi\)
0.800542 + 0.599277i \(0.204545\pi\)
\(8\) −2.23607 −0.790569
\(9\) −1.47214 −0.490712
\(10\) −0.618034 −0.195440
\(11\) −2.00000 −0.603023 −0.301511 0.953463i \(-0.597491\pi\)
−0.301511 + 0.953463i \(0.597491\pi\)
\(12\) −2.00000 −0.577350
\(13\) 0 0
\(14\) 2.61803 0.699699
\(15\) −1.23607 −0.319151
\(16\) 1.85410 0.463525
\(17\) 5.23607 1.26993 0.634967 0.772540i \(-0.281014\pi\)
0.634967 + 0.772540i \(0.281014\pi\)
\(18\) −0.909830 −0.214449
\(19\) −2.23607 −0.512989 −0.256495 0.966546i \(-0.582568\pi\)
−0.256495 + 0.966546i \(0.582568\pi\)
\(20\) 1.61803 0.361803
\(21\) 5.23607 1.14260
\(22\) −1.23607 −0.263531
\(23\) −7.70820 −1.60727 −0.803636 0.595121i \(-0.797104\pi\)
−0.803636 + 0.595121i \(0.797104\pi\)
\(24\) −2.76393 −0.564185
\(25\) −4.00000 −0.800000
\(26\) 0 0
\(27\) −5.52786 −1.06384
\(28\) −6.85410 −1.29530
\(29\) 7.23607 1.34370 0.671852 0.740685i \(-0.265499\pi\)
0.671852 + 0.740685i \(0.265499\pi\)
\(30\) −0.763932 −0.139474
\(31\) −1.00000 −0.179605
\(32\) 5.61803 0.993137
\(33\) −2.47214 −0.430344
\(34\) 3.23607 0.554981
\(35\) −4.23607 −0.716026
\(36\) 2.38197 0.396994
\(37\) 2.00000 0.328798 0.164399 0.986394i \(-0.447432\pi\)
0.164399 + 0.986394i \(0.447432\pi\)
\(38\) −1.38197 −0.224184
\(39\) 0 0
\(40\) 2.23607 0.353553
\(41\) −7.00000 −1.09322 −0.546608 0.837389i \(-0.684081\pi\)
−0.546608 + 0.837389i \(0.684081\pi\)
\(42\) 3.23607 0.499336
\(43\) −3.23607 −0.493496 −0.246748 0.969080i \(-0.579362\pi\)
−0.246748 + 0.969080i \(0.579362\pi\)
\(44\) 3.23607 0.487856
\(45\) 1.47214 0.219453
\(46\) −4.76393 −0.702403
\(47\) 6.47214 0.944058 0.472029 0.881583i \(-0.343522\pi\)
0.472029 + 0.881583i \(0.343522\pi\)
\(48\) 2.29180 0.330792
\(49\) 10.9443 1.56347
\(50\) −2.47214 −0.349613
\(51\) 6.47214 0.906280
\(52\) 0 0
\(53\) −1.52786 −0.209868 −0.104934 0.994479i \(-0.533463\pi\)
−0.104934 + 0.994479i \(0.533463\pi\)
\(54\) −3.41641 −0.464914
\(55\) 2.00000 0.269680
\(56\) −9.47214 −1.26577
\(57\) −2.76393 −0.366092
\(58\) 4.47214 0.587220
\(59\) 2.23607 0.291111 0.145556 0.989350i \(-0.453503\pi\)
0.145556 + 0.989350i \(0.453503\pi\)
\(60\) 2.00000 0.258199
\(61\) −14.1803 −1.81561 −0.907803 0.419396i \(-0.862242\pi\)
−0.907803 + 0.419396i \(0.862242\pi\)
\(62\) −0.618034 −0.0784904
\(63\) −6.23607 −0.785671
\(64\) −0.236068 −0.0295085
\(65\) 0 0
\(66\) −1.52786 −0.188067
\(67\) −8.00000 −0.977356 −0.488678 0.872464i \(-0.662521\pi\)
−0.488678 + 0.872464i \(0.662521\pi\)
\(68\) −8.47214 −1.02740
\(69\) −9.52786 −1.14702
\(70\) −2.61803 −0.312915
\(71\) −13.1803 −1.56422 −0.782109 0.623141i \(-0.785856\pi\)
−0.782109 + 0.623141i \(0.785856\pi\)
\(72\) 3.29180 0.387942
\(73\) 0.472136 0.0552593 0.0276297 0.999618i \(-0.491204\pi\)
0.0276297 + 0.999618i \(0.491204\pi\)
\(74\) 1.23607 0.143690
\(75\) −4.94427 −0.570915
\(76\) 3.61803 0.415017
\(77\) −8.47214 −0.965489
\(78\) 0 0
\(79\) 1.70820 0.192188 0.0960940 0.995372i \(-0.469365\pi\)
0.0960940 + 0.995372i \(0.469365\pi\)
\(80\) −1.85410 −0.207295
\(81\) −2.41641 −0.268490
\(82\) −4.32624 −0.477753
\(83\) −2.94427 −0.323176 −0.161588 0.986858i \(-0.551662\pi\)
−0.161588 + 0.986858i \(0.551662\pi\)
\(84\) −8.47214 −0.924386
\(85\) −5.23607 −0.567931
\(86\) −2.00000 −0.215666
\(87\) 8.94427 0.958927
\(88\) 4.47214 0.476731
\(89\) 1.70820 0.181069 0.0905346 0.995893i \(-0.471142\pi\)
0.0905346 + 0.995893i \(0.471142\pi\)
\(90\) 0.909830 0.0959045
\(91\) 0 0
\(92\) 12.4721 1.30031
\(93\) −1.23607 −0.128174
\(94\) 4.00000 0.412568
\(95\) 2.23607 0.229416
\(96\) 6.94427 0.708747
\(97\) −1.94427 −0.197411 −0.0987055 0.995117i \(-0.531470\pi\)
−0.0987055 + 0.995117i \(0.531470\pi\)
\(98\) 6.76393 0.683260
\(99\) 2.94427 0.295910
\(100\) 6.47214 0.647214
\(101\) −3.00000 −0.298511 −0.149256 0.988799i \(-0.547688\pi\)
−0.149256 + 0.988799i \(0.547688\pi\)
\(102\) 4.00000 0.396059
\(103\) 1.76393 0.173805 0.0869027 0.996217i \(-0.472303\pi\)
0.0869027 + 0.996217i \(0.472303\pi\)
\(104\) 0 0
\(105\) −5.23607 −0.510988
\(106\) −0.944272 −0.0917158
\(107\) 10.2361 0.989558 0.494779 0.869019i \(-0.335249\pi\)
0.494779 + 0.869019i \(0.335249\pi\)
\(108\) 8.94427 0.860663
\(109\) −3.94427 −0.377793 −0.188896 0.981997i \(-0.560491\pi\)
−0.188896 + 0.981997i \(0.560491\pi\)
\(110\) 1.23607 0.117854
\(111\) 2.47214 0.234645
\(112\) 7.85410 0.742143
\(113\) −5.47214 −0.514775 −0.257388 0.966308i \(-0.582862\pi\)
−0.257388 + 0.966308i \(0.582862\pi\)
\(114\) −1.70820 −0.159988
\(115\) 7.70820 0.718794
\(116\) −11.7082 −1.08708
\(117\) 0 0
\(118\) 1.38197 0.127220
\(119\) 22.1803 2.03327
\(120\) 2.76393 0.252311
\(121\) −7.00000 −0.636364
\(122\) −8.76393 −0.793449
\(123\) −8.65248 −0.780167
\(124\) 1.61803 0.145304
\(125\) 9.00000 0.804984
\(126\) −3.85410 −0.343351
\(127\) 3.52786 0.313047 0.156524 0.987674i \(-0.449971\pi\)
0.156524 + 0.987674i \(0.449971\pi\)
\(128\) −11.3820 −1.00603
\(129\) −4.00000 −0.352180
\(130\) 0 0
\(131\) 12.0000 1.04844 0.524222 0.851581i \(-0.324356\pi\)
0.524222 + 0.851581i \(0.324356\pi\)
\(132\) 4.00000 0.348155
\(133\) −9.47214 −0.821338
\(134\) −4.94427 −0.427120
\(135\) 5.52786 0.475763
\(136\) −11.7082 −1.00397
\(137\) −19.7082 −1.68379 −0.841893 0.539645i \(-0.818559\pi\)
−0.841893 + 0.539645i \(0.818559\pi\)
\(138\) −5.88854 −0.501266
\(139\) −13.4164 −1.13796 −0.568982 0.822350i \(-0.692663\pi\)
−0.568982 + 0.822350i \(0.692663\pi\)
\(140\) 6.85410 0.579277
\(141\) 8.00000 0.673722
\(142\) −8.14590 −0.683589
\(143\) 0 0
\(144\) −2.72949 −0.227458
\(145\) −7.23607 −0.600923
\(146\) 0.291796 0.0241492
\(147\) 13.5279 1.11576
\(148\) −3.23607 −0.266003
\(149\) −10.0000 −0.819232 −0.409616 0.912258i \(-0.634337\pi\)
−0.409616 + 0.912258i \(0.634337\pi\)
\(150\) −3.05573 −0.249499
\(151\) −8.18034 −0.665707 −0.332853 0.942979i \(-0.608011\pi\)
−0.332853 + 0.942979i \(0.608011\pi\)
\(152\) 5.00000 0.405554
\(153\) −7.70820 −0.623171
\(154\) −5.23607 −0.421934
\(155\) 1.00000 0.0803219
\(156\) 0 0
\(157\) −14.8885 −1.18824 −0.594118 0.804378i \(-0.702499\pi\)
−0.594118 + 0.804378i \(0.702499\pi\)
\(158\) 1.05573 0.0839892
\(159\) −1.88854 −0.149771
\(160\) −5.61803 −0.444145
\(161\) −32.6525 −2.57338
\(162\) −1.49342 −0.117334
\(163\) 2.70820 0.212123 0.106061 0.994360i \(-0.466176\pi\)
0.106061 + 0.994360i \(0.466176\pi\)
\(164\) 11.3262 0.884431
\(165\) 2.47214 0.192456
\(166\) −1.81966 −0.141233
\(167\) −2.47214 −0.191300 −0.0956498 0.995415i \(-0.530493\pi\)
−0.0956498 + 0.995415i \(0.530493\pi\)
\(168\) −11.7082 −0.903308
\(169\) 0 0
\(170\) −3.23607 −0.248195
\(171\) 3.29180 0.251730
\(172\) 5.23607 0.399246
\(173\) −14.9443 −1.13619 −0.568096 0.822962i \(-0.692320\pi\)
−0.568096 + 0.822962i \(0.692320\pi\)
\(174\) 5.52786 0.419066
\(175\) −16.9443 −1.28087
\(176\) −3.70820 −0.279516
\(177\) 2.76393 0.207750
\(178\) 1.05573 0.0791302
\(179\) −11.7082 −0.875112 −0.437556 0.899191i \(-0.644156\pi\)
−0.437556 + 0.899191i \(0.644156\pi\)
\(180\) −2.38197 −0.177541
\(181\) 18.1803 1.35133 0.675667 0.737207i \(-0.263856\pi\)
0.675667 + 0.737207i \(0.263856\pi\)
\(182\) 0 0
\(183\) −17.5279 −1.29570
\(184\) 17.2361 1.27066
\(185\) −2.00000 −0.147043
\(186\) −0.763932 −0.0560142
\(187\) −10.4721 −0.765798
\(188\) −10.4721 −0.763759
\(189\) −23.4164 −1.70329
\(190\) 1.38197 0.100258
\(191\) 3.18034 0.230121 0.115061 0.993358i \(-0.463294\pi\)
0.115061 + 0.993358i \(0.463294\pi\)
\(192\) −0.291796 −0.0210586
\(193\) 5.47214 0.393893 0.196946 0.980414i \(-0.436897\pi\)
0.196946 + 0.980414i \(0.436897\pi\)
\(194\) −1.20163 −0.0862717
\(195\) 0 0
\(196\) −17.7082 −1.26487
\(197\) 15.4164 1.09837 0.549187 0.835700i \(-0.314938\pi\)
0.549187 + 0.835700i \(0.314938\pi\)
\(198\) 1.81966 0.129318
\(199\) −1.05573 −0.0748386 −0.0374193 0.999300i \(-0.511914\pi\)
−0.0374193 + 0.999300i \(0.511914\pi\)
\(200\) 8.94427 0.632456
\(201\) −9.88854 −0.697484
\(202\) −1.85410 −0.130454
\(203\) 30.6525 2.15138
\(204\) −10.4721 −0.733196
\(205\) 7.00000 0.488901
\(206\) 1.09017 0.0759557
\(207\) 11.3475 0.788707
\(208\) 0 0
\(209\) 4.47214 0.309344
\(210\) −3.23607 −0.223310
\(211\) 0.819660 0.0564277 0.0282139 0.999602i \(-0.491018\pi\)
0.0282139 + 0.999602i \(0.491018\pi\)
\(212\) 2.47214 0.169787
\(213\) −16.2918 −1.11630
\(214\) 6.32624 0.432453
\(215\) 3.23607 0.220698
\(216\) 12.3607 0.841038
\(217\) −4.23607 −0.287563
\(218\) −2.43769 −0.165101
\(219\) 0.583592 0.0394355
\(220\) −3.23607 −0.218176
\(221\) 0 0
\(222\) 1.52786 0.102544
\(223\) −4.00000 −0.267860 −0.133930 0.990991i \(-0.542760\pi\)
−0.133930 + 0.990991i \(0.542760\pi\)
\(224\) 23.7984 1.59010
\(225\) 5.88854 0.392570
\(226\) −3.38197 −0.224965
\(227\) −2.47214 −0.164081 −0.0820407 0.996629i \(-0.526144\pi\)
−0.0820407 + 0.996629i \(0.526144\pi\)
\(228\) 4.47214 0.296174
\(229\) −13.4164 −0.886581 −0.443291 0.896378i \(-0.646189\pi\)
−0.443291 + 0.896378i \(0.646189\pi\)
\(230\) 4.76393 0.314124
\(231\) −10.4721 −0.689016
\(232\) −16.1803 −1.06229
\(233\) 0.0557281 0.00365087 0.00182543 0.999998i \(-0.499419\pi\)
0.00182543 + 0.999998i \(0.499419\pi\)
\(234\) 0 0
\(235\) −6.47214 −0.422196
\(236\) −3.61803 −0.235514
\(237\) 2.11146 0.137154
\(238\) 13.7082 0.888571
\(239\) −1.70820 −0.110495 −0.0552473 0.998473i \(-0.517595\pi\)
−0.0552473 + 0.998473i \(0.517595\pi\)
\(240\) −2.29180 −0.147935
\(241\) 30.3607 1.95570 0.977852 0.209299i \(-0.0671183\pi\)
0.977852 + 0.209299i \(0.0671183\pi\)
\(242\) −4.32624 −0.278101
\(243\) 13.5967 0.872232
\(244\) 22.9443 1.46886
\(245\) −10.9443 −0.699204
\(246\) −5.34752 −0.340946
\(247\) 0 0
\(248\) 2.23607 0.141990
\(249\) −3.63932 −0.230633
\(250\) 5.56231 0.351791
\(251\) −24.1803 −1.52625 −0.763125 0.646251i \(-0.776336\pi\)
−0.763125 + 0.646251i \(0.776336\pi\)
\(252\) 10.0902 0.635621
\(253\) 15.4164 0.969221
\(254\) 2.18034 0.136807
\(255\) −6.47214 −0.405301
\(256\) −6.56231 −0.410144
\(257\) −15.9443 −0.994576 −0.497288 0.867585i \(-0.665671\pi\)
−0.497288 + 0.867585i \(0.665671\pi\)
\(258\) −2.47214 −0.153908
\(259\) 8.47214 0.526433
\(260\) 0 0
\(261\) −10.6525 −0.659372
\(262\) 7.41641 0.458187
\(263\) −18.7639 −1.15703 −0.578517 0.815670i \(-0.696368\pi\)
−0.578517 + 0.815670i \(0.696368\pi\)
\(264\) 5.52786 0.340217
\(265\) 1.52786 0.0938559
\(266\) −5.85410 −0.358938
\(267\) 2.11146 0.129219
\(268\) 12.9443 0.790697
\(269\) −28.9443 −1.76476 −0.882382 0.470534i \(-0.844061\pi\)
−0.882382 + 0.470534i \(0.844061\pi\)
\(270\) 3.41641 0.207916
\(271\) −8.18034 −0.496920 −0.248460 0.968642i \(-0.579924\pi\)
−0.248460 + 0.968642i \(0.579924\pi\)
\(272\) 9.70820 0.588646
\(273\) 0 0
\(274\) −12.1803 −0.735841
\(275\) 8.00000 0.482418
\(276\) 15.4164 0.927959
\(277\) 18.6525 1.12072 0.560359 0.828250i \(-0.310663\pi\)
0.560359 + 0.828250i \(0.310663\pi\)
\(278\) −8.29180 −0.497309
\(279\) 1.47214 0.0881345
\(280\) 9.47214 0.566068
\(281\) −17.0000 −1.01413 −0.507067 0.861906i \(-0.669271\pi\)
−0.507067 + 0.861906i \(0.669271\pi\)
\(282\) 4.94427 0.294427
\(283\) 21.8885 1.30114 0.650569 0.759447i \(-0.274530\pi\)
0.650569 + 0.759447i \(0.274530\pi\)
\(284\) 21.3262 1.26548
\(285\) 2.76393 0.163721
\(286\) 0 0
\(287\) −29.6525 −1.75033
\(288\) −8.27051 −0.487344
\(289\) 10.4164 0.612730
\(290\) −4.47214 −0.262613
\(291\) −2.40325 −0.140881
\(292\) −0.763932 −0.0447057
\(293\) −8.47214 −0.494947 −0.247474 0.968895i \(-0.579600\pi\)
−0.247474 + 0.968895i \(0.579600\pi\)
\(294\) 8.36068 0.487605
\(295\) −2.23607 −0.130189
\(296\) −4.47214 −0.259938
\(297\) 11.0557 0.641518
\(298\) −6.18034 −0.358017
\(299\) 0 0
\(300\) 8.00000 0.461880
\(301\) −13.7082 −0.790128
\(302\) −5.05573 −0.290924
\(303\) −3.70820 −0.213031
\(304\) −4.14590 −0.237784
\(305\) 14.1803 0.811964
\(306\) −4.76393 −0.272336
\(307\) 15.2918 0.872749 0.436374 0.899765i \(-0.356262\pi\)
0.436374 + 0.899765i \(0.356262\pi\)
\(308\) 13.7082 0.781097
\(309\) 2.18034 0.124035
\(310\) 0.618034 0.0351020
\(311\) −6.81966 −0.386707 −0.193354 0.981129i \(-0.561936\pi\)
−0.193354 + 0.981129i \(0.561936\pi\)
\(312\) 0 0
\(313\) 21.2361 1.20033 0.600167 0.799875i \(-0.295101\pi\)
0.600167 + 0.799875i \(0.295101\pi\)
\(314\) −9.20163 −0.519278
\(315\) 6.23607 0.351363
\(316\) −2.76393 −0.155483
\(317\) −21.9443 −1.23251 −0.616257 0.787545i \(-0.711352\pi\)
−0.616257 + 0.787545i \(0.711352\pi\)
\(318\) −1.16718 −0.0654524
\(319\) −14.4721 −0.810284
\(320\) 0.236068 0.0131966
\(321\) 12.6525 0.706192
\(322\) −20.1803 −1.12461
\(323\) −11.7082 −0.651462
\(324\) 3.90983 0.217213
\(325\) 0 0
\(326\) 1.67376 0.0927011
\(327\) −4.87539 −0.269610
\(328\) 15.6525 0.864263
\(329\) 27.4164 1.51152
\(330\) 1.52786 0.0841061
\(331\) −2.00000 −0.109930 −0.0549650 0.998488i \(-0.517505\pi\)
−0.0549650 + 0.998488i \(0.517505\pi\)
\(332\) 4.76393 0.261455
\(333\) −2.94427 −0.161345
\(334\) −1.52786 −0.0836010
\(335\) 8.00000 0.437087
\(336\) 9.70820 0.529626
\(337\) −19.2361 −1.04786 −0.523928 0.851763i \(-0.675534\pi\)
−0.523928 + 0.851763i \(0.675534\pi\)
\(338\) 0 0
\(339\) −6.76393 −0.367366
\(340\) 8.47214 0.459466
\(341\) 2.00000 0.108306
\(342\) 2.03444 0.110010
\(343\) 16.7082 0.902158
\(344\) 7.23607 0.390143
\(345\) 9.52786 0.512963
\(346\) −9.23607 −0.496534
\(347\) 1.81966 0.0976845 0.0488422 0.998807i \(-0.484447\pi\)
0.0488422 + 0.998807i \(0.484447\pi\)
\(348\) −14.4721 −0.775788
\(349\) −27.8885 −1.49284 −0.746420 0.665475i \(-0.768229\pi\)
−0.746420 + 0.665475i \(0.768229\pi\)
\(350\) −10.4721 −0.559759
\(351\) 0 0
\(352\) −11.2361 −0.598884
\(353\) 19.4164 1.03343 0.516716 0.856157i \(-0.327154\pi\)
0.516716 + 0.856157i \(0.327154\pi\)
\(354\) 1.70820 0.0907900
\(355\) 13.1803 0.699540
\(356\) −2.76393 −0.146488
\(357\) 27.4164 1.45103
\(358\) −7.23607 −0.382438
\(359\) −17.7639 −0.937544 −0.468772 0.883319i \(-0.655303\pi\)
−0.468772 + 0.883319i \(0.655303\pi\)
\(360\) −3.29180 −0.173493
\(361\) −14.0000 −0.736842
\(362\) 11.2361 0.590555
\(363\) −8.65248 −0.454137
\(364\) 0 0
\(365\) −0.472136 −0.0247127
\(366\) −10.8328 −0.566240
\(367\) 18.0000 0.939592 0.469796 0.882775i \(-0.344327\pi\)
0.469796 + 0.882775i \(0.344327\pi\)
\(368\) −14.2918 −0.745011
\(369\) 10.3050 0.536454
\(370\) −1.23607 −0.0642601
\(371\) −6.47214 −0.336017
\(372\) 2.00000 0.103695
\(373\) 19.0000 0.983783 0.491891 0.870657i \(-0.336306\pi\)
0.491891 + 0.870657i \(0.336306\pi\)
\(374\) −6.47214 −0.334666
\(375\) 11.1246 0.574472
\(376\) −14.4721 −0.746343
\(377\) 0 0
\(378\) −14.4721 −0.744366
\(379\) 37.8885 1.94620 0.973102 0.230375i \(-0.0739953\pi\)
0.973102 + 0.230375i \(0.0739953\pi\)
\(380\) −3.61803 −0.185601
\(381\) 4.36068 0.223404
\(382\) 1.96556 0.100567
\(383\) −11.8885 −0.607476 −0.303738 0.952756i \(-0.598235\pi\)
−0.303738 + 0.952756i \(0.598235\pi\)
\(384\) −14.0689 −0.717950
\(385\) 8.47214 0.431780
\(386\) 3.38197 0.172138
\(387\) 4.76393 0.242164
\(388\) 3.14590 0.159709
\(389\) 17.8885 0.906985 0.453493 0.891260i \(-0.350178\pi\)
0.453493 + 0.891260i \(0.350178\pi\)
\(390\) 0 0
\(391\) −40.3607 −2.04113
\(392\) −24.4721 −1.23603
\(393\) 14.8328 0.748217
\(394\) 9.52786 0.480007
\(395\) −1.70820 −0.0859491
\(396\) −4.76393 −0.239397
\(397\) 7.00000 0.351320 0.175660 0.984451i \(-0.443794\pi\)
0.175660 + 0.984451i \(0.443794\pi\)
\(398\) −0.652476 −0.0327057
\(399\) −11.7082 −0.586143
\(400\) −7.41641 −0.370820
\(401\) −15.8197 −0.789996 −0.394998 0.918682i \(-0.629255\pi\)
−0.394998 + 0.918682i \(0.629255\pi\)
\(402\) −6.11146 −0.304812
\(403\) 0 0
\(404\) 4.85410 0.241501
\(405\) 2.41641 0.120072
\(406\) 18.9443 0.940188
\(407\) −4.00000 −0.198273
\(408\) −14.4721 −0.716477
\(409\) 26.1803 1.29453 0.647267 0.762263i \(-0.275912\pi\)
0.647267 + 0.762263i \(0.275912\pi\)
\(410\) 4.32624 0.213658
\(411\) −24.3607 −1.20162
\(412\) −2.85410 −0.140612
\(413\) 9.47214 0.466093
\(414\) 7.01316 0.344678
\(415\) 2.94427 0.144529
\(416\) 0 0
\(417\) −16.5836 −0.812102
\(418\) 2.76393 0.135188
\(419\) 30.1246 1.47168 0.735842 0.677153i \(-0.236787\pi\)
0.735842 + 0.677153i \(0.236787\pi\)
\(420\) 8.47214 0.413398
\(421\) 15.3607 0.748634 0.374317 0.927301i \(-0.377877\pi\)
0.374317 + 0.927301i \(0.377877\pi\)
\(422\) 0.506578 0.0246598
\(423\) −9.52786 −0.463261
\(424\) 3.41641 0.165915
\(425\) −20.9443 −1.01595
\(426\) −10.0689 −0.487839
\(427\) −60.0689 −2.90694
\(428\) −16.5623 −0.800569
\(429\) 0 0
\(430\) 2.00000 0.0964486
\(431\) −12.0000 −0.578020 −0.289010 0.957326i \(-0.593326\pi\)
−0.289010 + 0.957326i \(0.593326\pi\)
\(432\) −10.2492 −0.493116
\(433\) −12.1803 −0.585350 −0.292675 0.956212i \(-0.594545\pi\)
−0.292675 + 0.956212i \(0.594545\pi\)
\(434\) −2.61803 −0.125670
\(435\) −8.94427 −0.428845
\(436\) 6.38197 0.305641
\(437\) 17.2361 0.824513
\(438\) 0.360680 0.0172339
\(439\) 21.1803 1.01088 0.505441 0.862861i \(-0.331330\pi\)
0.505441 + 0.862861i \(0.331330\pi\)
\(440\) −4.47214 −0.213201
\(441\) −16.1115 −0.767212
\(442\) 0 0
\(443\) 17.2918 0.821558 0.410779 0.911735i \(-0.365257\pi\)
0.410779 + 0.911735i \(0.365257\pi\)
\(444\) −4.00000 −0.189832
\(445\) −1.70820 −0.0809766
\(446\) −2.47214 −0.117059
\(447\) −12.3607 −0.584640
\(448\) −1.00000 −0.0472456
\(449\) −31.3050 −1.47737 −0.738686 0.674050i \(-0.764553\pi\)
−0.738686 + 0.674050i \(0.764553\pi\)
\(450\) 3.63932 0.171559
\(451\) 14.0000 0.659234
\(452\) 8.85410 0.416462
\(453\) −10.1115 −0.475078
\(454\) −1.52786 −0.0717062
\(455\) 0 0
\(456\) 6.18034 0.289421
\(457\) 20.9443 0.979732 0.489866 0.871798i \(-0.337046\pi\)
0.489866 + 0.871798i \(0.337046\pi\)
\(458\) −8.29180 −0.387450
\(459\) −28.9443 −1.35100
\(460\) −12.4721 −0.581516
\(461\) 10.3607 0.482545 0.241272 0.970457i \(-0.422435\pi\)
0.241272 + 0.970457i \(0.422435\pi\)
\(462\) −6.47214 −0.301111
\(463\) 29.4164 1.36710 0.683548 0.729905i \(-0.260436\pi\)
0.683548 + 0.729905i \(0.260436\pi\)
\(464\) 13.4164 0.622841
\(465\) 1.23607 0.0573213
\(466\) 0.0344419 0.00159549
\(467\) −8.70820 −0.402968 −0.201484 0.979492i \(-0.564576\pi\)
−0.201484 + 0.979492i \(0.564576\pi\)
\(468\) 0 0
\(469\) −33.8885 −1.56483
\(470\) −4.00000 −0.184506
\(471\) −18.4033 −0.847977
\(472\) −5.00000 −0.230144
\(473\) 6.47214 0.297589
\(474\) 1.30495 0.0599384
\(475\) 8.94427 0.410391
\(476\) −35.8885 −1.64495
\(477\) 2.24922 0.102985
\(478\) −1.05573 −0.0482879
\(479\) −36.7082 −1.67724 −0.838620 0.544716i \(-0.816637\pi\)
−0.838620 + 0.544716i \(0.816637\pi\)
\(480\) −6.94427 −0.316961
\(481\) 0 0
\(482\) 18.7639 0.854674
\(483\) −40.3607 −1.83647
\(484\) 11.3262 0.514829
\(485\) 1.94427 0.0882848
\(486\) 8.40325 0.381179
\(487\) 14.7639 0.669018 0.334509 0.942393i \(-0.391430\pi\)
0.334509 + 0.942393i \(0.391430\pi\)
\(488\) 31.7082 1.43536
\(489\) 3.34752 0.151380
\(490\) −6.76393 −0.305563
\(491\) −40.3607 −1.82145 −0.910726 0.413011i \(-0.864477\pi\)
−0.910726 + 0.413011i \(0.864477\pi\)
\(492\) 14.0000 0.631169
\(493\) 37.8885 1.70641
\(494\) 0 0
\(495\) −2.94427 −0.132335
\(496\) −1.85410 −0.0832516
\(497\) −55.8328 −2.50444
\(498\) −2.24922 −0.100790
\(499\) 33.4164 1.49592 0.747962 0.663742i \(-0.231033\pi\)
0.747962 + 0.663742i \(0.231033\pi\)
\(500\) −14.5623 −0.651246
\(501\) −3.05573 −0.136520
\(502\) −14.9443 −0.666995
\(503\) −1.65248 −0.0736803 −0.0368401 0.999321i \(-0.511729\pi\)
−0.0368401 + 0.999321i \(0.511729\pi\)
\(504\) 13.9443 0.621127
\(505\) 3.00000 0.133498
\(506\) 9.52786 0.423565
\(507\) 0 0
\(508\) −5.70820 −0.253261
\(509\) 19.5967 0.868611 0.434305 0.900766i \(-0.356994\pi\)
0.434305 + 0.900766i \(0.356994\pi\)
\(510\) −4.00000 −0.177123
\(511\) 2.00000 0.0884748
\(512\) 18.7082 0.826794
\(513\) 12.3607 0.545737
\(514\) −9.85410 −0.434646
\(515\) −1.76393 −0.0777281
\(516\) 6.47214 0.284920
\(517\) −12.9443 −0.569288
\(518\) 5.23607 0.230060
\(519\) −18.4721 −0.810837
\(520\) 0 0
\(521\) 2.00000 0.0876216 0.0438108 0.999040i \(-0.486050\pi\)
0.0438108 + 0.999040i \(0.486050\pi\)
\(522\) −6.58359 −0.288156
\(523\) −4.29180 −0.187667 −0.0938336 0.995588i \(-0.529912\pi\)
−0.0938336 + 0.995588i \(0.529912\pi\)
\(524\) −19.4164 −0.848210
\(525\) −20.9443 −0.914083
\(526\) −11.5967 −0.505642
\(527\) −5.23607 −0.228087
\(528\) −4.58359 −0.199475
\(529\) 36.4164 1.58332
\(530\) 0.944272 0.0410166
\(531\) −3.29180 −0.142852
\(532\) 15.3262 0.664477
\(533\) 0 0
\(534\) 1.30495 0.0564708
\(535\) −10.2361 −0.442544
\(536\) 17.8885 0.772667
\(537\) −14.4721 −0.624519
\(538\) −17.8885 −0.771230
\(539\) −21.8885 −0.942806
\(540\) −8.94427 −0.384900
\(541\) −19.3607 −0.832381 −0.416190 0.909278i \(-0.636635\pi\)
−0.416190 + 0.909278i \(0.636635\pi\)
\(542\) −5.05573 −0.217162
\(543\) 22.4721 0.964372
\(544\) 29.4164 1.26122
\(545\) 3.94427 0.168954
\(546\) 0 0
\(547\) 28.1246 1.20252 0.601261 0.799053i \(-0.294665\pi\)
0.601261 + 0.799053i \(0.294665\pi\)
\(548\) 31.8885 1.36221
\(549\) 20.8754 0.890940
\(550\) 4.94427 0.210824
\(551\) −16.1803 −0.689306
\(552\) 21.3050 0.906799
\(553\) 7.23607 0.307709
\(554\) 11.5279 0.489772
\(555\) −2.47214 −0.104936
\(556\) 21.7082 0.920633
\(557\) 12.0000 0.508456 0.254228 0.967144i \(-0.418179\pi\)
0.254228 + 0.967144i \(0.418179\pi\)
\(558\) 0.909830 0.0385162
\(559\) 0 0
\(560\) −7.85410 −0.331896
\(561\) −12.9443 −0.546508
\(562\) −10.5066 −0.443193
\(563\) −39.5410 −1.66646 −0.833228 0.552930i \(-0.813510\pi\)
−0.833228 + 0.552930i \(0.813510\pi\)
\(564\) −12.9443 −0.545052
\(565\) 5.47214 0.230214
\(566\) 13.5279 0.568619
\(567\) −10.2361 −0.429874
\(568\) 29.4721 1.23662
\(569\) 14.4721 0.606704 0.303352 0.952879i \(-0.401894\pi\)
0.303352 + 0.952879i \(0.401894\pi\)
\(570\) 1.70820 0.0715488
\(571\) 5.81966 0.243545 0.121773 0.992558i \(-0.461142\pi\)
0.121773 + 0.992558i \(0.461142\pi\)
\(572\) 0 0
\(573\) 3.93112 0.164225
\(574\) −18.3262 −0.764922
\(575\) 30.8328 1.28582
\(576\) 0.347524 0.0144802
\(577\) −24.8328 −1.03380 −0.516902 0.856045i \(-0.672915\pi\)
−0.516902 + 0.856045i \(0.672915\pi\)
\(578\) 6.43769 0.267773
\(579\) 6.76393 0.281099
\(580\) 11.7082 0.486157
\(581\) −12.4721 −0.517431
\(582\) −1.48529 −0.0615673
\(583\) 3.05573 0.126555
\(584\) −1.05573 −0.0436863
\(585\) 0 0
\(586\) −5.23607 −0.216300
\(587\) −2.47214 −0.102036 −0.0510180 0.998698i \(-0.516247\pi\)
−0.0510180 + 0.998698i \(0.516247\pi\)
\(588\) −21.8885 −0.902668
\(589\) 2.23607 0.0921356
\(590\) −1.38197 −0.0568946
\(591\) 19.0557 0.783848
\(592\) 3.70820 0.152406
\(593\) 15.4721 0.635364 0.317682 0.948197i \(-0.397095\pi\)
0.317682 + 0.948197i \(0.397095\pi\)
\(594\) 6.83282 0.280354
\(595\) −22.1803 −0.909305
\(596\) 16.1803 0.662773
\(597\) −1.30495 −0.0534081
\(598\) 0 0
\(599\) 34.5967 1.41358 0.706792 0.707421i \(-0.250141\pi\)
0.706792 + 0.707421i \(0.250141\pi\)
\(600\) 11.0557 0.451348
\(601\) −36.5410 −1.49054 −0.745270 0.666763i \(-0.767679\pi\)
−0.745270 + 0.666763i \(0.767679\pi\)
\(602\) −8.47214 −0.345298
\(603\) 11.7771 0.479600
\(604\) 13.2361 0.538568
\(605\) 7.00000 0.284590
\(606\) −2.29180 −0.0930979
\(607\) 13.5279 0.549079 0.274540 0.961576i \(-0.411475\pi\)
0.274540 + 0.961576i \(0.411475\pi\)
\(608\) −12.5623 −0.509469
\(609\) 37.8885 1.53532
\(610\) 8.76393 0.354841
\(611\) 0 0
\(612\) 12.4721 0.504156
\(613\) 8.11146 0.327619 0.163809 0.986492i \(-0.447622\pi\)
0.163809 + 0.986492i \(0.447622\pi\)
\(614\) 9.45085 0.381405
\(615\) 8.65248 0.348902
\(616\) 18.9443 0.763286
\(617\) −23.5279 −0.947196 −0.473598 0.880741i \(-0.657045\pi\)
−0.473598 + 0.880741i \(0.657045\pi\)
\(618\) 1.34752 0.0542054
\(619\) 16.1803 0.650343 0.325171 0.945655i \(-0.394578\pi\)
0.325171 + 0.945655i \(0.394578\pi\)
\(620\) −1.61803 −0.0649818
\(621\) 42.6099 1.70988
\(622\) −4.21478 −0.168997
\(623\) 7.23607 0.289907
\(624\) 0 0
\(625\) 11.0000 0.440000
\(626\) 13.1246 0.524565
\(627\) 5.52786 0.220762
\(628\) 24.0902 0.961302
\(629\) 10.4721 0.417551
\(630\) 3.85410 0.153551
\(631\) 10.3607 0.412452 0.206226 0.978504i \(-0.433882\pi\)
0.206226 + 0.978504i \(0.433882\pi\)
\(632\) −3.81966 −0.151938
\(633\) 1.01316 0.0402693
\(634\) −13.5623 −0.538628
\(635\) −3.52786 −0.139999
\(636\) 3.05573 0.121168
\(637\) 0 0
\(638\) −8.94427 −0.354107
\(639\) 19.4033 0.767581
\(640\) 11.3820 0.449912
\(641\) 12.0000 0.473972 0.236986 0.971513i \(-0.423841\pi\)
0.236986 + 0.971513i \(0.423841\pi\)
\(642\) 7.81966 0.308617
\(643\) −28.4721 −1.12283 −0.561416 0.827534i \(-0.689743\pi\)
−0.561416 + 0.827534i \(0.689743\pi\)
\(644\) 52.8328 2.08190
\(645\) 4.00000 0.157500
\(646\) −7.23607 −0.284699
\(647\) 16.9443 0.666148 0.333074 0.942901i \(-0.391914\pi\)
0.333074 + 0.942901i \(0.391914\pi\)
\(648\) 5.40325 0.212260
\(649\) −4.47214 −0.175547
\(650\) 0 0
\(651\) −5.23607 −0.205218
\(652\) −4.38197 −0.171611
\(653\) 15.3050 0.598929 0.299465 0.954107i \(-0.403192\pi\)
0.299465 + 0.954107i \(0.403192\pi\)
\(654\) −3.01316 −0.117824
\(655\) −12.0000 −0.468879
\(656\) −12.9787 −0.506734
\(657\) −0.695048 −0.0271164
\(658\) 16.9443 0.660556
\(659\) −5.65248 −0.220189 −0.110095 0.993921i \(-0.535115\pi\)
−0.110095 + 0.993921i \(0.535115\pi\)
\(660\) −4.00000 −0.155700
\(661\) 45.3607 1.76433 0.882163 0.470944i \(-0.156087\pi\)
0.882163 + 0.470944i \(0.156087\pi\)
\(662\) −1.23607 −0.0480411
\(663\) 0 0
\(664\) 6.58359 0.255493
\(665\) 9.47214 0.367314
\(666\) −1.81966 −0.0705104
\(667\) −55.7771 −2.15970
\(668\) 4.00000 0.154765
\(669\) −4.94427 −0.191157
\(670\) 4.94427 0.191014
\(671\) 28.3607 1.09485
\(672\) 29.4164 1.13476
\(673\) 47.0132 1.81222 0.906112 0.423038i \(-0.139036\pi\)
0.906112 + 0.423038i \(0.139036\pi\)
\(674\) −11.8885 −0.457930
\(675\) 22.1115 0.851070
\(676\) 0 0
\(677\) 42.7214 1.64192 0.820958 0.570989i \(-0.193440\pi\)
0.820958 + 0.570989i \(0.193440\pi\)
\(678\) −4.18034 −0.160545
\(679\) −8.23607 −0.316071
\(680\) 11.7082 0.448989
\(681\) −3.05573 −0.117096
\(682\) 1.23607 0.0473315
\(683\) 17.1803 0.657387 0.328694 0.944437i \(-0.393392\pi\)
0.328694 + 0.944437i \(0.393392\pi\)
\(684\) −5.32624 −0.203654
\(685\) 19.7082 0.753012
\(686\) 10.3262 0.394258
\(687\) −16.5836 −0.632704
\(688\) −6.00000 −0.228748
\(689\) 0 0
\(690\) 5.88854 0.224173
\(691\) 19.1803 0.729655 0.364827 0.931075i \(-0.381128\pi\)
0.364827 + 0.931075i \(0.381128\pi\)
\(692\) 24.1803 0.919199
\(693\) 12.4721 0.473777
\(694\) 1.12461 0.0426897
\(695\) 13.4164 0.508913
\(696\) −20.0000 −0.758098
\(697\) −36.6525 −1.38831
\(698\) −17.2361 −0.652395
\(699\) 0.0688837 0.00260542
\(700\) 27.4164 1.03624
\(701\) 7.00000 0.264386 0.132193 0.991224i \(-0.457798\pi\)
0.132193 + 0.991224i \(0.457798\pi\)
\(702\) 0 0
\(703\) −4.47214 −0.168670
\(704\) 0.472136 0.0177943
\(705\) −8.00000 −0.301297
\(706\) 12.0000 0.451626
\(707\) −12.7082 −0.477941
\(708\) −4.47214 −0.168073
\(709\) −34.4721 −1.29463 −0.647314 0.762223i \(-0.724108\pi\)
−0.647314 + 0.762223i \(0.724108\pi\)
\(710\) 8.14590 0.305710
\(711\) −2.51471 −0.0943089
\(712\) −3.81966 −0.143148
\(713\) 7.70820 0.288675
\(714\) 16.9443 0.634123
\(715\) 0 0
\(716\) 18.9443 0.707981
\(717\) −2.11146 −0.0788538
\(718\) −10.9787 −0.409722
\(719\) −36.1803 −1.34930 −0.674649 0.738138i \(-0.735705\pi\)
−0.674649 + 0.738138i \(0.735705\pi\)
\(720\) 2.72949 0.101722
\(721\) 7.47214 0.278277
\(722\) −8.65248 −0.322012
\(723\) 37.5279 1.39568
\(724\) −29.4164 −1.09325
\(725\) −28.9443 −1.07496
\(726\) −5.34752 −0.198465
\(727\) −39.7639 −1.47476 −0.737381 0.675477i \(-0.763938\pi\)
−0.737381 + 0.675477i \(0.763938\pi\)
\(728\) 0 0
\(729\) 24.0557 0.890953
\(730\) −0.291796 −0.0107999
\(731\) −16.9443 −0.626707
\(732\) 28.3607 1.04824
\(733\) 5.47214 0.202118 0.101059 0.994880i \(-0.467777\pi\)
0.101059 + 0.994880i \(0.467777\pi\)
\(734\) 11.1246 0.410617
\(735\) −13.5279 −0.498983
\(736\) −43.3050 −1.59624
\(737\) 16.0000 0.589368
\(738\) 6.36881 0.234439
\(739\) 16.1803 0.595203 0.297602 0.954690i \(-0.403813\pi\)
0.297602 + 0.954690i \(0.403813\pi\)
\(740\) 3.23607 0.118960
\(741\) 0 0
\(742\) −4.00000 −0.146845
\(743\) −27.8197 −1.02060 −0.510302 0.859995i \(-0.670466\pi\)
−0.510302 + 0.859995i \(0.670466\pi\)
\(744\) 2.76393 0.101331
\(745\) 10.0000 0.366372
\(746\) 11.7426 0.429929
\(747\) 4.33437 0.158586
\(748\) 16.9443 0.619544
\(749\) 43.3607 1.58436
\(750\) 6.87539 0.251054
\(751\) 45.5410 1.66182 0.830908 0.556410i \(-0.187822\pi\)
0.830908 + 0.556410i \(0.187822\pi\)
\(752\) 12.0000 0.437595
\(753\) −29.8885 −1.08920
\(754\) 0 0
\(755\) 8.18034 0.297713
\(756\) 37.8885 1.37799
\(757\) −22.6525 −0.823318 −0.411659 0.911338i \(-0.635051\pi\)
−0.411659 + 0.911338i \(0.635051\pi\)
\(758\) 23.4164 0.850522
\(759\) 19.0557 0.691679
\(760\) −5.00000 −0.181369
\(761\) −2.00000 −0.0724999 −0.0362500 0.999343i \(-0.511541\pi\)
−0.0362500 + 0.999343i \(0.511541\pi\)
\(762\) 2.69505 0.0976313
\(763\) −16.7082 −0.604878
\(764\) −5.14590 −0.186172
\(765\) 7.70820 0.278691
\(766\) −7.34752 −0.265477
\(767\) 0 0
\(768\) −8.11146 −0.292697
\(769\) 2.63932 0.0951763 0.0475882 0.998867i \(-0.484846\pi\)
0.0475882 + 0.998867i \(0.484846\pi\)
\(770\) 5.23607 0.188695
\(771\) −19.7082 −0.709774
\(772\) −8.85410 −0.318666
\(773\) −29.1246 −1.04754 −0.523770 0.851860i \(-0.675475\pi\)
−0.523770 + 0.851860i \(0.675475\pi\)
\(774\) 2.94427 0.105830
\(775\) 4.00000 0.143684
\(776\) 4.34752 0.156067
\(777\) 10.4721 0.375686
\(778\) 11.0557 0.396367
\(779\) 15.6525 0.560808
\(780\) 0 0
\(781\) 26.3607 0.943259
\(782\) −24.9443 −0.892005
\(783\) −40.0000 −1.42948
\(784\) 20.2918 0.724707
\(785\) 14.8885 0.531395
\(786\) 9.16718 0.326983
\(787\) −38.6525 −1.37781 −0.688906 0.724851i \(-0.741909\pi\)
−0.688906 + 0.724851i \(0.741909\pi\)
\(788\) −24.9443 −0.888603
\(789\) −23.1935 −0.825710
\(790\) −1.05573 −0.0375611
\(791\) −23.1803 −0.824198
\(792\) −6.58359 −0.233938
\(793\) 0 0
\(794\) 4.32624 0.153532
\(795\) 1.88854 0.0669797
\(796\) 1.70820 0.0605457
\(797\) −28.5836 −1.01248 −0.506241 0.862392i \(-0.668966\pi\)
−0.506241 + 0.862392i \(0.668966\pi\)
\(798\) −7.23607 −0.256154
\(799\) 33.8885 1.19889
\(800\) −22.4721 −0.794510
\(801\) −2.51471 −0.0888529
\(802\) −9.77709 −0.345241
\(803\) −0.944272 −0.0333226
\(804\) 16.0000 0.564276
\(805\) 32.6525 1.15085
\(806\) 0 0
\(807\) −35.7771 −1.25941
\(808\) 6.70820 0.235994
\(809\) −3.41641 −0.120115 −0.0600573 0.998195i \(-0.519128\pi\)
−0.0600573 + 0.998195i \(0.519128\pi\)
\(810\) 1.49342 0.0524735
\(811\) 28.0000 0.983213 0.491606 0.870817i \(-0.336410\pi\)
0.491606 + 0.870817i \(0.336410\pi\)
\(812\) −49.5967 −1.74050
\(813\) −10.1115 −0.354624
\(814\) −2.47214 −0.0866483
\(815\) −2.70820 −0.0948642
\(816\) 12.0000 0.420084
\(817\) 7.23607 0.253158
\(818\) 16.1803 0.565732
\(819\) 0 0
\(820\) −11.3262 −0.395529
\(821\) 36.5410 1.27529 0.637645 0.770330i \(-0.279909\pi\)
0.637645 + 0.770330i \(0.279909\pi\)
\(822\) −15.0557 −0.525129
\(823\) −27.7082 −0.965847 −0.482924 0.875662i \(-0.660425\pi\)
−0.482924 + 0.875662i \(0.660425\pi\)
\(824\) −3.94427 −0.137405
\(825\) 9.88854 0.344275
\(826\) 5.85410 0.203690
\(827\) −48.6525 −1.69181 −0.845906 0.533332i \(-0.820940\pi\)
−0.845906 + 0.533332i \(0.820940\pi\)
\(828\) −18.3607 −0.638078
\(829\) −36.8328 −1.27926 −0.639628 0.768684i \(-0.720912\pi\)
−0.639628 + 0.768684i \(0.720912\pi\)
\(830\) 1.81966 0.0631613
\(831\) 23.0557 0.799794
\(832\) 0 0
\(833\) 57.3050 1.98550
\(834\) −10.2492 −0.354902
\(835\) 2.47214 0.0855518
\(836\) −7.23607 −0.250265
\(837\) 5.52786 0.191071
\(838\) 18.6180 0.643149
\(839\) −11.0557 −0.381686 −0.190843 0.981621i \(-0.561122\pi\)
−0.190843 + 0.981621i \(0.561122\pi\)
\(840\) 11.7082 0.403971
\(841\) 23.3607 0.805541
\(842\) 9.49342 0.327165
\(843\) −21.0132 −0.723732
\(844\) −1.32624 −0.0456510
\(845\) 0 0
\(846\) −5.88854 −0.202452
\(847\) −29.6525 −1.01887
\(848\) −2.83282 −0.0972793
\(849\) 27.0557 0.928550
\(850\) −12.9443 −0.443985
\(851\) −15.4164 −0.528468
\(852\) 26.3607 0.903102
\(853\) −37.4164 −1.28111 −0.640557 0.767911i \(-0.721296\pi\)
−0.640557 + 0.767911i \(0.721296\pi\)
\(854\) −37.1246 −1.27038
\(855\) −3.29180 −0.112577
\(856\) −22.8885 −0.782314
\(857\) 51.6656 1.76486 0.882432 0.470440i \(-0.155905\pi\)
0.882432 + 0.470440i \(0.155905\pi\)
\(858\) 0 0
\(859\) 37.8885 1.29274 0.646370 0.763024i \(-0.276286\pi\)
0.646370 + 0.763024i \(0.276286\pi\)
\(860\) −5.23607 −0.178548
\(861\) −36.6525 −1.24911
\(862\) −7.41641 −0.252604
\(863\) 32.1803 1.09543 0.547716 0.836664i \(-0.315498\pi\)
0.547716 + 0.836664i \(0.315498\pi\)
\(864\) −31.0557 −1.05654
\(865\) 14.9443 0.508120
\(866\) −7.52786 −0.255807
\(867\) 12.8754 0.437271
\(868\) 6.85410 0.232643
\(869\) −3.41641 −0.115894
\(870\) −5.52786 −0.187412
\(871\) 0 0
\(872\) 8.81966 0.298671
\(873\) 2.86223 0.0968719
\(874\) 10.6525 0.360325
\(875\) 38.1246 1.28885
\(876\) −0.944272 −0.0319040
\(877\) 35.9443 1.21375 0.606876 0.794797i \(-0.292422\pi\)
0.606876 + 0.794797i \(0.292422\pi\)
\(878\) 13.0902 0.441772
\(879\) −10.4721 −0.353216
\(880\) 3.70820 0.125004
\(881\) 24.3607 0.820732 0.410366 0.911921i \(-0.365401\pi\)
0.410366 + 0.911921i \(0.365401\pi\)
\(882\) −9.95743 −0.335284
\(883\) 39.7771 1.33861 0.669303 0.742990i \(-0.266593\pi\)
0.669303 + 0.742990i \(0.266593\pi\)
\(884\) 0 0
\(885\) −2.76393 −0.0929086
\(886\) 10.6869 0.359034
\(887\) −31.0689 −1.04319 −0.521596 0.853193i \(-0.674663\pi\)
−0.521596 + 0.853193i \(0.674663\pi\)
\(888\) −5.52786 −0.185503
\(889\) 14.9443 0.501215
\(890\) −1.05573 −0.0353881
\(891\) 4.83282 0.161905
\(892\) 6.47214 0.216703
\(893\) −14.4721 −0.484292
\(894\) −7.63932 −0.255497
\(895\) 11.7082 0.391362
\(896\) −48.2148 −1.61074
\(897\) 0 0
\(898\) −19.3475 −0.645635
\(899\) −7.23607 −0.241336
\(900\) −9.52786 −0.317595
\(901\) −8.00000 −0.266519
\(902\) 8.65248 0.288096
\(903\) −16.9443 −0.563870
\(904\) 12.2361 0.406966
\(905\) −18.1803 −0.604335
\(906\) −6.24922 −0.207617
\(907\) −19.7639 −0.656251 −0.328125 0.944634i \(-0.606417\pi\)
−0.328125 + 0.944634i \(0.606417\pi\)
\(908\) 4.00000 0.132745
\(909\) 4.41641 0.146483
\(910\) 0 0
\(911\) −4.18034 −0.138501 −0.0692504 0.997599i \(-0.522061\pi\)
−0.0692504 + 0.997599i \(0.522061\pi\)
\(912\) −5.12461 −0.169693
\(913\) 5.88854 0.194882
\(914\) 12.9443 0.428158
\(915\) 17.5279 0.579453
\(916\) 21.7082 0.717259
\(917\) 50.8328 1.67865
\(918\) −17.8885 −0.590410
\(919\) −5.52786 −0.182347 −0.0911737 0.995835i \(-0.529062\pi\)
−0.0911737 + 0.995835i \(0.529062\pi\)
\(920\) −17.2361 −0.568256
\(921\) 18.9017 0.622832
\(922\) 6.40325 0.210880
\(923\) 0 0
\(924\) 16.9443 0.557426
\(925\) −8.00000 −0.263038
\(926\) 18.1803 0.597443
\(927\) −2.59675 −0.0852884
\(928\) 40.6525 1.33448
\(929\) 20.0000 0.656179 0.328089 0.944647i \(-0.393595\pi\)
0.328089 + 0.944647i \(0.393595\pi\)
\(930\) 0.763932 0.0250503
\(931\) −24.4721 −0.802042
\(932\) −0.0901699 −0.00295361
\(933\) −8.42956 −0.275972
\(934\) −5.38197 −0.176103
\(935\) 10.4721 0.342475
\(936\) 0 0
\(937\) 26.9443 0.880231 0.440115 0.897941i \(-0.354937\pi\)
0.440115 + 0.897941i \(0.354937\pi\)
\(938\) −20.9443 −0.683855
\(939\) 26.2492 0.856611
\(940\) 10.4721 0.341563
\(941\) 38.0000 1.23876 0.619382 0.785090i \(-0.287383\pi\)
0.619382 + 0.785090i \(0.287383\pi\)
\(942\) −11.3738 −0.370580
\(943\) 53.9574 1.75710
\(944\) 4.14590 0.134937
\(945\) 23.4164 0.761736
\(946\) 4.00000 0.130051
\(947\) 30.9443 1.00555 0.502777 0.864416i \(-0.332312\pi\)
0.502777 + 0.864416i \(0.332312\pi\)
\(948\) −3.41641 −0.110960
\(949\) 0 0
\(950\) 5.52786 0.179348
\(951\) −27.1246 −0.879576
\(952\) −49.5967 −1.60744
\(953\) 32.2918 1.04603 0.523017 0.852322i \(-0.324806\pi\)
0.523017 + 0.852322i \(0.324806\pi\)
\(954\) 1.39010 0.0450060
\(955\) −3.18034 −0.102913
\(956\) 2.76393 0.0893920
\(957\) −17.8885 −0.578254
\(958\) −22.6869 −0.732981
\(959\) −83.4853 −2.69588
\(960\) 0.291796 0.00941768
\(961\) 1.00000 0.0322581
\(962\) 0 0
\(963\) −15.0689 −0.485588
\(964\) −49.1246 −1.58220
\(965\) −5.47214 −0.176154
\(966\) −24.9443 −0.802569
\(967\) −15.6393 −0.502927 −0.251463 0.967867i \(-0.580912\pi\)
−0.251463 + 0.967867i \(0.580912\pi\)
\(968\) 15.6525 0.503090
\(969\) −14.4721 −0.464912
\(970\) 1.20163 0.0385819
\(971\) −28.0000 −0.898563 −0.449281 0.893390i \(-0.648320\pi\)
−0.449281 + 0.893390i \(0.648320\pi\)
\(972\) −22.0000 −0.705650
\(973\) −56.8328 −1.82198
\(974\) 9.12461 0.292371
\(975\) 0 0
\(976\) −26.2918 −0.841580
\(977\) −33.2492 −1.06374 −0.531868 0.846827i \(-0.678510\pi\)
−0.531868 + 0.846827i \(0.678510\pi\)
\(978\) 2.06888 0.0661556
\(979\) −3.41641 −0.109189
\(980\) 17.7082 0.565668
\(981\) 5.80650 0.185387
\(982\) −24.9443 −0.796004
\(983\) −48.4721 −1.54602 −0.773011 0.634393i \(-0.781250\pi\)
−0.773011 + 0.634393i \(0.781250\pi\)
\(984\) 19.3475 0.616777
\(985\) −15.4164 −0.491208
\(986\) 23.4164 0.745730
\(987\) 33.8885 1.07868
\(988\) 0 0
\(989\) 24.9443 0.793182
\(990\) −1.81966 −0.0578326
\(991\) 50.5410 1.60549 0.802744 0.596324i \(-0.203372\pi\)
0.802744 + 0.596324i \(0.203372\pi\)
\(992\) −5.61803 −0.178373
\(993\) −2.47214 −0.0784509
\(994\) −34.5066 −1.09448
\(995\) 1.05573 0.0334688
\(996\) 5.88854 0.186586
\(997\) 15.3607 0.486478 0.243239 0.969966i \(-0.421790\pi\)
0.243239 + 0.969966i \(0.421790\pi\)
\(998\) 20.6525 0.653743
\(999\) −11.0557 −0.349788
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5239.2.a.f.1.2 2
13.12 even 2 31.2.a.a.1.1 2
39.38 odd 2 279.2.a.a.1.2 2
52.51 odd 2 496.2.a.i.1.1 2
65.12 odd 4 775.2.b.d.249.2 4
65.38 odd 4 775.2.b.d.249.3 4
65.64 even 2 775.2.a.d.1.2 2
91.90 odd 2 1519.2.a.a.1.1 2
104.51 odd 2 1984.2.a.n.1.2 2
104.77 even 2 1984.2.a.r.1.1 2
143.142 odd 2 3751.2.a.b.1.2 2
156.155 even 2 4464.2.a.bf.1.2 2
195.194 odd 2 6975.2.a.y.1.1 2
221.220 even 2 8959.2.a.b.1.1 2
403.12 odd 30 961.2.g.d.547.1 8
403.25 even 6 961.2.c.e.439.1 4
403.38 even 30 961.2.g.h.235.1 8
403.51 even 30 961.2.g.h.338.1 8
403.64 even 10 961.2.d.c.531.1 4
403.77 odd 10 961.2.d.a.628.1 4
403.90 even 30 961.2.g.a.846.1 8
403.103 even 30 961.2.g.a.844.1 8
403.116 odd 10 961.2.d.g.374.1 4
403.129 even 6 961.2.c.e.521.1 4
403.142 even 30 961.2.g.a.448.1 8
403.168 odd 30 961.2.g.d.448.1 8
403.181 odd 6 961.2.c.c.521.1 4
403.194 even 10 961.2.d.d.374.1 4
403.207 odd 30 961.2.g.d.844.1 8
403.220 odd 30 961.2.g.d.846.1 8
403.233 even 10 961.2.d.c.628.1 4
403.246 odd 10 961.2.d.a.531.1 4
403.259 odd 30 961.2.g.e.338.1 8
403.272 odd 30 961.2.g.e.235.1 8
403.285 odd 6 961.2.c.c.439.1 4
403.298 even 30 961.2.g.a.547.1 8
403.324 even 30 961.2.g.h.816.1 8
403.337 odd 10 961.2.d.g.388.1 4
403.350 even 30 961.2.g.h.732.1 8
403.363 odd 30 961.2.g.e.732.1 8
403.376 even 10 961.2.d.d.388.1 4
403.389 odd 30 961.2.g.e.816.1 8
403.402 odd 2 961.2.a.f.1.1 2
1209.1208 even 2 8649.2.a.c.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.a.a.1.1 2 13.12 even 2
279.2.a.a.1.2 2 39.38 odd 2
496.2.a.i.1.1 2 52.51 odd 2
775.2.a.d.1.2 2 65.64 even 2
775.2.b.d.249.2 4 65.12 odd 4
775.2.b.d.249.3 4 65.38 odd 4
961.2.a.f.1.1 2 403.402 odd 2
961.2.c.c.439.1 4 403.285 odd 6
961.2.c.c.521.1 4 403.181 odd 6
961.2.c.e.439.1 4 403.25 even 6
961.2.c.e.521.1 4 403.129 even 6
961.2.d.a.531.1 4 403.246 odd 10
961.2.d.a.628.1 4 403.77 odd 10
961.2.d.c.531.1 4 403.64 even 10
961.2.d.c.628.1 4 403.233 even 10
961.2.d.d.374.1 4 403.194 even 10
961.2.d.d.388.1 4 403.376 even 10
961.2.d.g.374.1 4 403.116 odd 10
961.2.d.g.388.1 4 403.337 odd 10
961.2.g.a.448.1 8 403.142 even 30
961.2.g.a.547.1 8 403.298 even 30
961.2.g.a.844.1 8 403.103 even 30
961.2.g.a.846.1 8 403.90 even 30
961.2.g.d.448.1 8 403.168 odd 30
961.2.g.d.547.1 8 403.12 odd 30
961.2.g.d.844.1 8 403.207 odd 30
961.2.g.d.846.1 8 403.220 odd 30
961.2.g.e.235.1 8 403.272 odd 30
961.2.g.e.338.1 8 403.259 odd 30
961.2.g.e.732.1 8 403.363 odd 30
961.2.g.e.816.1 8 403.389 odd 30
961.2.g.h.235.1 8 403.38 even 30
961.2.g.h.338.1 8 403.51 even 30
961.2.g.h.732.1 8 403.350 even 30
961.2.g.h.816.1 8 403.324 even 30
1519.2.a.a.1.1 2 91.90 odd 2
1984.2.a.n.1.2 2 104.51 odd 2
1984.2.a.r.1.1 2 104.77 even 2
3751.2.a.b.1.2 2 143.142 odd 2
4464.2.a.bf.1.2 2 156.155 even 2
5239.2.a.f.1.2 2 1.1 even 1 trivial
6975.2.a.y.1.1 2 195.194 odd 2
8649.2.a.c.1.2 2 1209.1208 even 2
8959.2.a.b.1.1 2 221.220 even 2