Properties

Label 8959.2.a.b.1.1
Level $8959$
Weight $2$
Character 8959.1
Self dual yes
Analytic conductor $71.538$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8959,2,Mod(1,8959)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8959, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8959.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8959 = 17^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8959.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(71.5379751709\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 31)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-0.618034\) of defining polynomial
Character \(\chi\) \(=\) 8959.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.618034 q^{2} -1.23607 q^{3} -1.61803 q^{4} -1.00000 q^{5} +0.763932 q^{6} +4.23607 q^{7} +2.23607 q^{8} -1.47214 q^{9} +0.618034 q^{10} -2.00000 q^{11} +2.00000 q^{12} +1.23607 q^{13} -2.61803 q^{14} +1.23607 q^{15} +1.85410 q^{16} +0.909830 q^{18} +2.23607 q^{19} +1.61803 q^{20} -5.23607 q^{21} +1.23607 q^{22} +7.70820 q^{23} -2.76393 q^{24} -4.00000 q^{25} -0.763932 q^{26} +5.52786 q^{27} -6.85410 q^{28} -7.23607 q^{29} -0.763932 q^{30} -1.00000 q^{31} -5.61803 q^{32} +2.47214 q^{33} -4.23607 q^{35} +2.38197 q^{36} +2.00000 q^{37} -1.38197 q^{38} -1.52786 q^{39} -2.23607 q^{40} -7.00000 q^{41} +3.23607 q^{42} -3.23607 q^{43} +3.23607 q^{44} +1.47214 q^{45} -4.76393 q^{46} -6.47214 q^{47} -2.29180 q^{48} +10.9443 q^{49} +2.47214 q^{50} -2.00000 q^{52} -1.52786 q^{53} -3.41641 q^{54} +2.00000 q^{55} +9.47214 q^{56} -2.76393 q^{57} +4.47214 q^{58} -2.23607 q^{59} -2.00000 q^{60} +14.1803 q^{61} +0.618034 q^{62} -6.23607 q^{63} -0.236068 q^{64} -1.23607 q^{65} -1.52786 q^{66} +8.00000 q^{67} -9.52786 q^{69} +2.61803 q^{70} -13.1803 q^{71} -3.29180 q^{72} +0.472136 q^{73} -1.23607 q^{74} +4.94427 q^{75} -3.61803 q^{76} -8.47214 q^{77} +0.944272 q^{78} -1.70820 q^{79} -1.85410 q^{80} -2.41641 q^{81} +4.32624 q^{82} +2.94427 q^{83} +8.47214 q^{84} +2.00000 q^{86} +8.94427 q^{87} -4.47214 q^{88} -1.70820 q^{89} -0.909830 q^{90} +5.23607 q^{91} -12.4721 q^{92} +1.23607 q^{93} +4.00000 q^{94} -2.23607 q^{95} +6.94427 q^{96} -1.94427 q^{97} -6.76393 q^{98} +2.94427 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} + 2 q^{3} - q^{4} - 2 q^{5} + 6 q^{6} + 4 q^{7} + 6 q^{9} - q^{10} - 4 q^{11} + 4 q^{12} - 2 q^{13} - 3 q^{14} - 2 q^{15} - 3 q^{16} + 13 q^{18} + q^{20} - 6 q^{21} - 2 q^{22} + 2 q^{23}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.618034 −0.437016 −0.218508 0.975835i \(-0.570119\pi\)
−0.218508 + 0.975835i \(0.570119\pi\)
\(3\) −1.23607 −0.713644 −0.356822 0.934172i \(-0.616140\pi\)
−0.356822 + 0.934172i \(0.616140\pi\)
\(4\) −1.61803 −0.809017
\(5\) −1.00000 −0.447214 −0.223607 0.974679i \(-0.571783\pi\)
−0.223607 + 0.974679i \(0.571783\pi\)
\(6\) 0.763932 0.311874
\(7\) 4.23607 1.60108 0.800542 0.599277i \(-0.204545\pi\)
0.800542 + 0.599277i \(0.204545\pi\)
\(8\) 2.23607 0.790569
\(9\) −1.47214 −0.490712
\(10\) 0.618034 0.195440
\(11\) −2.00000 −0.603023 −0.301511 0.953463i \(-0.597491\pi\)
−0.301511 + 0.953463i \(0.597491\pi\)
\(12\) 2.00000 0.577350
\(13\) 1.23607 0.342824 0.171412 0.985199i \(-0.445167\pi\)
0.171412 + 0.985199i \(0.445167\pi\)
\(14\) −2.61803 −0.699699
\(15\) 1.23607 0.319151
\(16\) 1.85410 0.463525
\(17\) 0 0
\(18\) 0.909830 0.214449
\(19\) 2.23607 0.512989 0.256495 0.966546i \(-0.417432\pi\)
0.256495 + 0.966546i \(0.417432\pi\)
\(20\) 1.61803 0.361803
\(21\) −5.23607 −1.14260
\(22\) 1.23607 0.263531
\(23\) 7.70820 1.60727 0.803636 0.595121i \(-0.202896\pi\)
0.803636 + 0.595121i \(0.202896\pi\)
\(24\) −2.76393 −0.564185
\(25\) −4.00000 −0.800000
\(26\) −0.763932 −0.149819
\(27\) 5.52786 1.06384
\(28\) −6.85410 −1.29530
\(29\) −7.23607 −1.34370 −0.671852 0.740685i \(-0.734501\pi\)
−0.671852 + 0.740685i \(0.734501\pi\)
\(30\) −0.763932 −0.139474
\(31\) −1.00000 −0.179605
\(32\) −5.61803 −0.993137
\(33\) 2.47214 0.430344
\(34\) 0 0
\(35\) −4.23607 −0.716026
\(36\) 2.38197 0.396994
\(37\) 2.00000 0.328798 0.164399 0.986394i \(-0.447432\pi\)
0.164399 + 0.986394i \(0.447432\pi\)
\(38\) −1.38197 −0.224184
\(39\) −1.52786 −0.244654
\(40\) −2.23607 −0.353553
\(41\) −7.00000 −1.09322 −0.546608 0.837389i \(-0.684081\pi\)
−0.546608 + 0.837389i \(0.684081\pi\)
\(42\) 3.23607 0.499336
\(43\) −3.23607 −0.493496 −0.246748 0.969080i \(-0.579362\pi\)
−0.246748 + 0.969080i \(0.579362\pi\)
\(44\) 3.23607 0.487856
\(45\) 1.47214 0.219453
\(46\) −4.76393 −0.702403
\(47\) −6.47214 −0.944058 −0.472029 0.881583i \(-0.656478\pi\)
−0.472029 + 0.881583i \(0.656478\pi\)
\(48\) −2.29180 −0.330792
\(49\) 10.9443 1.56347
\(50\) 2.47214 0.349613
\(51\) 0 0
\(52\) −2.00000 −0.277350
\(53\) −1.52786 −0.209868 −0.104934 0.994479i \(-0.533463\pi\)
−0.104934 + 0.994479i \(0.533463\pi\)
\(54\) −3.41641 −0.464914
\(55\) 2.00000 0.269680
\(56\) 9.47214 1.26577
\(57\) −2.76393 −0.366092
\(58\) 4.47214 0.587220
\(59\) −2.23607 −0.291111 −0.145556 0.989350i \(-0.546497\pi\)
−0.145556 + 0.989350i \(0.546497\pi\)
\(60\) −2.00000 −0.258199
\(61\) 14.1803 1.81561 0.907803 0.419396i \(-0.137758\pi\)
0.907803 + 0.419396i \(0.137758\pi\)
\(62\) 0.618034 0.0784904
\(63\) −6.23607 −0.785671
\(64\) −0.236068 −0.0295085
\(65\) −1.23607 −0.153315
\(66\) −1.52786 −0.188067
\(67\) 8.00000 0.977356 0.488678 0.872464i \(-0.337479\pi\)
0.488678 + 0.872464i \(0.337479\pi\)
\(68\) 0 0
\(69\) −9.52786 −1.14702
\(70\) 2.61803 0.312915
\(71\) −13.1803 −1.56422 −0.782109 0.623141i \(-0.785856\pi\)
−0.782109 + 0.623141i \(0.785856\pi\)
\(72\) −3.29180 −0.387942
\(73\) 0.472136 0.0552593 0.0276297 0.999618i \(-0.491204\pi\)
0.0276297 + 0.999618i \(0.491204\pi\)
\(74\) −1.23607 −0.143690
\(75\) 4.94427 0.570915
\(76\) −3.61803 −0.415017
\(77\) −8.47214 −0.965489
\(78\) 0.944272 0.106918
\(79\) −1.70820 −0.192188 −0.0960940 0.995372i \(-0.530635\pi\)
−0.0960940 + 0.995372i \(0.530635\pi\)
\(80\) −1.85410 −0.207295
\(81\) −2.41641 −0.268490
\(82\) 4.32624 0.477753
\(83\) 2.94427 0.323176 0.161588 0.986858i \(-0.448338\pi\)
0.161588 + 0.986858i \(0.448338\pi\)
\(84\) 8.47214 0.924386
\(85\) 0 0
\(86\) 2.00000 0.215666
\(87\) 8.94427 0.958927
\(88\) −4.47214 −0.476731
\(89\) −1.70820 −0.181069 −0.0905346 0.995893i \(-0.528858\pi\)
−0.0905346 + 0.995893i \(0.528858\pi\)
\(90\) −0.909830 −0.0959045
\(91\) 5.23607 0.548889
\(92\) −12.4721 −1.30031
\(93\) 1.23607 0.128174
\(94\) 4.00000 0.412568
\(95\) −2.23607 −0.229416
\(96\) 6.94427 0.708747
\(97\) −1.94427 −0.197411 −0.0987055 0.995117i \(-0.531470\pi\)
−0.0987055 + 0.995117i \(0.531470\pi\)
\(98\) −6.76393 −0.683260
\(99\) 2.94427 0.295910
\(100\) 6.47214 0.647214
\(101\) −3.00000 −0.298511 −0.149256 0.988799i \(-0.547688\pi\)
−0.149256 + 0.988799i \(0.547688\pi\)
\(102\) 0 0
\(103\) 1.76393 0.173805 0.0869027 0.996217i \(-0.472303\pi\)
0.0869027 + 0.996217i \(0.472303\pi\)
\(104\) 2.76393 0.271026
\(105\) 5.23607 0.510988
\(106\) 0.944272 0.0917158
\(107\) −10.2361 −0.989558 −0.494779 0.869019i \(-0.664751\pi\)
−0.494779 + 0.869019i \(0.664751\pi\)
\(108\) −8.94427 −0.860663
\(109\) −3.94427 −0.377793 −0.188896 0.981997i \(-0.560491\pi\)
−0.188896 + 0.981997i \(0.560491\pi\)
\(110\) −1.23607 −0.117854
\(111\) −2.47214 −0.234645
\(112\) 7.85410 0.742143
\(113\) 5.47214 0.514775 0.257388 0.966308i \(-0.417138\pi\)
0.257388 + 0.966308i \(0.417138\pi\)
\(114\) 1.70820 0.159988
\(115\) −7.70820 −0.718794
\(116\) 11.7082 1.08708
\(117\) −1.81966 −0.168228
\(118\) 1.38197 0.127220
\(119\) 0 0
\(120\) 2.76393 0.252311
\(121\) −7.00000 −0.636364
\(122\) −8.76393 −0.793449
\(123\) 8.65248 0.780167
\(124\) 1.61803 0.145304
\(125\) 9.00000 0.804984
\(126\) 3.85410 0.343351
\(127\) 3.52786 0.313047 0.156524 0.987674i \(-0.449971\pi\)
0.156524 + 0.987674i \(0.449971\pi\)
\(128\) 11.3820 1.00603
\(129\) 4.00000 0.352180
\(130\) 0.763932 0.0670013
\(131\) −12.0000 −1.04844 −0.524222 0.851581i \(-0.675644\pi\)
−0.524222 + 0.851581i \(0.675644\pi\)
\(132\) −4.00000 −0.348155
\(133\) 9.47214 0.821338
\(134\) −4.94427 −0.427120
\(135\) −5.52786 −0.475763
\(136\) 0 0
\(137\) 19.7082 1.68379 0.841893 0.539645i \(-0.181441\pi\)
0.841893 + 0.539645i \(0.181441\pi\)
\(138\) 5.88854 0.501266
\(139\) 13.4164 1.13796 0.568982 0.822350i \(-0.307337\pi\)
0.568982 + 0.822350i \(0.307337\pi\)
\(140\) 6.85410 0.579277
\(141\) 8.00000 0.673722
\(142\) 8.14590 0.683589
\(143\) −2.47214 −0.206730
\(144\) −2.72949 −0.227458
\(145\) 7.23607 0.600923
\(146\) −0.291796 −0.0241492
\(147\) −13.5279 −1.11576
\(148\) −3.23607 −0.266003
\(149\) 10.0000 0.819232 0.409616 0.912258i \(-0.365663\pi\)
0.409616 + 0.912258i \(0.365663\pi\)
\(150\) −3.05573 −0.249499
\(151\) 8.18034 0.665707 0.332853 0.942979i \(-0.391989\pi\)
0.332853 + 0.942979i \(0.391989\pi\)
\(152\) 5.00000 0.405554
\(153\) 0 0
\(154\) 5.23607 0.421934
\(155\) 1.00000 0.0803219
\(156\) 2.47214 0.197929
\(157\) −14.8885 −1.18824 −0.594118 0.804378i \(-0.702499\pi\)
−0.594118 + 0.804378i \(0.702499\pi\)
\(158\) 1.05573 0.0839892
\(159\) 1.88854 0.149771
\(160\) 5.61803 0.444145
\(161\) 32.6525 2.57338
\(162\) 1.49342 0.117334
\(163\) 2.70820 0.212123 0.106061 0.994360i \(-0.466176\pi\)
0.106061 + 0.994360i \(0.466176\pi\)
\(164\) 11.3262 0.884431
\(165\) −2.47214 −0.192456
\(166\) −1.81966 −0.141233
\(167\) −2.47214 −0.191300 −0.0956498 0.995415i \(-0.530493\pi\)
−0.0956498 + 0.995415i \(0.530493\pi\)
\(168\) −11.7082 −0.903308
\(169\) −11.4721 −0.882472
\(170\) 0 0
\(171\) −3.29180 −0.251730
\(172\) 5.23607 0.399246
\(173\) 14.9443 1.13619 0.568096 0.822962i \(-0.307680\pi\)
0.568096 + 0.822962i \(0.307680\pi\)
\(174\) −5.52786 −0.419066
\(175\) −16.9443 −1.28087
\(176\) −3.70820 −0.279516
\(177\) 2.76393 0.207750
\(178\) 1.05573 0.0791302
\(179\) −11.7082 −0.875112 −0.437556 0.899191i \(-0.644156\pi\)
−0.437556 + 0.899191i \(0.644156\pi\)
\(180\) −2.38197 −0.177541
\(181\) −18.1803 −1.35133 −0.675667 0.737207i \(-0.736144\pi\)
−0.675667 + 0.737207i \(0.736144\pi\)
\(182\) −3.23607 −0.239873
\(183\) −17.5279 −1.29570
\(184\) 17.2361 1.27066
\(185\) −2.00000 −0.147043
\(186\) −0.763932 −0.0560142
\(187\) 0 0
\(188\) 10.4721 0.763759
\(189\) 23.4164 1.70329
\(190\) 1.38197 0.100258
\(191\) 3.18034 0.230121 0.115061 0.993358i \(-0.463294\pi\)
0.115061 + 0.993358i \(0.463294\pi\)
\(192\) 0.291796 0.0210586
\(193\) 5.47214 0.393893 0.196946 0.980414i \(-0.436897\pi\)
0.196946 + 0.980414i \(0.436897\pi\)
\(194\) 1.20163 0.0862717
\(195\) 1.52786 0.109413
\(196\) −17.7082 −1.26487
\(197\) 15.4164 1.09837 0.549187 0.835700i \(-0.314938\pi\)
0.549187 + 0.835700i \(0.314938\pi\)
\(198\) −1.81966 −0.129318
\(199\) 1.05573 0.0748386 0.0374193 0.999300i \(-0.488086\pi\)
0.0374193 + 0.999300i \(0.488086\pi\)
\(200\) −8.94427 −0.632456
\(201\) −9.88854 −0.697484
\(202\) 1.85410 0.130454
\(203\) −30.6525 −2.15138
\(204\) 0 0
\(205\) 7.00000 0.488901
\(206\) −1.09017 −0.0759557
\(207\) −11.3475 −0.788707
\(208\) 2.29180 0.158907
\(209\) −4.47214 −0.309344
\(210\) −3.23607 −0.223310
\(211\) −0.819660 −0.0564277 −0.0282139 0.999602i \(-0.508982\pi\)
−0.0282139 + 0.999602i \(0.508982\pi\)
\(212\) 2.47214 0.169787
\(213\) 16.2918 1.11630
\(214\) 6.32624 0.432453
\(215\) 3.23607 0.220698
\(216\) 12.3607 0.841038
\(217\) −4.23607 −0.287563
\(218\) 2.43769 0.165101
\(219\) −0.583592 −0.0394355
\(220\) −3.23607 −0.218176
\(221\) 0 0
\(222\) 1.52786 0.102544
\(223\) 4.00000 0.267860 0.133930 0.990991i \(-0.457240\pi\)
0.133930 + 0.990991i \(0.457240\pi\)
\(224\) −23.7984 −1.59010
\(225\) 5.88854 0.392570
\(226\) −3.38197 −0.224965
\(227\) −2.47214 −0.164081 −0.0820407 0.996629i \(-0.526144\pi\)
−0.0820407 + 0.996629i \(0.526144\pi\)
\(228\) 4.47214 0.296174
\(229\) 13.4164 0.886581 0.443291 0.896378i \(-0.353811\pi\)
0.443291 + 0.896378i \(0.353811\pi\)
\(230\) 4.76393 0.314124
\(231\) 10.4721 0.689016
\(232\) −16.1803 −1.06229
\(233\) −0.0557281 −0.00365087 −0.00182543 0.999998i \(-0.500581\pi\)
−0.00182543 + 0.999998i \(0.500581\pi\)
\(234\) 1.12461 0.0735182
\(235\) 6.47214 0.422196
\(236\) 3.61803 0.235514
\(237\) 2.11146 0.137154
\(238\) 0 0
\(239\) 1.70820 0.110495 0.0552473 0.998473i \(-0.482405\pi\)
0.0552473 + 0.998473i \(0.482405\pi\)
\(240\) 2.29180 0.147935
\(241\) 30.3607 1.95570 0.977852 0.209299i \(-0.0671183\pi\)
0.977852 + 0.209299i \(0.0671183\pi\)
\(242\) 4.32624 0.278101
\(243\) −13.5967 −0.872232
\(244\) −22.9443 −1.46886
\(245\) −10.9443 −0.699204
\(246\) −5.34752 −0.340946
\(247\) 2.76393 0.175865
\(248\) −2.23607 −0.141990
\(249\) −3.63932 −0.230633
\(250\) −5.56231 −0.351791
\(251\) −24.1803 −1.52625 −0.763125 0.646251i \(-0.776336\pi\)
−0.763125 + 0.646251i \(0.776336\pi\)
\(252\) 10.0902 0.635621
\(253\) −15.4164 −0.969221
\(254\) −2.18034 −0.136807
\(255\) 0 0
\(256\) −6.56231 −0.410144
\(257\) −15.9443 −0.994576 −0.497288 0.867585i \(-0.665671\pi\)
−0.497288 + 0.867585i \(0.665671\pi\)
\(258\) −2.47214 −0.153908
\(259\) 8.47214 0.526433
\(260\) 2.00000 0.124035
\(261\) 10.6525 0.659372
\(262\) 7.41641 0.458187
\(263\) −18.7639 −1.15703 −0.578517 0.815670i \(-0.696368\pi\)
−0.578517 + 0.815670i \(0.696368\pi\)
\(264\) 5.52786 0.340217
\(265\) 1.52786 0.0938559
\(266\) −5.85410 −0.358938
\(267\) 2.11146 0.129219
\(268\) −12.9443 −0.790697
\(269\) 28.9443 1.76476 0.882382 0.470534i \(-0.155939\pi\)
0.882382 + 0.470534i \(0.155939\pi\)
\(270\) 3.41641 0.207916
\(271\) 8.18034 0.496920 0.248460 0.968642i \(-0.420076\pi\)
0.248460 + 0.968642i \(0.420076\pi\)
\(272\) 0 0
\(273\) −6.47214 −0.391711
\(274\) −12.1803 −0.735841
\(275\) 8.00000 0.482418
\(276\) 15.4164 0.927959
\(277\) −18.6525 −1.12072 −0.560359 0.828250i \(-0.689337\pi\)
−0.560359 + 0.828250i \(0.689337\pi\)
\(278\) −8.29180 −0.497309
\(279\) 1.47214 0.0881345
\(280\) −9.47214 −0.566068
\(281\) 17.0000 1.01413 0.507067 0.861906i \(-0.330729\pi\)
0.507067 + 0.861906i \(0.330729\pi\)
\(282\) −4.94427 −0.294427
\(283\) −21.8885 −1.30114 −0.650569 0.759447i \(-0.725470\pi\)
−0.650569 + 0.759447i \(0.725470\pi\)
\(284\) 21.3262 1.26548
\(285\) 2.76393 0.163721
\(286\) 1.52786 0.0903445
\(287\) −29.6525 −1.75033
\(288\) 8.27051 0.487344
\(289\) 0 0
\(290\) −4.47214 −0.262613
\(291\) 2.40325 0.140881
\(292\) −0.763932 −0.0447057
\(293\) 8.47214 0.494947 0.247474 0.968895i \(-0.420400\pi\)
0.247474 + 0.968895i \(0.420400\pi\)
\(294\) 8.36068 0.487605
\(295\) 2.23607 0.130189
\(296\) 4.47214 0.259938
\(297\) −11.0557 −0.641518
\(298\) −6.18034 −0.358017
\(299\) 9.52786 0.551011
\(300\) −8.00000 −0.461880
\(301\) −13.7082 −0.790128
\(302\) −5.05573 −0.290924
\(303\) 3.70820 0.213031
\(304\) 4.14590 0.237784
\(305\) −14.1803 −0.811964
\(306\) 0 0
\(307\) −15.2918 −0.872749 −0.436374 0.899765i \(-0.643738\pi\)
−0.436374 + 0.899765i \(0.643738\pi\)
\(308\) 13.7082 0.781097
\(309\) −2.18034 −0.124035
\(310\) −0.618034 −0.0351020
\(311\) 6.81966 0.386707 0.193354 0.981129i \(-0.438064\pi\)
0.193354 + 0.981129i \(0.438064\pi\)
\(312\) −3.41641 −0.193416
\(313\) −21.2361 −1.20033 −0.600167 0.799875i \(-0.704899\pi\)
−0.600167 + 0.799875i \(0.704899\pi\)
\(314\) 9.20163 0.519278
\(315\) 6.23607 0.351363
\(316\) 2.76393 0.155483
\(317\) −21.9443 −1.23251 −0.616257 0.787545i \(-0.711352\pi\)
−0.616257 + 0.787545i \(0.711352\pi\)
\(318\) −1.16718 −0.0654524
\(319\) 14.4721 0.810284
\(320\) 0.236068 0.0131966
\(321\) 12.6525 0.706192
\(322\) −20.1803 −1.12461
\(323\) 0 0
\(324\) 3.90983 0.217213
\(325\) −4.94427 −0.274259
\(326\) −1.67376 −0.0927011
\(327\) 4.87539 0.269610
\(328\) −15.6525 −0.864263
\(329\) −27.4164 −1.51152
\(330\) 1.52786 0.0841061
\(331\) 2.00000 0.109930 0.0549650 0.998488i \(-0.482495\pi\)
0.0549650 + 0.998488i \(0.482495\pi\)
\(332\) −4.76393 −0.261455
\(333\) −2.94427 −0.161345
\(334\) 1.52786 0.0836010
\(335\) −8.00000 −0.437087
\(336\) −9.70820 −0.529626
\(337\) 19.2361 1.04786 0.523928 0.851763i \(-0.324466\pi\)
0.523928 + 0.851763i \(0.324466\pi\)
\(338\) 7.09017 0.385654
\(339\) −6.76393 −0.367366
\(340\) 0 0
\(341\) 2.00000 0.108306
\(342\) 2.03444 0.110010
\(343\) 16.7082 0.902158
\(344\) −7.23607 −0.390143
\(345\) 9.52786 0.512963
\(346\) −9.23607 −0.496534
\(347\) −1.81966 −0.0976845 −0.0488422 0.998807i \(-0.515553\pi\)
−0.0488422 + 0.998807i \(0.515553\pi\)
\(348\) −14.4721 −0.775788
\(349\) 27.8885 1.49284 0.746420 0.665475i \(-0.231771\pi\)
0.746420 + 0.665475i \(0.231771\pi\)
\(350\) 10.4721 0.559759
\(351\) 6.83282 0.364709
\(352\) 11.2361 0.598884
\(353\) −19.4164 −1.03343 −0.516716 0.856157i \(-0.672846\pi\)
−0.516716 + 0.856157i \(0.672846\pi\)
\(354\) −1.70820 −0.0907900
\(355\) 13.1803 0.699540
\(356\) 2.76393 0.146488
\(357\) 0 0
\(358\) 7.23607 0.382438
\(359\) 17.7639 0.937544 0.468772 0.883319i \(-0.344697\pi\)
0.468772 + 0.883319i \(0.344697\pi\)
\(360\) 3.29180 0.173493
\(361\) −14.0000 −0.736842
\(362\) 11.2361 0.590555
\(363\) 8.65248 0.454137
\(364\) −8.47214 −0.444061
\(365\) −0.472136 −0.0247127
\(366\) 10.8328 0.566240
\(367\) −18.0000 −0.939592 −0.469796 0.882775i \(-0.655673\pi\)
−0.469796 + 0.882775i \(0.655673\pi\)
\(368\) 14.2918 0.745011
\(369\) 10.3050 0.536454
\(370\) 1.23607 0.0642601
\(371\) −6.47214 −0.336017
\(372\) −2.00000 −0.103695
\(373\) 19.0000 0.983783 0.491891 0.870657i \(-0.336306\pi\)
0.491891 + 0.870657i \(0.336306\pi\)
\(374\) 0 0
\(375\) −11.1246 −0.574472
\(376\) −14.4721 −0.746343
\(377\) −8.94427 −0.460653
\(378\) −14.4721 −0.744366
\(379\) 37.8885 1.94620 0.973102 0.230375i \(-0.0739953\pi\)
0.973102 + 0.230375i \(0.0739953\pi\)
\(380\) 3.61803 0.185601
\(381\) −4.36068 −0.223404
\(382\) −1.96556 −0.100567
\(383\) 11.8885 0.607476 0.303738 0.952756i \(-0.401765\pi\)
0.303738 + 0.952756i \(0.401765\pi\)
\(384\) −14.0689 −0.717950
\(385\) 8.47214 0.431780
\(386\) −3.38197 −0.172138
\(387\) 4.76393 0.242164
\(388\) 3.14590 0.159709
\(389\) 17.8885 0.906985 0.453493 0.891260i \(-0.350178\pi\)
0.453493 + 0.891260i \(0.350178\pi\)
\(390\) −0.944272 −0.0478151
\(391\) 0 0
\(392\) 24.4721 1.23603
\(393\) 14.8328 0.748217
\(394\) −9.52786 −0.480007
\(395\) 1.70820 0.0859491
\(396\) −4.76393 −0.239397
\(397\) 7.00000 0.351320 0.175660 0.984451i \(-0.443794\pi\)
0.175660 + 0.984451i \(0.443794\pi\)
\(398\) −0.652476 −0.0327057
\(399\) −11.7082 −0.586143
\(400\) −7.41641 −0.370820
\(401\) −15.8197 −0.789996 −0.394998 0.918682i \(-0.629255\pi\)
−0.394998 + 0.918682i \(0.629255\pi\)
\(402\) 6.11146 0.304812
\(403\) −1.23607 −0.0615729
\(404\) 4.85410 0.241501
\(405\) 2.41641 0.120072
\(406\) 18.9443 0.940188
\(407\) −4.00000 −0.198273
\(408\) 0 0
\(409\) −26.1803 −1.29453 −0.647267 0.762263i \(-0.724088\pi\)
−0.647267 + 0.762263i \(0.724088\pi\)
\(410\) −4.32624 −0.213658
\(411\) −24.3607 −1.20162
\(412\) −2.85410 −0.140612
\(413\) −9.47214 −0.466093
\(414\) 7.01316 0.344678
\(415\) −2.94427 −0.144529
\(416\) −6.94427 −0.340471
\(417\) −16.5836 −0.812102
\(418\) 2.76393 0.135188
\(419\) −30.1246 −1.47168 −0.735842 0.677153i \(-0.763213\pi\)
−0.735842 + 0.677153i \(0.763213\pi\)
\(420\) −8.47214 −0.413398
\(421\) −15.3607 −0.748634 −0.374317 0.927301i \(-0.622123\pi\)
−0.374317 + 0.927301i \(0.622123\pi\)
\(422\) 0.506578 0.0246598
\(423\) 9.52786 0.463261
\(424\) −3.41641 −0.165915
\(425\) 0 0
\(426\) −10.0689 −0.487839
\(427\) 60.0689 2.90694
\(428\) 16.5623 0.800569
\(429\) 3.05573 0.147532
\(430\) −2.00000 −0.0964486
\(431\) −12.0000 −0.578020 −0.289010 0.957326i \(-0.593326\pi\)
−0.289010 + 0.957326i \(0.593326\pi\)
\(432\) 10.2492 0.493116
\(433\) −12.1803 −0.585350 −0.292675 0.956212i \(-0.594545\pi\)
−0.292675 + 0.956212i \(0.594545\pi\)
\(434\) 2.61803 0.125670
\(435\) −8.94427 −0.428845
\(436\) 6.38197 0.305641
\(437\) 17.2361 0.824513
\(438\) 0.360680 0.0172339
\(439\) −21.1803 −1.01088 −0.505441 0.862861i \(-0.668670\pi\)
−0.505441 + 0.862861i \(0.668670\pi\)
\(440\) 4.47214 0.213201
\(441\) −16.1115 −0.767212
\(442\) 0 0
\(443\) 17.2918 0.821558 0.410779 0.911735i \(-0.365257\pi\)
0.410779 + 0.911735i \(0.365257\pi\)
\(444\) 4.00000 0.189832
\(445\) 1.70820 0.0809766
\(446\) −2.47214 −0.117059
\(447\) −12.3607 −0.584640
\(448\) −1.00000 −0.0472456
\(449\) −31.3050 −1.47737 −0.738686 0.674050i \(-0.764553\pi\)
−0.738686 + 0.674050i \(0.764553\pi\)
\(450\) −3.63932 −0.171559
\(451\) 14.0000 0.659234
\(452\) −8.85410 −0.416462
\(453\) −10.1115 −0.475078
\(454\) 1.52786 0.0717062
\(455\) −5.23607 −0.245471
\(456\) −6.18034 −0.289421
\(457\) −20.9443 −0.979732 −0.489866 0.871798i \(-0.662954\pi\)
−0.489866 + 0.871798i \(0.662954\pi\)
\(458\) −8.29180 −0.387450
\(459\) 0 0
\(460\) 12.4721 0.581516
\(461\) −10.3607 −0.482545 −0.241272 0.970457i \(-0.577565\pi\)
−0.241272 + 0.970457i \(0.577565\pi\)
\(462\) −6.47214 −0.301111
\(463\) −29.4164 −1.36710 −0.683548 0.729905i \(-0.739564\pi\)
−0.683548 + 0.729905i \(0.739564\pi\)
\(464\) −13.4164 −0.622841
\(465\) −1.23607 −0.0573213
\(466\) 0.0344419 0.00159549
\(467\) −8.70820 −0.402968 −0.201484 0.979492i \(-0.564576\pi\)
−0.201484 + 0.979492i \(0.564576\pi\)
\(468\) 2.94427 0.136099
\(469\) 33.8885 1.56483
\(470\) −4.00000 −0.184506
\(471\) 18.4033 0.847977
\(472\) −5.00000 −0.230144
\(473\) 6.47214 0.297589
\(474\) −1.30495 −0.0599384
\(475\) −8.94427 −0.410391
\(476\) 0 0
\(477\) 2.24922 0.102985
\(478\) −1.05573 −0.0482879
\(479\) −36.7082 −1.67724 −0.838620 0.544716i \(-0.816637\pi\)
−0.838620 + 0.544716i \(0.816637\pi\)
\(480\) −6.94427 −0.316961
\(481\) 2.47214 0.112720
\(482\) −18.7639 −0.854674
\(483\) −40.3607 −1.83647
\(484\) 11.3262 0.514829
\(485\) 1.94427 0.0882848
\(486\) 8.40325 0.381179
\(487\) 14.7639 0.669018 0.334509 0.942393i \(-0.391430\pi\)
0.334509 + 0.942393i \(0.391430\pi\)
\(488\) 31.7082 1.43536
\(489\) −3.34752 −0.151380
\(490\) 6.76393 0.305563
\(491\) −40.3607 −1.82145 −0.910726 0.413011i \(-0.864477\pi\)
−0.910726 + 0.413011i \(0.864477\pi\)
\(492\) −14.0000 −0.631169
\(493\) 0 0
\(494\) −1.70820 −0.0768557
\(495\) −2.94427 −0.132335
\(496\) −1.85410 −0.0832516
\(497\) −55.8328 −2.50444
\(498\) 2.24922 0.100790
\(499\) 33.4164 1.49592 0.747962 0.663742i \(-0.231033\pi\)
0.747962 + 0.663742i \(0.231033\pi\)
\(500\) −14.5623 −0.651246
\(501\) 3.05573 0.136520
\(502\) 14.9443 0.666995
\(503\) 1.65248 0.0736803 0.0368401 0.999321i \(-0.488271\pi\)
0.0368401 + 0.999321i \(0.488271\pi\)
\(504\) −13.9443 −0.621127
\(505\) 3.00000 0.133498
\(506\) 9.52786 0.423565
\(507\) 14.1803 0.629771
\(508\) −5.70820 −0.253261
\(509\) −19.5967 −0.868611 −0.434305 0.900766i \(-0.643006\pi\)
−0.434305 + 0.900766i \(0.643006\pi\)
\(510\) 0 0
\(511\) 2.00000 0.0884748
\(512\) −18.7082 −0.826794
\(513\) 12.3607 0.545737
\(514\) 9.85410 0.434646
\(515\) −1.76393 −0.0777281
\(516\) −6.47214 −0.284920
\(517\) 12.9443 0.569288
\(518\) −5.23607 −0.230060
\(519\) −18.4721 −0.810837
\(520\) −2.76393 −0.121206
\(521\) −2.00000 −0.0876216 −0.0438108 0.999040i \(-0.513950\pi\)
−0.0438108 + 0.999040i \(0.513950\pi\)
\(522\) −6.58359 −0.288156
\(523\) −4.29180 −0.187667 −0.0938336 0.995588i \(-0.529912\pi\)
−0.0938336 + 0.995588i \(0.529912\pi\)
\(524\) 19.4164 0.848210
\(525\) 20.9443 0.914083
\(526\) 11.5967 0.505642
\(527\) 0 0
\(528\) 4.58359 0.199475
\(529\) 36.4164 1.58332
\(530\) −0.944272 −0.0410166
\(531\) 3.29180 0.142852
\(532\) −15.3262 −0.664477
\(533\) −8.65248 −0.374780
\(534\) −1.30495 −0.0564708
\(535\) 10.2361 0.442544
\(536\) 17.8885 0.772667
\(537\) 14.4721 0.624519
\(538\) −17.8885 −0.771230
\(539\) −21.8885 −0.942806
\(540\) 8.94427 0.384900
\(541\) −19.3607 −0.832381 −0.416190 0.909278i \(-0.636635\pi\)
−0.416190 + 0.909278i \(0.636635\pi\)
\(542\) −5.05573 −0.217162
\(543\) 22.4721 0.964372
\(544\) 0 0
\(545\) 3.94427 0.168954
\(546\) 4.00000 0.171184
\(547\) −28.1246 −1.20252 −0.601261 0.799053i \(-0.705335\pi\)
−0.601261 + 0.799053i \(0.705335\pi\)
\(548\) −31.8885 −1.36221
\(549\) −20.8754 −0.890940
\(550\) −4.94427 −0.210824
\(551\) −16.1803 −0.689306
\(552\) −21.3050 −0.906799
\(553\) −7.23607 −0.307709
\(554\) 11.5279 0.489772
\(555\) 2.47214 0.104936
\(556\) −21.7082 −0.920633
\(557\) −12.0000 −0.508456 −0.254228 0.967144i \(-0.581821\pi\)
−0.254228 + 0.967144i \(0.581821\pi\)
\(558\) −0.909830 −0.0385162
\(559\) −4.00000 −0.169182
\(560\) −7.85410 −0.331896
\(561\) 0 0
\(562\) −10.5066 −0.443193
\(563\) −39.5410 −1.66646 −0.833228 0.552930i \(-0.813510\pi\)
−0.833228 + 0.552930i \(0.813510\pi\)
\(564\) −12.9443 −0.545052
\(565\) −5.47214 −0.230214
\(566\) 13.5279 0.568619
\(567\) −10.2361 −0.429874
\(568\) −29.4721 −1.23662
\(569\) 14.4721 0.606704 0.303352 0.952879i \(-0.401894\pi\)
0.303352 + 0.952879i \(0.401894\pi\)
\(570\) −1.70820 −0.0715488
\(571\) −5.81966 −0.243545 −0.121773 0.992558i \(-0.538858\pi\)
−0.121773 + 0.992558i \(0.538858\pi\)
\(572\) 4.00000 0.167248
\(573\) −3.93112 −0.164225
\(574\) 18.3262 0.764922
\(575\) −30.8328 −1.28582
\(576\) 0.347524 0.0144802
\(577\) 24.8328 1.03380 0.516902 0.856045i \(-0.327085\pi\)
0.516902 + 0.856045i \(0.327085\pi\)
\(578\) 0 0
\(579\) −6.76393 −0.281099
\(580\) −11.7082 −0.486157
\(581\) 12.4721 0.517431
\(582\) −1.48529 −0.0615673
\(583\) 3.05573 0.126555
\(584\) 1.05573 0.0436863
\(585\) 1.81966 0.0752337
\(586\) −5.23607 −0.216300
\(587\) 2.47214 0.102036 0.0510180 0.998698i \(-0.483753\pi\)
0.0510180 + 0.998698i \(0.483753\pi\)
\(588\) 21.8885 0.902668
\(589\) −2.23607 −0.0921356
\(590\) −1.38197 −0.0568946
\(591\) −19.0557 −0.783848
\(592\) 3.70820 0.152406
\(593\) −15.4721 −0.635364 −0.317682 0.948197i \(-0.602905\pi\)
−0.317682 + 0.948197i \(0.602905\pi\)
\(594\) 6.83282 0.280354
\(595\) 0 0
\(596\) −16.1803 −0.662773
\(597\) −1.30495 −0.0534081
\(598\) −5.88854 −0.240800
\(599\) 34.5967 1.41358 0.706792 0.707421i \(-0.250141\pi\)
0.706792 + 0.707421i \(0.250141\pi\)
\(600\) 11.0557 0.451348
\(601\) 36.5410 1.49054 0.745270 0.666763i \(-0.232321\pi\)
0.745270 + 0.666763i \(0.232321\pi\)
\(602\) 8.47214 0.345298
\(603\) −11.7771 −0.479600
\(604\) −13.2361 −0.538568
\(605\) 7.00000 0.284590
\(606\) −2.29180 −0.0930979
\(607\) −13.5279 −0.549079 −0.274540 0.961576i \(-0.588525\pi\)
−0.274540 + 0.961576i \(0.588525\pi\)
\(608\) −12.5623 −0.509469
\(609\) 37.8885 1.53532
\(610\) 8.76393 0.354841
\(611\) −8.00000 −0.323645
\(612\) 0 0
\(613\) −8.11146 −0.327619 −0.163809 0.986492i \(-0.552378\pi\)
−0.163809 + 0.986492i \(0.552378\pi\)
\(614\) 9.45085 0.381405
\(615\) −8.65248 −0.348902
\(616\) −18.9443 −0.763286
\(617\) −23.5279 −0.947196 −0.473598 0.880741i \(-0.657045\pi\)
−0.473598 + 0.880741i \(0.657045\pi\)
\(618\) 1.34752 0.0542054
\(619\) 16.1803 0.650343 0.325171 0.945655i \(-0.394578\pi\)
0.325171 + 0.945655i \(0.394578\pi\)
\(620\) −1.61803 −0.0649818
\(621\) 42.6099 1.70988
\(622\) −4.21478 −0.168997
\(623\) −7.23607 −0.289907
\(624\) −2.83282 −0.113403
\(625\) 11.0000 0.440000
\(626\) 13.1246 0.524565
\(627\) 5.52786 0.220762
\(628\) 24.0902 0.961302
\(629\) 0 0
\(630\) −3.85410 −0.153551
\(631\) −10.3607 −0.412452 −0.206226 0.978504i \(-0.566118\pi\)
−0.206226 + 0.978504i \(0.566118\pi\)
\(632\) −3.81966 −0.151938
\(633\) 1.01316 0.0402693
\(634\) 13.5623 0.538628
\(635\) −3.52786 −0.139999
\(636\) −3.05573 −0.121168
\(637\) 13.5279 0.535993
\(638\) −8.94427 −0.354107
\(639\) 19.4033 0.767581
\(640\) −11.3820 −0.449912
\(641\) −12.0000 −0.473972 −0.236986 0.971513i \(-0.576159\pi\)
−0.236986 + 0.971513i \(0.576159\pi\)
\(642\) −7.81966 −0.308617
\(643\) −28.4721 −1.12283 −0.561416 0.827534i \(-0.689743\pi\)
−0.561416 + 0.827534i \(0.689743\pi\)
\(644\) −52.8328 −2.08190
\(645\) −4.00000 −0.157500
\(646\) 0 0
\(647\) 16.9443 0.666148 0.333074 0.942901i \(-0.391914\pi\)
0.333074 + 0.942901i \(0.391914\pi\)
\(648\) −5.40325 −0.212260
\(649\) 4.47214 0.175547
\(650\) 3.05573 0.119856
\(651\) 5.23607 0.205218
\(652\) −4.38197 −0.171611
\(653\) −15.3050 −0.598929 −0.299465 0.954107i \(-0.596808\pi\)
−0.299465 + 0.954107i \(0.596808\pi\)
\(654\) −3.01316 −0.117824
\(655\) 12.0000 0.468879
\(656\) −12.9787 −0.506734
\(657\) −0.695048 −0.0271164
\(658\) 16.9443 0.660556
\(659\) −5.65248 −0.220189 −0.110095 0.993921i \(-0.535115\pi\)
−0.110095 + 0.993921i \(0.535115\pi\)
\(660\) 4.00000 0.155700
\(661\) −45.3607 −1.76433 −0.882163 0.470944i \(-0.843913\pi\)
−0.882163 + 0.470944i \(0.843913\pi\)
\(662\) −1.23607 −0.0480411
\(663\) 0 0
\(664\) 6.58359 0.255493
\(665\) −9.47214 −0.367314
\(666\) 1.81966 0.0705104
\(667\) −55.7771 −2.15970
\(668\) 4.00000 0.154765
\(669\) −4.94427 −0.191157
\(670\) 4.94427 0.191014
\(671\) −28.3607 −1.09485
\(672\) 29.4164 1.13476
\(673\) −47.0132 −1.81222 −0.906112 0.423038i \(-0.860964\pi\)
−0.906112 + 0.423038i \(0.860964\pi\)
\(674\) −11.8885 −0.457930
\(675\) −22.1115 −0.851070
\(676\) 18.5623 0.713935
\(677\) −42.7214 −1.64192 −0.820958 0.570989i \(-0.806560\pi\)
−0.820958 + 0.570989i \(0.806560\pi\)
\(678\) 4.18034 0.160545
\(679\) −8.23607 −0.316071
\(680\) 0 0
\(681\) 3.05573 0.117096
\(682\) −1.23607 −0.0473315
\(683\) 17.1803 0.657387 0.328694 0.944437i \(-0.393392\pi\)
0.328694 + 0.944437i \(0.393392\pi\)
\(684\) 5.32624 0.203654
\(685\) −19.7082 −0.753012
\(686\) −10.3262 −0.394258
\(687\) −16.5836 −0.632704
\(688\) −6.00000 −0.228748
\(689\) −1.88854 −0.0719478
\(690\) −5.88854 −0.224173
\(691\) 19.1803 0.729655 0.364827 0.931075i \(-0.381128\pi\)
0.364827 + 0.931075i \(0.381128\pi\)
\(692\) −24.1803 −0.919199
\(693\) 12.4721 0.473777
\(694\) 1.12461 0.0426897
\(695\) −13.4164 −0.508913
\(696\) 20.0000 0.758098
\(697\) 0 0
\(698\) −17.2361 −0.652395
\(699\) 0.0688837 0.00260542
\(700\) 27.4164 1.03624
\(701\) 7.00000 0.264386 0.132193 0.991224i \(-0.457798\pi\)
0.132193 + 0.991224i \(0.457798\pi\)
\(702\) −4.22291 −0.159384
\(703\) 4.47214 0.168670
\(704\) 0.472136 0.0177943
\(705\) −8.00000 −0.301297
\(706\) 12.0000 0.451626
\(707\) −12.7082 −0.477941
\(708\) −4.47214 −0.168073
\(709\) −34.4721 −1.29463 −0.647314 0.762223i \(-0.724108\pi\)
−0.647314 + 0.762223i \(0.724108\pi\)
\(710\) −8.14590 −0.305710
\(711\) 2.51471 0.0943089
\(712\) −3.81966 −0.143148
\(713\) −7.70820 −0.288675
\(714\) 0 0
\(715\) 2.47214 0.0924526
\(716\) 18.9443 0.707981
\(717\) −2.11146 −0.0788538
\(718\) −10.9787 −0.409722
\(719\) 36.1803 1.34930 0.674649 0.738138i \(-0.264295\pi\)
0.674649 + 0.738138i \(0.264295\pi\)
\(720\) 2.72949 0.101722
\(721\) 7.47214 0.278277
\(722\) 8.65248 0.322012
\(723\) −37.5279 −1.39568
\(724\) 29.4164 1.09325
\(725\) 28.9443 1.07496
\(726\) −5.34752 −0.198465
\(727\) −39.7639 −1.47476 −0.737381 0.675477i \(-0.763938\pi\)
−0.737381 + 0.675477i \(0.763938\pi\)
\(728\) 11.7082 0.433935
\(729\) 24.0557 0.890953
\(730\) 0.291796 0.0107999
\(731\) 0 0
\(732\) 28.3607 1.04824
\(733\) −5.47214 −0.202118 −0.101059 0.994880i \(-0.532223\pi\)
−0.101059 + 0.994880i \(0.532223\pi\)
\(734\) 11.1246 0.410617
\(735\) 13.5279 0.498983
\(736\) −43.3050 −1.59624
\(737\) −16.0000 −0.589368
\(738\) −6.36881 −0.234439
\(739\) −16.1803 −0.595203 −0.297602 0.954690i \(-0.596187\pi\)
−0.297602 + 0.954690i \(0.596187\pi\)
\(740\) 3.23607 0.118960
\(741\) −3.41641 −0.125505
\(742\) 4.00000 0.146845
\(743\) −27.8197 −1.02060 −0.510302 0.859995i \(-0.670466\pi\)
−0.510302 + 0.859995i \(0.670466\pi\)
\(744\) 2.76393 0.101331
\(745\) −10.0000 −0.366372
\(746\) −11.7426 −0.429929
\(747\) −4.33437 −0.158586
\(748\) 0 0
\(749\) −43.3607 −1.58436
\(750\) 6.87539 0.251054
\(751\) −45.5410 −1.66182 −0.830908 0.556410i \(-0.812178\pi\)
−0.830908 + 0.556410i \(0.812178\pi\)
\(752\) −12.0000 −0.437595
\(753\) 29.8885 1.08920
\(754\) 5.52786 0.201313
\(755\) −8.18034 −0.297713
\(756\) −37.8885 −1.37799
\(757\) −22.6525 −0.823318 −0.411659 0.911338i \(-0.635051\pi\)
−0.411659 + 0.911338i \(0.635051\pi\)
\(758\) −23.4164 −0.850522
\(759\) 19.0557 0.691679
\(760\) −5.00000 −0.181369
\(761\) 2.00000 0.0724999 0.0362500 0.999343i \(-0.488459\pi\)
0.0362500 + 0.999343i \(0.488459\pi\)
\(762\) 2.69505 0.0976313
\(763\) −16.7082 −0.604878
\(764\) −5.14590 −0.186172
\(765\) 0 0
\(766\) −7.34752 −0.265477
\(767\) −2.76393 −0.0997998
\(768\) 8.11146 0.292697
\(769\) −2.63932 −0.0951763 −0.0475882 0.998867i \(-0.515154\pi\)
−0.0475882 + 0.998867i \(0.515154\pi\)
\(770\) −5.23607 −0.188695
\(771\) 19.7082 0.709774
\(772\) −8.85410 −0.318666
\(773\) 29.1246 1.04754 0.523770 0.851860i \(-0.324525\pi\)
0.523770 + 0.851860i \(0.324525\pi\)
\(774\) −2.94427 −0.105830
\(775\) 4.00000 0.143684
\(776\) −4.34752 −0.156067
\(777\) −10.4721 −0.375686
\(778\) −11.0557 −0.396367
\(779\) −15.6525 −0.560808
\(780\) −2.47214 −0.0885167
\(781\) 26.3607 0.943259
\(782\) 0 0
\(783\) −40.0000 −1.42948
\(784\) 20.2918 0.724707
\(785\) 14.8885 0.531395
\(786\) −9.16718 −0.326983
\(787\) −38.6525 −1.37781 −0.688906 0.724851i \(-0.741909\pi\)
−0.688906 + 0.724851i \(0.741909\pi\)
\(788\) −24.9443 −0.888603
\(789\) 23.1935 0.825710
\(790\) −1.05573 −0.0375611
\(791\) 23.1803 0.824198
\(792\) 6.58359 0.233938
\(793\) 17.5279 0.622433
\(794\) −4.32624 −0.153532
\(795\) −1.88854 −0.0669797
\(796\) −1.70820 −0.0605457
\(797\) −28.5836 −1.01248 −0.506241 0.862392i \(-0.668966\pi\)
−0.506241 + 0.862392i \(0.668966\pi\)
\(798\) 7.23607 0.256154
\(799\) 0 0
\(800\) 22.4721 0.794510
\(801\) 2.51471 0.0888529
\(802\) 9.77709 0.345241
\(803\) −0.944272 −0.0333226
\(804\) 16.0000 0.564276
\(805\) −32.6525 −1.15085
\(806\) 0.763932 0.0269084
\(807\) −35.7771 −1.25941
\(808\) −6.70820 −0.235994
\(809\) 3.41641 0.120115 0.0600573 0.998195i \(-0.480872\pi\)
0.0600573 + 0.998195i \(0.480872\pi\)
\(810\) −1.49342 −0.0524735
\(811\) 28.0000 0.983213 0.491606 0.870817i \(-0.336410\pi\)
0.491606 + 0.870817i \(0.336410\pi\)
\(812\) 49.5967 1.74050
\(813\) −10.1115 −0.354624
\(814\) 2.47214 0.0866483
\(815\) −2.70820 −0.0948642
\(816\) 0 0
\(817\) −7.23607 −0.253158
\(818\) 16.1803 0.565732
\(819\) −7.70820 −0.269346
\(820\) −11.3262 −0.395529
\(821\) 36.5410 1.27529 0.637645 0.770330i \(-0.279909\pi\)
0.637645 + 0.770330i \(0.279909\pi\)
\(822\) 15.0557 0.525129
\(823\) 27.7082 0.965847 0.482924 0.875662i \(-0.339575\pi\)
0.482924 + 0.875662i \(0.339575\pi\)
\(824\) 3.94427 0.137405
\(825\) −9.88854 −0.344275
\(826\) 5.85410 0.203690
\(827\) −48.6525 −1.69181 −0.845906 0.533332i \(-0.820940\pi\)
−0.845906 + 0.533332i \(0.820940\pi\)
\(828\) 18.3607 0.638078
\(829\) −36.8328 −1.27926 −0.639628 0.768684i \(-0.720912\pi\)
−0.639628 + 0.768684i \(0.720912\pi\)
\(830\) 1.81966 0.0631613
\(831\) 23.0557 0.799794
\(832\) −0.291796 −0.0101162
\(833\) 0 0
\(834\) 10.2492 0.354902
\(835\) 2.47214 0.0855518
\(836\) 7.23607 0.250265
\(837\) −5.52786 −0.191071
\(838\) 18.6180 0.643149
\(839\) −11.0557 −0.381686 −0.190843 0.981621i \(-0.561122\pi\)
−0.190843 + 0.981621i \(0.561122\pi\)
\(840\) 11.7082 0.403971
\(841\) 23.3607 0.805541
\(842\) 9.49342 0.327165
\(843\) −21.0132 −0.723732
\(844\) 1.32624 0.0456510
\(845\) 11.4721 0.394653
\(846\) −5.88854 −0.202452
\(847\) −29.6525 −1.01887
\(848\) −2.83282 −0.0972793
\(849\) 27.0557 0.928550
\(850\) 0 0
\(851\) 15.4164 0.528468
\(852\) −26.3607 −0.903102
\(853\) −37.4164 −1.28111 −0.640557 0.767911i \(-0.721296\pi\)
−0.640557 + 0.767911i \(0.721296\pi\)
\(854\) −37.1246 −1.27038
\(855\) 3.29180 0.112577
\(856\) −22.8885 −0.782314
\(857\) −51.6656 −1.76486 −0.882432 0.470440i \(-0.844095\pi\)
−0.882432 + 0.470440i \(0.844095\pi\)
\(858\) −1.88854 −0.0644738
\(859\) 37.8885 1.29274 0.646370 0.763024i \(-0.276286\pi\)
0.646370 + 0.763024i \(0.276286\pi\)
\(860\) −5.23607 −0.178548
\(861\) 36.6525 1.24911
\(862\) 7.41641 0.252604
\(863\) −32.1803 −1.09543 −0.547716 0.836664i \(-0.684502\pi\)
−0.547716 + 0.836664i \(0.684502\pi\)
\(864\) −31.0557 −1.05654
\(865\) −14.9443 −0.508120
\(866\) 7.52786 0.255807
\(867\) 0 0
\(868\) 6.85410 0.232643
\(869\) 3.41641 0.115894
\(870\) 5.52786 0.187412
\(871\) 9.88854 0.335061
\(872\) −8.81966 −0.298671
\(873\) 2.86223 0.0968719
\(874\) −10.6525 −0.360325
\(875\) 38.1246 1.28885
\(876\) 0.944272 0.0319040
\(877\) 35.9443 1.21375 0.606876 0.794797i \(-0.292422\pi\)
0.606876 + 0.794797i \(0.292422\pi\)
\(878\) 13.0902 0.441772
\(879\) −10.4721 −0.353216
\(880\) 3.70820 0.125004
\(881\) −24.3607 −0.820732 −0.410366 0.911921i \(-0.634599\pi\)
−0.410366 + 0.911921i \(0.634599\pi\)
\(882\) 9.95743 0.335284
\(883\) 39.7771 1.33861 0.669303 0.742990i \(-0.266593\pi\)
0.669303 + 0.742990i \(0.266593\pi\)
\(884\) 0 0
\(885\) −2.76393 −0.0929086
\(886\) −10.6869 −0.359034
\(887\) 31.0689 1.04319 0.521596 0.853193i \(-0.325337\pi\)
0.521596 + 0.853193i \(0.325337\pi\)
\(888\) −5.52786 −0.185503
\(889\) 14.9443 0.501215
\(890\) −1.05573 −0.0353881
\(891\) 4.83282 0.161905
\(892\) −6.47214 −0.216703
\(893\) −14.4721 −0.484292
\(894\) 7.63932 0.255497
\(895\) 11.7082 0.391362
\(896\) 48.2148 1.61074
\(897\) −11.7771 −0.393226
\(898\) 19.3475 0.645635
\(899\) 7.23607 0.241336
\(900\) −9.52786 −0.317595
\(901\) 0 0
\(902\) −8.65248 −0.288096
\(903\) 16.9443 0.563870
\(904\) 12.2361 0.406966
\(905\) 18.1803 0.604335
\(906\) 6.24922 0.207617
\(907\) 19.7639 0.656251 0.328125 0.944634i \(-0.393583\pi\)
0.328125 + 0.944634i \(0.393583\pi\)
\(908\) 4.00000 0.132745
\(909\) 4.41641 0.146483
\(910\) 3.23607 0.107275
\(911\) 4.18034 0.138501 0.0692504 0.997599i \(-0.477939\pi\)
0.0692504 + 0.997599i \(0.477939\pi\)
\(912\) −5.12461 −0.169693
\(913\) −5.88854 −0.194882
\(914\) 12.9443 0.428158
\(915\) 17.5279 0.579453
\(916\) −21.7082 −0.717259
\(917\) −50.8328 −1.67865
\(918\) 0 0
\(919\) −5.52786 −0.182347 −0.0911737 0.995835i \(-0.529062\pi\)
−0.0911737 + 0.995835i \(0.529062\pi\)
\(920\) −17.2361 −0.568256
\(921\) 18.9017 0.622832
\(922\) 6.40325 0.210880
\(923\) −16.2918 −0.536251
\(924\) −16.9443 −0.557426
\(925\) −8.00000 −0.263038
\(926\) 18.1803 0.597443
\(927\) −2.59675 −0.0852884
\(928\) 40.6525 1.33448
\(929\) 20.0000 0.656179 0.328089 0.944647i \(-0.393595\pi\)
0.328089 + 0.944647i \(0.393595\pi\)
\(930\) 0.763932 0.0250503
\(931\) 24.4721 0.802042
\(932\) 0.0901699 0.00295361
\(933\) −8.42956 −0.275972
\(934\) 5.38197 0.176103
\(935\) 0 0
\(936\) −4.06888 −0.132996
\(937\) 26.9443 0.880231 0.440115 0.897941i \(-0.354937\pi\)
0.440115 + 0.897941i \(0.354937\pi\)
\(938\) −20.9443 −0.683855
\(939\) 26.2492 0.856611
\(940\) −10.4721 −0.341563
\(941\) 38.0000 1.23876 0.619382 0.785090i \(-0.287383\pi\)
0.619382 + 0.785090i \(0.287383\pi\)
\(942\) −11.3738 −0.370580
\(943\) −53.9574 −1.75710
\(944\) −4.14590 −0.134937
\(945\) −23.4164 −0.761736
\(946\) −4.00000 −0.130051
\(947\) 30.9443 1.00555 0.502777 0.864416i \(-0.332312\pi\)
0.502777 + 0.864416i \(0.332312\pi\)
\(948\) −3.41641 −0.110960
\(949\) 0.583592 0.0189442
\(950\) 5.52786 0.179348
\(951\) 27.1246 0.879576
\(952\) 0 0
\(953\) 32.2918 1.04603 0.523017 0.852322i \(-0.324806\pi\)
0.523017 + 0.852322i \(0.324806\pi\)
\(954\) −1.39010 −0.0450060
\(955\) −3.18034 −0.102913
\(956\) −2.76393 −0.0893920
\(957\) −17.8885 −0.578254
\(958\) 22.6869 0.732981
\(959\) 83.4853 2.69588
\(960\) −0.291796 −0.00941768
\(961\) 1.00000 0.0322581
\(962\) −1.52786 −0.0492603
\(963\) 15.0689 0.485588
\(964\) −49.1246 −1.58220
\(965\) −5.47214 −0.176154
\(966\) 24.9443 0.802569
\(967\) 15.6393 0.502927 0.251463 0.967867i \(-0.419088\pi\)
0.251463 + 0.967867i \(0.419088\pi\)
\(968\) −15.6525 −0.503090
\(969\) 0 0
\(970\) −1.20163 −0.0385819
\(971\) −28.0000 −0.898563 −0.449281 0.893390i \(-0.648320\pi\)
−0.449281 + 0.893390i \(0.648320\pi\)
\(972\) 22.0000 0.705650
\(973\) 56.8328 1.82198
\(974\) −9.12461 −0.292371
\(975\) 6.11146 0.195723
\(976\) 26.2918 0.841580
\(977\) 33.2492 1.06374 0.531868 0.846827i \(-0.321490\pi\)
0.531868 + 0.846827i \(0.321490\pi\)
\(978\) 2.06888 0.0661556
\(979\) 3.41641 0.109189
\(980\) 17.7082 0.565668
\(981\) 5.80650 0.185387
\(982\) 24.9443 0.796004
\(983\) −48.4721 −1.54602 −0.773011 0.634393i \(-0.781250\pi\)
−0.773011 + 0.634393i \(0.781250\pi\)
\(984\) 19.3475 0.616777
\(985\) −15.4164 −0.491208
\(986\) 0 0
\(987\) 33.8885 1.07868
\(988\) −4.47214 −0.142278
\(989\) −24.9443 −0.793182
\(990\) 1.81966 0.0578326
\(991\) −50.5410 −1.60549 −0.802744 0.596324i \(-0.796628\pi\)
−0.802744 + 0.596324i \(0.796628\pi\)
\(992\) 5.61803 0.178373
\(993\) −2.47214 −0.0784509
\(994\) 34.5066 1.09448
\(995\) −1.05573 −0.0334688
\(996\) 5.88854 0.186586
\(997\) −15.3607 −0.486478 −0.243239 0.969966i \(-0.578210\pi\)
−0.243239 + 0.969966i \(0.578210\pi\)
\(998\) −20.6525 −0.653743
\(999\) 11.0557 0.349788
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8959.2.a.b.1.1 2
17.16 even 2 31.2.a.a.1.1 2
51.50 odd 2 279.2.a.a.1.2 2
68.67 odd 2 496.2.a.i.1.1 2
85.33 odd 4 775.2.b.d.249.3 4
85.67 odd 4 775.2.b.d.249.2 4
85.84 even 2 775.2.a.d.1.2 2
119.118 odd 2 1519.2.a.a.1.1 2
136.67 odd 2 1984.2.a.n.1.2 2
136.101 even 2 1984.2.a.r.1.1 2
187.186 odd 2 3751.2.a.b.1.2 2
204.203 even 2 4464.2.a.bf.1.2 2
221.220 even 2 5239.2.a.f.1.2 2
255.254 odd 2 6975.2.a.y.1.1 2
527.16 even 10 961.2.d.c.628.1 4
527.33 even 10 961.2.d.c.531.1 4
527.50 even 30 961.2.g.a.547.1 8
527.67 even 6 961.2.c.e.521.1 4
527.84 odd 30 961.2.g.e.732.1 8
527.101 even 10 961.2.d.d.374.1 4
527.118 even 6 961.2.c.e.439.1 4
527.135 odd 30 961.2.g.e.338.1 8
527.152 even 30 961.2.g.a.846.1 8
527.169 even 30 961.2.g.h.816.1 8
527.203 odd 30 961.2.g.e.816.1 8
527.220 odd 30 961.2.g.d.846.1 8
527.237 even 30 961.2.g.h.338.1 8
527.254 odd 6 961.2.c.c.439.1 4
527.271 odd 10 961.2.d.g.374.1 4
527.288 even 30 961.2.g.h.732.1 8
527.305 odd 6 961.2.c.c.521.1 4
527.322 odd 30 961.2.g.d.547.1 8
527.339 odd 10 961.2.d.a.531.1 4
527.356 odd 10 961.2.d.a.628.1 4
527.390 even 30 961.2.g.a.448.1 8
527.407 even 10 961.2.d.d.388.1 4
527.424 odd 30 961.2.g.d.844.1 8
527.441 even 30 961.2.g.h.235.1 8
527.458 odd 30 961.2.g.e.235.1 8
527.475 even 30 961.2.g.a.844.1 8
527.492 odd 10 961.2.d.g.388.1 4
527.509 odd 30 961.2.g.d.448.1 8
527.526 odd 2 961.2.a.f.1.1 2
1581.1580 even 2 8649.2.a.c.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.a.a.1.1 2 17.16 even 2
279.2.a.a.1.2 2 51.50 odd 2
496.2.a.i.1.1 2 68.67 odd 2
775.2.a.d.1.2 2 85.84 even 2
775.2.b.d.249.2 4 85.67 odd 4
775.2.b.d.249.3 4 85.33 odd 4
961.2.a.f.1.1 2 527.526 odd 2
961.2.c.c.439.1 4 527.254 odd 6
961.2.c.c.521.1 4 527.305 odd 6
961.2.c.e.439.1 4 527.118 even 6
961.2.c.e.521.1 4 527.67 even 6
961.2.d.a.531.1 4 527.339 odd 10
961.2.d.a.628.1 4 527.356 odd 10
961.2.d.c.531.1 4 527.33 even 10
961.2.d.c.628.1 4 527.16 even 10
961.2.d.d.374.1 4 527.101 even 10
961.2.d.d.388.1 4 527.407 even 10
961.2.d.g.374.1 4 527.271 odd 10
961.2.d.g.388.1 4 527.492 odd 10
961.2.g.a.448.1 8 527.390 even 30
961.2.g.a.547.1 8 527.50 even 30
961.2.g.a.844.1 8 527.475 even 30
961.2.g.a.846.1 8 527.152 even 30
961.2.g.d.448.1 8 527.509 odd 30
961.2.g.d.547.1 8 527.322 odd 30
961.2.g.d.844.1 8 527.424 odd 30
961.2.g.d.846.1 8 527.220 odd 30
961.2.g.e.235.1 8 527.458 odd 30
961.2.g.e.338.1 8 527.135 odd 30
961.2.g.e.732.1 8 527.84 odd 30
961.2.g.e.816.1 8 527.203 odd 30
961.2.g.h.235.1 8 527.441 even 30
961.2.g.h.338.1 8 527.237 even 30
961.2.g.h.732.1 8 527.288 even 30
961.2.g.h.816.1 8 527.169 even 30
1519.2.a.a.1.1 2 119.118 odd 2
1984.2.a.n.1.2 2 136.67 odd 2
1984.2.a.r.1.1 2 136.101 even 2
3751.2.a.b.1.2 2 187.186 odd 2
4464.2.a.bf.1.2 2 204.203 even 2
5239.2.a.f.1.2 2 221.220 even 2
6975.2.a.y.1.1 2 255.254 odd 2
8649.2.a.c.1.2 2 1581.1580 even 2
8959.2.a.b.1.1 2 1.1 even 1 trivial