Properties

Label 1984.2.a.n.1.2
Level $1984$
Weight $2$
Character 1984.1
Self dual yes
Analytic conductor $15.842$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1984,2,Mod(1,1984)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1984, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1984.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1984 = 2^{6} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1984.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(15.8423197610\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 31)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-0.618034\) of defining polynomial
Character \(\chi\) \(=\) 1984.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.23607 q^{3} -1.00000 q^{5} +4.23607 q^{7} -1.47214 q^{9} +2.00000 q^{11} -1.23607 q^{13} -1.23607 q^{15} +5.23607 q^{17} +2.23607 q^{19} +5.23607 q^{21} +7.70820 q^{23} -4.00000 q^{25} -5.52786 q^{27} -7.23607 q^{29} -1.00000 q^{31} +2.47214 q^{33} -4.23607 q^{35} +2.00000 q^{37} -1.52786 q^{39} +7.00000 q^{41} -3.23607 q^{43} +1.47214 q^{45} +6.47214 q^{47} +10.9443 q^{49} +6.47214 q^{51} +1.52786 q^{53} -2.00000 q^{55} +2.76393 q^{57} -2.23607 q^{59} +14.1803 q^{61} -6.23607 q^{63} +1.23607 q^{65} +8.00000 q^{67} +9.52786 q^{69} -13.1803 q^{71} -0.472136 q^{73} -4.94427 q^{75} +8.47214 q^{77} -1.70820 q^{79} -2.41641 q^{81} +2.94427 q^{83} -5.23607 q^{85} -8.94427 q^{87} -1.70820 q^{89} -5.23607 q^{91} -1.23607 q^{93} -2.23607 q^{95} +1.94427 q^{97} -2.94427 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} - 2 q^{5} + 4 q^{7} + 6 q^{9} + 4 q^{11} + 2 q^{13} + 2 q^{15} + 6 q^{17} + 6 q^{21} + 2 q^{23} - 8 q^{25} - 20 q^{27} - 10 q^{29} - 2 q^{31} - 4 q^{33} - 4 q^{35} + 4 q^{37} - 12 q^{39} + 14 q^{41}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.23607 0.713644 0.356822 0.934172i \(-0.383860\pi\)
0.356822 + 0.934172i \(0.383860\pi\)
\(4\) 0 0
\(5\) −1.00000 −0.447214 −0.223607 0.974679i \(-0.571783\pi\)
−0.223607 + 0.974679i \(0.571783\pi\)
\(6\) 0 0
\(7\) 4.23607 1.60108 0.800542 0.599277i \(-0.204545\pi\)
0.800542 + 0.599277i \(0.204545\pi\)
\(8\) 0 0
\(9\) −1.47214 −0.490712
\(10\) 0 0
\(11\) 2.00000 0.603023 0.301511 0.953463i \(-0.402509\pi\)
0.301511 + 0.953463i \(0.402509\pi\)
\(12\) 0 0
\(13\) −1.23607 −0.342824 −0.171412 0.985199i \(-0.554833\pi\)
−0.171412 + 0.985199i \(0.554833\pi\)
\(14\) 0 0
\(15\) −1.23607 −0.319151
\(16\) 0 0
\(17\) 5.23607 1.26993 0.634967 0.772540i \(-0.281014\pi\)
0.634967 + 0.772540i \(0.281014\pi\)
\(18\) 0 0
\(19\) 2.23607 0.512989 0.256495 0.966546i \(-0.417432\pi\)
0.256495 + 0.966546i \(0.417432\pi\)
\(20\) 0 0
\(21\) 5.23607 1.14260
\(22\) 0 0
\(23\) 7.70820 1.60727 0.803636 0.595121i \(-0.202896\pi\)
0.803636 + 0.595121i \(0.202896\pi\)
\(24\) 0 0
\(25\) −4.00000 −0.800000
\(26\) 0 0
\(27\) −5.52786 −1.06384
\(28\) 0 0
\(29\) −7.23607 −1.34370 −0.671852 0.740685i \(-0.734501\pi\)
−0.671852 + 0.740685i \(0.734501\pi\)
\(30\) 0 0
\(31\) −1.00000 −0.179605
\(32\) 0 0
\(33\) 2.47214 0.430344
\(34\) 0 0
\(35\) −4.23607 −0.716026
\(36\) 0 0
\(37\) 2.00000 0.328798 0.164399 0.986394i \(-0.447432\pi\)
0.164399 + 0.986394i \(0.447432\pi\)
\(38\) 0 0
\(39\) −1.52786 −0.244654
\(40\) 0 0
\(41\) 7.00000 1.09322 0.546608 0.837389i \(-0.315919\pi\)
0.546608 + 0.837389i \(0.315919\pi\)
\(42\) 0 0
\(43\) −3.23607 −0.493496 −0.246748 0.969080i \(-0.579362\pi\)
−0.246748 + 0.969080i \(0.579362\pi\)
\(44\) 0 0
\(45\) 1.47214 0.219453
\(46\) 0 0
\(47\) 6.47214 0.944058 0.472029 0.881583i \(-0.343522\pi\)
0.472029 + 0.881583i \(0.343522\pi\)
\(48\) 0 0
\(49\) 10.9443 1.56347
\(50\) 0 0
\(51\) 6.47214 0.906280
\(52\) 0 0
\(53\) 1.52786 0.209868 0.104934 0.994479i \(-0.466537\pi\)
0.104934 + 0.994479i \(0.466537\pi\)
\(54\) 0 0
\(55\) −2.00000 −0.269680
\(56\) 0 0
\(57\) 2.76393 0.366092
\(58\) 0 0
\(59\) −2.23607 −0.291111 −0.145556 0.989350i \(-0.546497\pi\)
−0.145556 + 0.989350i \(0.546497\pi\)
\(60\) 0 0
\(61\) 14.1803 1.81561 0.907803 0.419396i \(-0.137758\pi\)
0.907803 + 0.419396i \(0.137758\pi\)
\(62\) 0 0
\(63\) −6.23607 −0.785671
\(64\) 0 0
\(65\) 1.23607 0.153315
\(66\) 0 0
\(67\) 8.00000 0.977356 0.488678 0.872464i \(-0.337479\pi\)
0.488678 + 0.872464i \(0.337479\pi\)
\(68\) 0 0
\(69\) 9.52786 1.14702
\(70\) 0 0
\(71\) −13.1803 −1.56422 −0.782109 0.623141i \(-0.785856\pi\)
−0.782109 + 0.623141i \(0.785856\pi\)
\(72\) 0 0
\(73\) −0.472136 −0.0552593 −0.0276297 0.999618i \(-0.508796\pi\)
−0.0276297 + 0.999618i \(0.508796\pi\)
\(74\) 0 0
\(75\) −4.94427 −0.570915
\(76\) 0 0
\(77\) 8.47214 0.965489
\(78\) 0 0
\(79\) −1.70820 −0.192188 −0.0960940 0.995372i \(-0.530635\pi\)
−0.0960940 + 0.995372i \(0.530635\pi\)
\(80\) 0 0
\(81\) −2.41641 −0.268490
\(82\) 0 0
\(83\) 2.94427 0.323176 0.161588 0.986858i \(-0.448338\pi\)
0.161588 + 0.986858i \(0.448338\pi\)
\(84\) 0 0
\(85\) −5.23607 −0.567931
\(86\) 0 0
\(87\) −8.94427 −0.958927
\(88\) 0 0
\(89\) −1.70820 −0.181069 −0.0905346 0.995893i \(-0.528858\pi\)
−0.0905346 + 0.995893i \(0.528858\pi\)
\(90\) 0 0
\(91\) −5.23607 −0.548889
\(92\) 0 0
\(93\) −1.23607 −0.128174
\(94\) 0 0
\(95\) −2.23607 −0.229416
\(96\) 0 0
\(97\) 1.94427 0.197411 0.0987055 0.995117i \(-0.468530\pi\)
0.0987055 + 0.995117i \(0.468530\pi\)
\(98\) 0 0
\(99\) −2.94427 −0.295910
\(100\) 0 0
\(101\) 3.00000 0.298511 0.149256 0.988799i \(-0.452312\pi\)
0.149256 + 0.988799i \(0.452312\pi\)
\(102\) 0 0
\(103\) −1.76393 −0.173805 −0.0869027 0.996217i \(-0.527697\pi\)
−0.0869027 + 0.996217i \(0.527697\pi\)
\(104\) 0 0
\(105\) −5.23607 −0.510988
\(106\) 0 0
\(107\) 10.2361 0.989558 0.494779 0.869019i \(-0.335249\pi\)
0.494779 + 0.869019i \(0.335249\pi\)
\(108\) 0 0
\(109\) −3.94427 −0.377793 −0.188896 0.981997i \(-0.560491\pi\)
−0.188896 + 0.981997i \(0.560491\pi\)
\(110\) 0 0
\(111\) 2.47214 0.234645
\(112\) 0 0
\(113\) −5.47214 −0.514775 −0.257388 0.966308i \(-0.582862\pi\)
−0.257388 + 0.966308i \(0.582862\pi\)
\(114\) 0 0
\(115\) −7.70820 −0.718794
\(116\) 0 0
\(117\) 1.81966 0.168228
\(118\) 0 0
\(119\) 22.1803 2.03327
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 0 0
\(123\) 8.65248 0.780167
\(124\) 0 0
\(125\) 9.00000 0.804984
\(126\) 0 0
\(127\) −3.52786 −0.313047 −0.156524 0.987674i \(-0.550029\pi\)
−0.156524 + 0.987674i \(0.550029\pi\)
\(128\) 0 0
\(129\) −4.00000 −0.352180
\(130\) 0 0
\(131\) 12.0000 1.04844 0.524222 0.851581i \(-0.324356\pi\)
0.524222 + 0.851581i \(0.324356\pi\)
\(132\) 0 0
\(133\) 9.47214 0.821338
\(134\) 0 0
\(135\) 5.52786 0.475763
\(136\) 0 0
\(137\) 19.7082 1.68379 0.841893 0.539645i \(-0.181441\pi\)
0.841893 + 0.539645i \(0.181441\pi\)
\(138\) 0 0
\(139\) −13.4164 −1.13796 −0.568982 0.822350i \(-0.692663\pi\)
−0.568982 + 0.822350i \(0.692663\pi\)
\(140\) 0 0
\(141\) 8.00000 0.673722
\(142\) 0 0
\(143\) −2.47214 −0.206730
\(144\) 0 0
\(145\) 7.23607 0.600923
\(146\) 0 0
\(147\) 13.5279 1.11576
\(148\) 0 0
\(149\) −10.0000 −0.819232 −0.409616 0.912258i \(-0.634337\pi\)
−0.409616 + 0.912258i \(0.634337\pi\)
\(150\) 0 0
\(151\) −8.18034 −0.665707 −0.332853 0.942979i \(-0.608011\pi\)
−0.332853 + 0.942979i \(0.608011\pi\)
\(152\) 0 0
\(153\) −7.70820 −0.623171
\(154\) 0 0
\(155\) 1.00000 0.0803219
\(156\) 0 0
\(157\) 14.8885 1.18824 0.594118 0.804378i \(-0.297501\pi\)
0.594118 + 0.804378i \(0.297501\pi\)
\(158\) 0 0
\(159\) 1.88854 0.149771
\(160\) 0 0
\(161\) 32.6525 2.57338
\(162\) 0 0
\(163\) −2.70820 −0.212123 −0.106061 0.994360i \(-0.533824\pi\)
−0.106061 + 0.994360i \(0.533824\pi\)
\(164\) 0 0
\(165\) −2.47214 −0.192456
\(166\) 0 0
\(167\) −2.47214 −0.191300 −0.0956498 0.995415i \(-0.530493\pi\)
−0.0956498 + 0.995415i \(0.530493\pi\)
\(168\) 0 0
\(169\) −11.4721 −0.882472
\(170\) 0 0
\(171\) −3.29180 −0.251730
\(172\) 0 0
\(173\) 14.9443 1.13619 0.568096 0.822962i \(-0.307680\pi\)
0.568096 + 0.822962i \(0.307680\pi\)
\(174\) 0 0
\(175\) −16.9443 −1.28087
\(176\) 0 0
\(177\) −2.76393 −0.207750
\(178\) 0 0
\(179\) −11.7082 −0.875112 −0.437556 0.899191i \(-0.644156\pi\)
−0.437556 + 0.899191i \(0.644156\pi\)
\(180\) 0 0
\(181\) −18.1803 −1.35133 −0.675667 0.737207i \(-0.736144\pi\)
−0.675667 + 0.737207i \(0.736144\pi\)
\(182\) 0 0
\(183\) 17.5279 1.29570
\(184\) 0 0
\(185\) −2.00000 −0.147043
\(186\) 0 0
\(187\) 10.4721 0.765798
\(188\) 0 0
\(189\) −23.4164 −1.70329
\(190\) 0 0
\(191\) −3.18034 −0.230121 −0.115061 0.993358i \(-0.536706\pi\)
−0.115061 + 0.993358i \(0.536706\pi\)
\(192\) 0 0
\(193\) −5.47214 −0.393893 −0.196946 0.980414i \(-0.563103\pi\)
−0.196946 + 0.980414i \(0.563103\pi\)
\(194\) 0 0
\(195\) 1.52786 0.109413
\(196\) 0 0
\(197\) 15.4164 1.09837 0.549187 0.835700i \(-0.314938\pi\)
0.549187 + 0.835700i \(0.314938\pi\)
\(198\) 0 0
\(199\) 1.05573 0.0748386 0.0374193 0.999300i \(-0.488086\pi\)
0.0374193 + 0.999300i \(0.488086\pi\)
\(200\) 0 0
\(201\) 9.88854 0.697484
\(202\) 0 0
\(203\) −30.6525 −2.15138
\(204\) 0 0
\(205\) −7.00000 −0.488901
\(206\) 0 0
\(207\) −11.3475 −0.788707
\(208\) 0 0
\(209\) 4.47214 0.309344
\(210\) 0 0
\(211\) 0.819660 0.0564277 0.0282139 0.999602i \(-0.491018\pi\)
0.0282139 + 0.999602i \(0.491018\pi\)
\(212\) 0 0
\(213\) −16.2918 −1.11630
\(214\) 0 0
\(215\) 3.23607 0.220698
\(216\) 0 0
\(217\) −4.23607 −0.287563
\(218\) 0 0
\(219\) −0.583592 −0.0394355
\(220\) 0 0
\(221\) −6.47214 −0.435363
\(222\) 0 0
\(223\) −4.00000 −0.267860 −0.133930 0.990991i \(-0.542760\pi\)
−0.133930 + 0.990991i \(0.542760\pi\)
\(224\) 0 0
\(225\) 5.88854 0.392570
\(226\) 0 0
\(227\) 2.47214 0.164081 0.0820407 0.996629i \(-0.473856\pi\)
0.0820407 + 0.996629i \(0.473856\pi\)
\(228\) 0 0
\(229\) −13.4164 −0.886581 −0.443291 0.896378i \(-0.646189\pi\)
−0.443291 + 0.896378i \(0.646189\pi\)
\(230\) 0 0
\(231\) 10.4721 0.689016
\(232\) 0 0
\(233\) 0.0557281 0.00365087 0.00182543 0.999998i \(-0.499419\pi\)
0.00182543 + 0.999998i \(0.499419\pi\)
\(234\) 0 0
\(235\) −6.47214 −0.422196
\(236\) 0 0
\(237\) −2.11146 −0.137154
\(238\) 0 0
\(239\) −1.70820 −0.110495 −0.0552473 0.998473i \(-0.517595\pi\)
−0.0552473 + 0.998473i \(0.517595\pi\)
\(240\) 0 0
\(241\) −30.3607 −1.95570 −0.977852 0.209299i \(-0.932882\pi\)
−0.977852 + 0.209299i \(0.932882\pi\)
\(242\) 0 0
\(243\) 13.5967 0.872232
\(244\) 0 0
\(245\) −10.9443 −0.699204
\(246\) 0 0
\(247\) −2.76393 −0.175865
\(248\) 0 0
\(249\) 3.63932 0.230633
\(250\) 0 0
\(251\) −24.1803 −1.52625 −0.763125 0.646251i \(-0.776336\pi\)
−0.763125 + 0.646251i \(0.776336\pi\)
\(252\) 0 0
\(253\) 15.4164 0.969221
\(254\) 0 0
\(255\) −6.47214 −0.405301
\(256\) 0 0
\(257\) −15.9443 −0.994576 −0.497288 0.867585i \(-0.665671\pi\)
−0.497288 + 0.867585i \(0.665671\pi\)
\(258\) 0 0
\(259\) 8.47214 0.526433
\(260\) 0 0
\(261\) 10.6525 0.659372
\(262\) 0 0
\(263\) 18.7639 1.15703 0.578517 0.815670i \(-0.303632\pi\)
0.578517 + 0.815670i \(0.303632\pi\)
\(264\) 0 0
\(265\) −1.52786 −0.0938559
\(266\) 0 0
\(267\) −2.11146 −0.129219
\(268\) 0 0
\(269\) 28.9443 1.76476 0.882382 0.470534i \(-0.155939\pi\)
0.882382 + 0.470534i \(0.155939\pi\)
\(270\) 0 0
\(271\) −8.18034 −0.496920 −0.248460 0.968642i \(-0.579924\pi\)
−0.248460 + 0.968642i \(0.579924\pi\)
\(272\) 0 0
\(273\) −6.47214 −0.391711
\(274\) 0 0
\(275\) −8.00000 −0.482418
\(276\) 0 0
\(277\) −18.6525 −1.12072 −0.560359 0.828250i \(-0.689337\pi\)
−0.560359 + 0.828250i \(0.689337\pi\)
\(278\) 0 0
\(279\) 1.47214 0.0881345
\(280\) 0 0
\(281\) 17.0000 1.01413 0.507067 0.861906i \(-0.330729\pi\)
0.507067 + 0.861906i \(0.330729\pi\)
\(282\) 0 0
\(283\) 21.8885 1.30114 0.650569 0.759447i \(-0.274530\pi\)
0.650569 + 0.759447i \(0.274530\pi\)
\(284\) 0 0
\(285\) −2.76393 −0.163721
\(286\) 0 0
\(287\) 29.6525 1.75033
\(288\) 0 0
\(289\) 10.4164 0.612730
\(290\) 0 0
\(291\) 2.40325 0.140881
\(292\) 0 0
\(293\) −8.47214 −0.494947 −0.247474 0.968895i \(-0.579600\pi\)
−0.247474 + 0.968895i \(0.579600\pi\)
\(294\) 0 0
\(295\) 2.23607 0.130189
\(296\) 0 0
\(297\) −11.0557 −0.641518
\(298\) 0 0
\(299\) −9.52786 −0.551011
\(300\) 0 0
\(301\) −13.7082 −0.790128
\(302\) 0 0
\(303\) 3.70820 0.213031
\(304\) 0 0
\(305\) −14.1803 −0.811964
\(306\) 0 0
\(307\) −15.2918 −0.872749 −0.436374 0.899765i \(-0.643738\pi\)
−0.436374 + 0.899765i \(0.643738\pi\)
\(308\) 0 0
\(309\) −2.18034 −0.124035
\(310\) 0 0
\(311\) 6.81966 0.386707 0.193354 0.981129i \(-0.438064\pi\)
0.193354 + 0.981129i \(0.438064\pi\)
\(312\) 0 0
\(313\) 21.2361 1.20033 0.600167 0.799875i \(-0.295101\pi\)
0.600167 + 0.799875i \(0.295101\pi\)
\(314\) 0 0
\(315\) 6.23607 0.351363
\(316\) 0 0
\(317\) −21.9443 −1.23251 −0.616257 0.787545i \(-0.711352\pi\)
−0.616257 + 0.787545i \(0.711352\pi\)
\(318\) 0 0
\(319\) −14.4721 −0.810284
\(320\) 0 0
\(321\) 12.6525 0.706192
\(322\) 0 0
\(323\) 11.7082 0.651462
\(324\) 0 0
\(325\) 4.94427 0.274259
\(326\) 0 0
\(327\) −4.87539 −0.269610
\(328\) 0 0
\(329\) 27.4164 1.51152
\(330\) 0 0
\(331\) 2.00000 0.109930 0.0549650 0.998488i \(-0.482495\pi\)
0.0549650 + 0.998488i \(0.482495\pi\)
\(332\) 0 0
\(333\) −2.94427 −0.161345
\(334\) 0 0
\(335\) −8.00000 −0.437087
\(336\) 0 0
\(337\) −19.2361 −1.04786 −0.523928 0.851763i \(-0.675534\pi\)
−0.523928 + 0.851763i \(0.675534\pi\)
\(338\) 0 0
\(339\) −6.76393 −0.367366
\(340\) 0 0
\(341\) −2.00000 −0.108306
\(342\) 0 0
\(343\) 16.7082 0.902158
\(344\) 0 0
\(345\) −9.52786 −0.512963
\(346\) 0 0
\(347\) 1.81966 0.0976845 0.0488422 0.998807i \(-0.484447\pi\)
0.0488422 + 0.998807i \(0.484447\pi\)
\(348\) 0 0
\(349\) −27.8885 −1.49284 −0.746420 0.665475i \(-0.768229\pi\)
−0.746420 + 0.665475i \(0.768229\pi\)
\(350\) 0 0
\(351\) 6.83282 0.364709
\(352\) 0 0
\(353\) −19.4164 −1.03343 −0.516716 0.856157i \(-0.672846\pi\)
−0.516716 + 0.856157i \(0.672846\pi\)
\(354\) 0 0
\(355\) 13.1803 0.699540
\(356\) 0 0
\(357\) 27.4164 1.45103
\(358\) 0 0
\(359\) −17.7639 −0.937544 −0.468772 0.883319i \(-0.655303\pi\)
−0.468772 + 0.883319i \(0.655303\pi\)
\(360\) 0 0
\(361\) −14.0000 −0.736842
\(362\) 0 0
\(363\) −8.65248 −0.454137
\(364\) 0 0
\(365\) 0.472136 0.0247127
\(366\) 0 0
\(367\) −18.0000 −0.939592 −0.469796 0.882775i \(-0.655673\pi\)
−0.469796 + 0.882775i \(0.655673\pi\)
\(368\) 0 0
\(369\) −10.3050 −0.536454
\(370\) 0 0
\(371\) 6.47214 0.336017
\(372\) 0 0
\(373\) −19.0000 −0.983783 −0.491891 0.870657i \(-0.663694\pi\)
−0.491891 + 0.870657i \(0.663694\pi\)
\(374\) 0 0
\(375\) 11.1246 0.574472
\(376\) 0 0
\(377\) 8.94427 0.460653
\(378\) 0 0
\(379\) −37.8885 −1.94620 −0.973102 0.230375i \(-0.926005\pi\)
−0.973102 + 0.230375i \(0.926005\pi\)
\(380\) 0 0
\(381\) −4.36068 −0.223404
\(382\) 0 0
\(383\) −11.8885 −0.607476 −0.303738 0.952756i \(-0.598235\pi\)
−0.303738 + 0.952756i \(0.598235\pi\)
\(384\) 0 0
\(385\) −8.47214 −0.431780
\(386\) 0 0
\(387\) 4.76393 0.242164
\(388\) 0 0
\(389\) −17.8885 −0.906985 −0.453493 0.891260i \(-0.649822\pi\)
−0.453493 + 0.891260i \(0.649822\pi\)
\(390\) 0 0
\(391\) 40.3607 2.04113
\(392\) 0 0
\(393\) 14.8328 0.748217
\(394\) 0 0
\(395\) 1.70820 0.0859491
\(396\) 0 0
\(397\) 7.00000 0.351320 0.175660 0.984451i \(-0.443794\pi\)
0.175660 + 0.984451i \(0.443794\pi\)
\(398\) 0 0
\(399\) 11.7082 0.586143
\(400\) 0 0
\(401\) 15.8197 0.789996 0.394998 0.918682i \(-0.370745\pi\)
0.394998 + 0.918682i \(0.370745\pi\)
\(402\) 0 0
\(403\) 1.23607 0.0615729
\(404\) 0 0
\(405\) 2.41641 0.120072
\(406\) 0 0
\(407\) 4.00000 0.198273
\(408\) 0 0
\(409\) −26.1803 −1.29453 −0.647267 0.762263i \(-0.724088\pi\)
−0.647267 + 0.762263i \(0.724088\pi\)
\(410\) 0 0
\(411\) 24.3607 1.20162
\(412\) 0 0
\(413\) −9.47214 −0.466093
\(414\) 0 0
\(415\) −2.94427 −0.144529
\(416\) 0 0
\(417\) −16.5836 −0.812102
\(418\) 0 0
\(419\) 30.1246 1.47168 0.735842 0.677153i \(-0.236787\pi\)
0.735842 + 0.677153i \(0.236787\pi\)
\(420\) 0 0
\(421\) 15.3607 0.748634 0.374317 0.927301i \(-0.377877\pi\)
0.374317 + 0.927301i \(0.377877\pi\)
\(422\) 0 0
\(423\) −9.52786 −0.463261
\(424\) 0 0
\(425\) −20.9443 −1.01595
\(426\) 0 0
\(427\) 60.0689 2.90694
\(428\) 0 0
\(429\) −3.05573 −0.147532
\(430\) 0 0
\(431\) −12.0000 −0.578020 −0.289010 0.957326i \(-0.593326\pi\)
−0.289010 + 0.957326i \(0.593326\pi\)
\(432\) 0 0
\(433\) −12.1803 −0.585350 −0.292675 0.956212i \(-0.594545\pi\)
−0.292675 + 0.956212i \(0.594545\pi\)
\(434\) 0 0
\(435\) 8.94427 0.428845
\(436\) 0 0
\(437\) 17.2361 0.824513
\(438\) 0 0
\(439\) −21.1803 −1.01088 −0.505441 0.862861i \(-0.668670\pi\)
−0.505441 + 0.862861i \(0.668670\pi\)
\(440\) 0 0
\(441\) −16.1115 −0.767212
\(442\) 0 0
\(443\) 17.2918 0.821558 0.410779 0.911735i \(-0.365257\pi\)
0.410779 + 0.911735i \(0.365257\pi\)
\(444\) 0 0
\(445\) 1.70820 0.0809766
\(446\) 0 0
\(447\) −12.3607 −0.584640
\(448\) 0 0
\(449\) 31.3050 1.47737 0.738686 0.674050i \(-0.235447\pi\)
0.738686 + 0.674050i \(0.235447\pi\)
\(450\) 0 0
\(451\) 14.0000 0.659234
\(452\) 0 0
\(453\) −10.1115 −0.475078
\(454\) 0 0
\(455\) 5.23607 0.245471
\(456\) 0 0
\(457\) −20.9443 −0.979732 −0.489866 0.871798i \(-0.662954\pi\)
−0.489866 + 0.871798i \(0.662954\pi\)
\(458\) 0 0
\(459\) −28.9443 −1.35100
\(460\) 0 0
\(461\) 10.3607 0.482545 0.241272 0.970457i \(-0.422435\pi\)
0.241272 + 0.970457i \(0.422435\pi\)
\(462\) 0 0
\(463\) 29.4164 1.36710 0.683548 0.729905i \(-0.260436\pi\)
0.683548 + 0.729905i \(0.260436\pi\)
\(464\) 0 0
\(465\) 1.23607 0.0573213
\(466\) 0 0
\(467\) −8.70820 −0.402968 −0.201484 0.979492i \(-0.564576\pi\)
−0.201484 + 0.979492i \(0.564576\pi\)
\(468\) 0 0
\(469\) 33.8885 1.56483
\(470\) 0 0
\(471\) 18.4033 0.847977
\(472\) 0 0
\(473\) −6.47214 −0.297589
\(474\) 0 0
\(475\) −8.94427 −0.410391
\(476\) 0 0
\(477\) −2.24922 −0.102985
\(478\) 0 0
\(479\) −36.7082 −1.67724 −0.838620 0.544716i \(-0.816637\pi\)
−0.838620 + 0.544716i \(0.816637\pi\)
\(480\) 0 0
\(481\) −2.47214 −0.112720
\(482\) 0 0
\(483\) 40.3607 1.83647
\(484\) 0 0
\(485\) −1.94427 −0.0882848
\(486\) 0 0
\(487\) 14.7639 0.669018 0.334509 0.942393i \(-0.391430\pi\)
0.334509 + 0.942393i \(0.391430\pi\)
\(488\) 0 0
\(489\) −3.34752 −0.151380
\(490\) 0 0
\(491\) −40.3607 −1.82145 −0.910726 0.413011i \(-0.864477\pi\)
−0.910726 + 0.413011i \(0.864477\pi\)
\(492\) 0 0
\(493\) −37.8885 −1.70641
\(494\) 0 0
\(495\) 2.94427 0.132335
\(496\) 0 0
\(497\) −55.8328 −2.50444
\(498\) 0 0
\(499\) −33.4164 −1.49592 −0.747962 0.663742i \(-0.768967\pi\)
−0.747962 + 0.663742i \(0.768967\pi\)
\(500\) 0 0
\(501\) −3.05573 −0.136520
\(502\) 0 0
\(503\) 1.65248 0.0736803 0.0368401 0.999321i \(-0.488271\pi\)
0.0368401 + 0.999321i \(0.488271\pi\)
\(504\) 0 0
\(505\) −3.00000 −0.133498
\(506\) 0 0
\(507\) −14.1803 −0.629771
\(508\) 0 0
\(509\) 19.5967 0.868611 0.434305 0.900766i \(-0.356994\pi\)
0.434305 + 0.900766i \(0.356994\pi\)
\(510\) 0 0
\(511\) −2.00000 −0.0884748
\(512\) 0 0
\(513\) −12.3607 −0.545737
\(514\) 0 0
\(515\) 1.76393 0.0777281
\(516\) 0 0
\(517\) 12.9443 0.569288
\(518\) 0 0
\(519\) 18.4721 0.810837
\(520\) 0 0
\(521\) 2.00000 0.0876216 0.0438108 0.999040i \(-0.486050\pi\)
0.0438108 + 0.999040i \(0.486050\pi\)
\(522\) 0 0
\(523\) −4.29180 −0.187667 −0.0938336 0.995588i \(-0.529912\pi\)
−0.0938336 + 0.995588i \(0.529912\pi\)
\(524\) 0 0
\(525\) −20.9443 −0.914083
\(526\) 0 0
\(527\) −5.23607 −0.228087
\(528\) 0 0
\(529\) 36.4164 1.58332
\(530\) 0 0
\(531\) 3.29180 0.142852
\(532\) 0 0
\(533\) −8.65248 −0.374780
\(534\) 0 0
\(535\) −10.2361 −0.442544
\(536\) 0 0
\(537\) −14.4721 −0.624519
\(538\) 0 0
\(539\) 21.8885 0.942806
\(540\) 0 0
\(541\) −19.3607 −0.832381 −0.416190 0.909278i \(-0.636635\pi\)
−0.416190 + 0.909278i \(0.636635\pi\)
\(542\) 0 0
\(543\) −22.4721 −0.964372
\(544\) 0 0
\(545\) 3.94427 0.168954
\(546\) 0 0
\(547\) 28.1246 1.20252 0.601261 0.799053i \(-0.294665\pi\)
0.601261 + 0.799053i \(0.294665\pi\)
\(548\) 0 0
\(549\) −20.8754 −0.890940
\(550\) 0 0
\(551\) −16.1803 −0.689306
\(552\) 0 0
\(553\) −7.23607 −0.307709
\(554\) 0 0
\(555\) −2.47214 −0.104936
\(556\) 0 0
\(557\) 12.0000 0.508456 0.254228 0.967144i \(-0.418179\pi\)
0.254228 + 0.967144i \(0.418179\pi\)
\(558\) 0 0
\(559\) 4.00000 0.169182
\(560\) 0 0
\(561\) 12.9443 0.546508
\(562\) 0 0
\(563\) −39.5410 −1.66646 −0.833228 0.552930i \(-0.813510\pi\)
−0.833228 + 0.552930i \(0.813510\pi\)
\(564\) 0 0
\(565\) 5.47214 0.230214
\(566\) 0 0
\(567\) −10.2361 −0.429874
\(568\) 0 0
\(569\) 14.4721 0.606704 0.303352 0.952879i \(-0.401894\pi\)
0.303352 + 0.952879i \(0.401894\pi\)
\(570\) 0 0
\(571\) 5.81966 0.243545 0.121773 0.992558i \(-0.461142\pi\)
0.121773 + 0.992558i \(0.461142\pi\)
\(572\) 0 0
\(573\) −3.93112 −0.164225
\(574\) 0 0
\(575\) −30.8328 −1.28582
\(576\) 0 0
\(577\) 24.8328 1.03380 0.516902 0.856045i \(-0.327085\pi\)
0.516902 + 0.856045i \(0.327085\pi\)
\(578\) 0 0
\(579\) −6.76393 −0.281099
\(580\) 0 0
\(581\) 12.4721 0.517431
\(582\) 0 0
\(583\) 3.05573 0.126555
\(584\) 0 0
\(585\) −1.81966 −0.0752337
\(586\) 0 0
\(587\) 2.47214 0.102036 0.0510180 0.998698i \(-0.483753\pi\)
0.0510180 + 0.998698i \(0.483753\pi\)
\(588\) 0 0
\(589\) −2.23607 −0.0921356
\(590\) 0 0
\(591\) 19.0557 0.783848
\(592\) 0 0
\(593\) −15.4721 −0.635364 −0.317682 0.948197i \(-0.602905\pi\)
−0.317682 + 0.948197i \(0.602905\pi\)
\(594\) 0 0
\(595\) −22.1803 −0.909305
\(596\) 0 0
\(597\) 1.30495 0.0534081
\(598\) 0 0
\(599\) −34.5967 −1.41358 −0.706792 0.707421i \(-0.749859\pi\)
−0.706792 + 0.707421i \(0.749859\pi\)
\(600\) 0 0
\(601\) −36.5410 −1.49054 −0.745270 0.666763i \(-0.767679\pi\)
−0.745270 + 0.666763i \(0.767679\pi\)
\(602\) 0 0
\(603\) −11.7771 −0.479600
\(604\) 0 0
\(605\) 7.00000 0.284590
\(606\) 0 0
\(607\) −13.5279 −0.549079 −0.274540 0.961576i \(-0.588525\pi\)
−0.274540 + 0.961576i \(0.588525\pi\)
\(608\) 0 0
\(609\) −37.8885 −1.53532
\(610\) 0 0
\(611\) −8.00000 −0.323645
\(612\) 0 0
\(613\) 8.11146 0.327619 0.163809 0.986492i \(-0.447622\pi\)
0.163809 + 0.986492i \(0.447622\pi\)
\(614\) 0 0
\(615\) −8.65248 −0.348902
\(616\) 0 0
\(617\) 23.5279 0.947196 0.473598 0.880741i \(-0.342955\pi\)
0.473598 + 0.880741i \(0.342955\pi\)
\(618\) 0 0
\(619\) −16.1803 −0.650343 −0.325171 0.945655i \(-0.605422\pi\)
−0.325171 + 0.945655i \(0.605422\pi\)
\(620\) 0 0
\(621\) −42.6099 −1.70988
\(622\) 0 0
\(623\) −7.23607 −0.289907
\(624\) 0 0
\(625\) 11.0000 0.440000
\(626\) 0 0
\(627\) 5.52786 0.220762
\(628\) 0 0
\(629\) 10.4721 0.417551
\(630\) 0 0
\(631\) 10.3607 0.412452 0.206226 0.978504i \(-0.433882\pi\)
0.206226 + 0.978504i \(0.433882\pi\)
\(632\) 0 0
\(633\) 1.01316 0.0402693
\(634\) 0 0
\(635\) 3.52786 0.139999
\(636\) 0 0
\(637\) −13.5279 −0.535993
\(638\) 0 0
\(639\) 19.4033 0.767581
\(640\) 0 0
\(641\) 12.0000 0.473972 0.236986 0.971513i \(-0.423841\pi\)
0.236986 + 0.971513i \(0.423841\pi\)
\(642\) 0 0
\(643\) 28.4721 1.12283 0.561416 0.827534i \(-0.310257\pi\)
0.561416 + 0.827534i \(0.310257\pi\)
\(644\) 0 0
\(645\) 4.00000 0.157500
\(646\) 0 0
\(647\) −16.9443 −0.666148 −0.333074 0.942901i \(-0.608086\pi\)
−0.333074 + 0.942901i \(0.608086\pi\)
\(648\) 0 0
\(649\) −4.47214 −0.175547
\(650\) 0 0
\(651\) −5.23607 −0.205218
\(652\) 0 0
\(653\) −15.3050 −0.598929 −0.299465 0.954107i \(-0.596808\pi\)
−0.299465 + 0.954107i \(0.596808\pi\)
\(654\) 0 0
\(655\) −12.0000 −0.468879
\(656\) 0 0
\(657\) 0.695048 0.0271164
\(658\) 0 0
\(659\) −5.65248 −0.220189 −0.110095 0.993921i \(-0.535115\pi\)
−0.110095 + 0.993921i \(0.535115\pi\)
\(660\) 0 0
\(661\) 45.3607 1.76433 0.882163 0.470944i \(-0.156087\pi\)
0.882163 + 0.470944i \(0.156087\pi\)
\(662\) 0 0
\(663\) −8.00000 −0.310694
\(664\) 0 0
\(665\) −9.47214 −0.367314
\(666\) 0 0
\(667\) −55.7771 −2.15970
\(668\) 0 0
\(669\) −4.94427 −0.191157
\(670\) 0 0
\(671\) 28.3607 1.09485
\(672\) 0 0
\(673\) 47.0132 1.81222 0.906112 0.423038i \(-0.139036\pi\)
0.906112 + 0.423038i \(0.139036\pi\)
\(674\) 0 0
\(675\) 22.1115 0.851070
\(676\) 0 0
\(677\) −42.7214 −1.64192 −0.820958 0.570989i \(-0.806560\pi\)
−0.820958 + 0.570989i \(0.806560\pi\)
\(678\) 0 0
\(679\) 8.23607 0.316071
\(680\) 0 0
\(681\) 3.05573 0.117096
\(682\) 0 0
\(683\) −17.1803 −0.657387 −0.328694 0.944437i \(-0.606608\pi\)
−0.328694 + 0.944437i \(0.606608\pi\)
\(684\) 0 0
\(685\) −19.7082 −0.753012
\(686\) 0 0
\(687\) −16.5836 −0.632704
\(688\) 0 0
\(689\) −1.88854 −0.0719478
\(690\) 0 0
\(691\) −19.1803 −0.729655 −0.364827 0.931075i \(-0.618872\pi\)
−0.364827 + 0.931075i \(0.618872\pi\)
\(692\) 0 0
\(693\) −12.4721 −0.473777
\(694\) 0 0
\(695\) 13.4164 0.508913
\(696\) 0 0
\(697\) 36.6525 1.38831
\(698\) 0 0
\(699\) 0.0688837 0.00260542
\(700\) 0 0
\(701\) −7.00000 −0.264386 −0.132193 0.991224i \(-0.542202\pi\)
−0.132193 + 0.991224i \(0.542202\pi\)
\(702\) 0 0
\(703\) 4.47214 0.168670
\(704\) 0 0
\(705\) −8.00000 −0.301297
\(706\) 0 0
\(707\) 12.7082 0.477941
\(708\) 0 0
\(709\) −34.4721 −1.29463 −0.647314 0.762223i \(-0.724108\pi\)
−0.647314 + 0.762223i \(0.724108\pi\)
\(710\) 0 0
\(711\) 2.51471 0.0943089
\(712\) 0 0
\(713\) −7.70820 −0.288675
\(714\) 0 0
\(715\) 2.47214 0.0924526
\(716\) 0 0
\(717\) −2.11146 −0.0788538
\(718\) 0 0
\(719\) 36.1803 1.34930 0.674649 0.738138i \(-0.264295\pi\)
0.674649 + 0.738138i \(0.264295\pi\)
\(720\) 0 0
\(721\) −7.47214 −0.278277
\(722\) 0 0
\(723\) −37.5279 −1.39568
\(724\) 0 0
\(725\) 28.9443 1.07496
\(726\) 0 0
\(727\) 39.7639 1.47476 0.737381 0.675477i \(-0.236062\pi\)
0.737381 + 0.675477i \(0.236062\pi\)
\(728\) 0 0
\(729\) 24.0557 0.890953
\(730\) 0 0
\(731\) −16.9443 −0.626707
\(732\) 0 0
\(733\) 5.47214 0.202118 0.101059 0.994880i \(-0.467777\pi\)
0.101059 + 0.994880i \(0.467777\pi\)
\(734\) 0 0
\(735\) −13.5279 −0.498983
\(736\) 0 0
\(737\) 16.0000 0.589368
\(738\) 0 0
\(739\) −16.1803 −0.595203 −0.297602 0.954690i \(-0.596187\pi\)
−0.297602 + 0.954690i \(0.596187\pi\)
\(740\) 0 0
\(741\) −3.41641 −0.125505
\(742\) 0 0
\(743\) −27.8197 −1.02060 −0.510302 0.859995i \(-0.670466\pi\)
−0.510302 + 0.859995i \(0.670466\pi\)
\(744\) 0 0
\(745\) 10.0000 0.366372
\(746\) 0 0
\(747\) −4.33437 −0.158586
\(748\) 0 0
\(749\) 43.3607 1.58436
\(750\) 0 0
\(751\) −45.5410 −1.66182 −0.830908 0.556410i \(-0.812178\pi\)
−0.830908 + 0.556410i \(0.812178\pi\)
\(752\) 0 0
\(753\) −29.8885 −1.08920
\(754\) 0 0
\(755\) 8.18034 0.297713
\(756\) 0 0
\(757\) 22.6525 0.823318 0.411659 0.911338i \(-0.364949\pi\)
0.411659 + 0.911338i \(0.364949\pi\)
\(758\) 0 0
\(759\) 19.0557 0.691679
\(760\) 0 0
\(761\) 2.00000 0.0724999 0.0362500 0.999343i \(-0.488459\pi\)
0.0362500 + 0.999343i \(0.488459\pi\)
\(762\) 0 0
\(763\) −16.7082 −0.604878
\(764\) 0 0
\(765\) 7.70820 0.278691
\(766\) 0 0
\(767\) 2.76393 0.0997998
\(768\) 0 0
\(769\) −2.63932 −0.0951763 −0.0475882 0.998867i \(-0.515154\pi\)
−0.0475882 + 0.998867i \(0.515154\pi\)
\(770\) 0 0
\(771\) −19.7082 −0.709774
\(772\) 0 0
\(773\) −29.1246 −1.04754 −0.523770 0.851860i \(-0.675475\pi\)
−0.523770 + 0.851860i \(0.675475\pi\)
\(774\) 0 0
\(775\) 4.00000 0.143684
\(776\) 0 0
\(777\) 10.4721 0.375686
\(778\) 0 0
\(779\) 15.6525 0.560808
\(780\) 0 0
\(781\) −26.3607 −0.943259
\(782\) 0 0
\(783\) 40.0000 1.42948
\(784\) 0 0
\(785\) −14.8885 −0.531395
\(786\) 0 0
\(787\) 38.6525 1.37781 0.688906 0.724851i \(-0.258091\pi\)
0.688906 + 0.724851i \(0.258091\pi\)
\(788\) 0 0
\(789\) 23.1935 0.825710
\(790\) 0 0
\(791\) −23.1803 −0.824198
\(792\) 0 0
\(793\) −17.5279 −0.622433
\(794\) 0 0
\(795\) −1.88854 −0.0669797
\(796\) 0 0
\(797\) 28.5836 1.01248 0.506241 0.862392i \(-0.331034\pi\)
0.506241 + 0.862392i \(0.331034\pi\)
\(798\) 0 0
\(799\) 33.8885 1.19889
\(800\) 0 0
\(801\) 2.51471 0.0888529
\(802\) 0 0
\(803\) −0.944272 −0.0333226
\(804\) 0 0
\(805\) −32.6525 −1.15085
\(806\) 0 0
\(807\) 35.7771 1.25941
\(808\) 0 0
\(809\) −3.41641 −0.120115 −0.0600573 0.998195i \(-0.519128\pi\)
−0.0600573 + 0.998195i \(0.519128\pi\)
\(810\) 0 0
\(811\) −28.0000 −0.983213 −0.491606 0.870817i \(-0.663590\pi\)
−0.491606 + 0.870817i \(0.663590\pi\)
\(812\) 0 0
\(813\) −10.1115 −0.354624
\(814\) 0 0
\(815\) 2.70820 0.0948642
\(816\) 0 0
\(817\) −7.23607 −0.253158
\(818\) 0 0
\(819\) 7.70820 0.269346
\(820\) 0 0
\(821\) 36.5410 1.27529 0.637645 0.770330i \(-0.279909\pi\)
0.637645 + 0.770330i \(0.279909\pi\)
\(822\) 0 0
\(823\) 27.7082 0.965847 0.482924 0.875662i \(-0.339575\pi\)
0.482924 + 0.875662i \(0.339575\pi\)
\(824\) 0 0
\(825\) −9.88854 −0.344275
\(826\) 0 0
\(827\) 48.6525 1.69181 0.845906 0.533332i \(-0.179060\pi\)
0.845906 + 0.533332i \(0.179060\pi\)
\(828\) 0 0
\(829\) 36.8328 1.27926 0.639628 0.768684i \(-0.279088\pi\)
0.639628 + 0.768684i \(0.279088\pi\)
\(830\) 0 0
\(831\) −23.0557 −0.799794
\(832\) 0 0
\(833\) 57.3050 1.98550
\(834\) 0 0
\(835\) 2.47214 0.0855518
\(836\) 0 0
\(837\) 5.52786 0.191071
\(838\) 0 0
\(839\) −11.0557 −0.381686 −0.190843 0.981621i \(-0.561122\pi\)
−0.190843 + 0.981621i \(0.561122\pi\)
\(840\) 0 0
\(841\) 23.3607 0.805541
\(842\) 0 0
\(843\) 21.0132 0.723732
\(844\) 0 0
\(845\) 11.4721 0.394653
\(846\) 0 0
\(847\) −29.6525 −1.01887
\(848\) 0 0
\(849\) 27.0557 0.928550
\(850\) 0 0
\(851\) 15.4164 0.528468
\(852\) 0 0
\(853\) −37.4164 −1.28111 −0.640557 0.767911i \(-0.721296\pi\)
−0.640557 + 0.767911i \(0.721296\pi\)
\(854\) 0 0
\(855\) 3.29180 0.112577
\(856\) 0 0
\(857\) 51.6656 1.76486 0.882432 0.470440i \(-0.155905\pi\)
0.882432 + 0.470440i \(0.155905\pi\)
\(858\) 0 0
\(859\) 37.8885 1.29274 0.646370 0.763024i \(-0.276286\pi\)
0.646370 + 0.763024i \(0.276286\pi\)
\(860\) 0 0
\(861\) 36.6525 1.24911
\(862\) 0 0
\(863\) 32.1803 1.09543 0.547716 0.836664i \(-0.315498\pi\)
0.547716 + 0.836664i \(0.315498\pi\)
\(864\) 0 0
\(865\) −14.9443 −0.508120
\(866\) 0 0
\(867\) 12.8754 0.437271
\(868\) 0 0
\(869\) −3.41641 −0.115894
\(870\) 0 0
\(871\) −9.88854 −0.335061
\(872\) 0 0
\(873\) −2.86223 −0.0968719
\(874\) 0 0
\(875\) 38.1246 1.28885
\(876\) 0 0
\(877\) 35.9443 1.21375 0.606876 0.794797i \(-0.292422\pi\)
0.606876 + 0.794797i \(0.292422\pi\)
\(878\) 0 0
\(879\) −10.4721 −0.353216
\(880\) 0 0
\(881\) 24.3607 0.820732 0.410366 0.911921i \(-0.365401\pi\)
0.410366 + 0.911921i \(0.365401\pi\)
\(882\) 0 0
\(883\) 39.7771 1.33861 0.669303 0.742990i \(-0.266593\pi\)
0.669303 + 0.742990i \(0.266593\pi\)
\(884\) 0 0
\(885\) 2.76393 0.0929086
\(886\) 0 0
\(887\) 31.0689 1.04319 0.521596 0.853193i \(-0.325337\pi\)
0.521596 + 0.853193i \(0.325337\pi\)
\(888\) 0 0
\(889\) −14.9443 −0.501215
\(890\) 0 0
\(891\) −4.83282 −0.161905
\(892\) 0 0
\(893\) 14.4721 0.484292
\(894\) 0 0
\(895\) 11.7082 0.391362
\(896\) 0 0
\(897\) −11.7771 −0.393226
\(898\) 0 0
\(899\) 7.23607 0.241336
\(900\) 0 0
\(901\) 8.00000 0.266519
\(902\) 0 0
\(903\) −16.9443 −0.563870
\(904\) 0 0
\(905\) 18.1803 0.604335
\(906\) 0 0
\(907\) −19.7639 −0.656251 −0.328125 0.944634i \(-0.606417\pi\)
−0.328125 + 0.944634i \(0.606417\pi\)
\(908\) 0 0
\(909\) −4.41641 −0.146483
\(910\) 0 0
\(911\) 4.18034 0.138501 0.0692504 0.997599i \(-0.477939\pi\)
0.0692504 + 0.997599i \(0.477939\pi\)
\(912\) 0 0
\(913\) 5.88854 0.194882
\(914\) 0 0
\(915\) −17.5279 −0.579453
\(916\) 0 0
\(917\) 50.8328 1.67865
\(918\) 0 0
\(919\) 5.52786 0.182347 0.0911737 0.995835i \(-0.470938\pi\)
0.0911737 + 0.995835i \(0.470938\pi\)
\(920\) 0 0
\(921\) −18.9017 −0.622832
\(922\) 0 0
\(923\) 16.2918 0.536251
\(924\) 0 0
\(925\) −8.00000 −0.263038
\(926\) 0 0
\(927\) 2.59675 0.0852884
\(928\) 0 0
\(929\) −20.0000 −0.656179 −0.328089 0.944647i \(-0.606405\pi\)
−0.328089 + 0.944647i \(0.606405\pi\)
\(930\) 0 0
\(931\) 24.4721 0.802042
\(932\) 0 0
\(933\) 8.42956 0.275972
\(934\) 0 0
\(935\) −10.4721 −0.342475
\(936\) 0 0
\(937\) 26.9443 0.880231 0.440115 0.897941i \(-0.354937\pi\)
0.440115 + 0.897941i \(0.354937\pi\)
\(938\) 0 0
\(939\) 26.2492 0.856611
\(940\) 0 0
\(941\) 38.0000 1.23876 0.619382 0.785090i \(-0.287383\pi\)
0.619382 + 0.785090i \(0.287383\pi\)
\(942\) 0 0
\(943\) 53.9574 1.75710
\(944\) 0 0
\(945\) 23.4164 0.761736
\(946\) 0 0
\(947\) −30.9443 −1.00555 −0.502777 0.864416i \(-0.667688\pi\)
−0.502777 + 0.864416i \(0.667688\pi\)
\(948\) 0 0
\(949\) 0.583592 0.0189442
\(950\) 0 0
\(951\) −27.1246 −0.879576
\(952\) 0 0
\(953\) 32.2918 1.04603 0.523017 0.852322i \(-0.324806\pi\)
0.523017 + 0.852322i \(0.324806\pi\)
\(954\) 0 0
\(955\) 3.18034 0.102913
\(956\) 0 0
\(957\) −17.8885 −0.578254
\(958\) 0 0
\(959\) 83.4853 2.69588
\(960\) 0 0
\(961\) 1.00000 0.0322581
\(962\) 0 0
\(963\) −15.0689 −0.485588
\(964\) 0 0
\(965\) 5.47214 0.176154
\(966\) 0 0
\(967\) −15.6393 −0.502927 −0.251463 0.967867i \(-0.580912\pi\)
−0.251463 + 0.967867i \(0.580912\pi\)
\(968\) 0 0
\(969\) 14.4721 0.464912
\(970\) 0 0
\(971\) −28.0000 −0.898563 −0.449281 0.893390i \(-0.648320\pi\)
−0.449281 + 0.893390i \(0.648320\pi\)
\(972\) 0 0
\(973\) −56.8328 −1.82198
\(974\) 0 0
\(975\) 6.11146 0.195723
\(976\) 0 0
\(977\) 33.2492 1.06374 0.531868 0.846827i \(-0.321490\pi\)
0.531868 + 0.846827i \(0.321490\pi\)
\(978\) 0 0
\(979\) −3.41641 −0.109189
\(980\) 0 0
\(981\) 5.80650 0.185387
\(982\) 0 0
\(983\) −48.4721 −1.54602 −0.773011 0.634393i \(-0.781250\pi\)
−0.773011 + 0.634393i \(0.781250\pi\)
\(984\) 0 0
\(985\) −15.4164 −0.491208
\(986\) 0 0
\(987\) 33.8885 1.07868
\(988\) 0 0
\(989\) −24.9443 −0.793182
\(990\) 0 0
\(991\) −50.5410 −1.60549 −0.802744 0.596324i \(-0.796628\pi\)
−0.802744 + 0.596324i \(0.796628\pi\)
\(992\) 0 0
\(993\) 2.47214 0.0784509
\(994\) 0 0
\(995\) −1.05573 −0.0334688
\(996\) 0 0
\(997\) −15.3607 −0.486478 −0.243239 0.969966i \(-0.578210\pi\)
−0.243239 + 0.969966i \(0.578210\pi\)
\(998\) 0 0
\(999\) −11.0557 −0.349788
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1984.2.a.n.1.2 2
4.3 odd 2 1984.2.a.r.1.1 2
8.3 odd 2 31.2.a.a.1.1 2
8.5 even 2 496.2.a.i.1.1 2
24.5 odd 2 4464.2.a.bf.1.2 2
24.11 even 2 279.2.a.a.1.2 2
40.3 even 4 775.2.b.d.249.3 4
40.19 odd 2 775.2.a.d.1.2 2
40.27 even 4 775.2.b.d.249.2 4
56.27 even 2 1519.2.a.a.1.1 2
88.43 even 2 3751.2.a.b.1.2 2
104.51 odd 2 5239.2.a.f.1.2 2
120.59 even 2 6975.2.a.y.1.1 2
136.67 odd 2 8959.2.a.b.1.1 2
248.3 even 30 961.2.g.d.846.1 8
248.11 even 30 961.2.g.e.338.1 8
248.19 odd 30 961.2.g.a.547.1 8
248.27 even 10 961.2.d.g.388.1 4
248.35 odd 10 961.2.d.d.388.1 4
248.43 even 30 961.2.g.d.547.1 8
248.51 odd 30 961.2.g.h.338.1 8
248.59 odd 30 961.2.g.a.846.1 8
248.67 odd 6 961.2.c.e.521.1 4
248.75 even 30 961.2.g.d.448.1 8
248.83 even 30 961.2.g.d.844.1 8
248.91 even 10 961.2.d.a.531.1 4
248.99 even 6 961.2.c.c.439.1 4
248.107 odd 30 961.2.g.h.816.1 8
248.115 even 30 961.2.g.e.732.1 8
248.123 even 2 961.2.a.f.1.1 2
248.131 odd 30 961.2.g.h.235.1 8
248.139 even 10 961.2.d.a.628.1 4
248.147 even 10 961.2.d.g.374.1 4
248.163 odd 10 961.2.d.d.374.1 4
248.171 odd 10 961.2.d.c.628.1 4
248.179 even 30 961.2.g.e.235.1 8
248.195 odd 30 961.2.g.h.732.1 8
248.203 even 30 961.2.g.e.816.1 8
248.211 odd 6 961.2.c.e.439.1 4
248.219 odd 10 961.2.d.c.531.1 4
248.227 odd 30 961.2.g.a.844.1 8
248.235 odd 30 961.2.g.a.448.1 8
248.243 even 6 961.2.c.c.521.1 4
744.371 odd 2 8649.2.a.c.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.a.a.1.1 2 8.3 odd 2
279.2.a.a.1.2 2 24.11 even 2
496.2.a.i.1.1 2 8.5 even 2
775.2.a.d.1.2 2 40.19 odd 2
775.2.b.d.249.2 4 40.27 even 4
775.2.b.d.249.3 4 40.3 even 4
961.2.a.f.1.1 2 248.123 even 2
961.2.c.c.439.1 4 248.99 even 6
961.2.c.c.521.1 4 248.243 even 6
961.2.c.e.439.1 4 248.211 odd 6
961.2.c.e.521.1 4 248.67 odd 6
961.2.d.a.531.1 4 248.91 even 10
961.2.d.a.628.1 4 248.139 even 10
961.2.d.c.531.1 4 248.219 odd 10
961.2.d.c.628.1 4 248.171 odd 10
961.2.d.d.374.1 4 248.163 odd 10
961.2.d.d.388.1 4 248.35 odd 10
961.2.d.g.374.1 4 248.147 even 10
961.2.d.g.388.1 4 248.27 even 10
961.2.g.a.448.1 8 248.235 odd 30
961.2.g.a.547.1 8 248.19 odd 30
961.2.g.a.844.1 8 248.227 odd 30
961.2.g.a.846.1 8 248.59 odd 30
961.2.g.d.448.1 8 248.75 even 30
961.2.g.d.547.1 8 248.43 even 30
961.2.g.d.844.1 8 248.83 even 30
961.2.g.d.846.1 8 248.3 even 30
961.2.g.e.235.1 8 248.179 even 30
961.2.g.e.338.1 8 248.11 even 30
961.2.g.e.732.1 8 248.115 even 30
961.2.g.e.816.1 8 248.203 even 30
961.2.g.h.235.1 8 248.131 odd 30
961.2.g.h.338.1 8 248.51 odd 30
961.2.g.h.732.1 8 248.195 odd 30
961.2.g.h.816.1 8 248.107 odd 30
1519.2.a.a.1.1 2 56.27 even 2
1984.2.a.n.1.2 2 1.1 even 1 trivial
1984.2.a.r.1.1 2 4.3 odd 2
3751.2.a.b.1.2 2 88.43 even 2
4464.2.a.bf.1.2 2 24.5 odd 2
5239.2.a.f.1.2 2 104.51 odd 2
6975.2.a.y.1.1 2 120.59 even 2
8649.2.a.c.1.2 2 744.371 odd 2
8959.2.a.b.1.1 2 136.67 odd 2