Properties

Label 2-78-1.1-c5-0-6
Degree $2$
Conductor $78$
Sign $-1$
Analytic cond. $12.5099$
Root an. cond. $3.53693$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s − 9·3-s + 16·4-s + 4·5-s + 36·6-s − 8·7-s − 64·8-s + 81·9-s − 16·10-s + 470·11-s − 144·12-s − 169·13-s + 32·14-s − 36·15-s + 256·16-s − 270·17-s − 324·18-s − 2.68e3·19-s + 64·20-s + 72·21-s − 1.88e3·22-s − 2.63e3·23-s + 576·24-s − 3.10e3·25-s + 676·26-s − 729·27-s − 128·28-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.0715·5-s + 0.408·6-s − 0.0617·7-s − 0.353·8-s + 1/3·9-s − 0.0505·10-s + 1.17·11-s − 0.288·12-s − 0.277·13-s + 0.0436·14-s − 0.0413·15-s + 1/4·16-s − 0.226·17-s − 0.235·18-s − 1.70·19-s + 0.0357·20-s + 0.0356·21-s − 0.828·22-s − 1.03·23-s + 0.204·24-s − 0.994·25-s + 0.196·26-s − 0.192·27-s − 0.0308·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 78 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 78 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(78\)    =    \(2 \cdot 3 \cdot 13\)
Sign: $-1$
Analytic conductor: \(12.5099\)
Root analytic conductor: \(3.53693\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 78,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + p^{2} T \)
3 \( 1 + p^{2} T \)
13 \( 1 + p^{2} T \)
good5 \( 1 - 4 T + p^{5} T^{2} \)
7 \( 1 + 8 T + p^{5} T^{2} \)
11 \( 1 - 470 T + p^{5} T^{2} \)
17 \( 1 + 270 T + p^{5} T^{2} \)
19 \( 1 + 2688 T + p^{5} T^{2} \)
23 \( 1 + 2636 T + p^{5} T^{2} \)
29 \( 1 + 950 T + p^{5} T^{2} \)
31 \( 1 + 284 T + p^{5} T^{2} \)
37 \( 1 + 15978 T + p^{5} T^{2} \)
41 \( 1 - 6324 T + p^{5} T^{2} \)
43 \( 1 - 6916 T + p^{5} T^{2} \)
47 \( 1 - 5810 T + p^{5} T^{2} \)
53 \( 1 + 1986 T + p^{5} T^{2} \)
59 \( 1 - 7210 T + p^{5} T^{2} \)
61 \( 1 - 17050 T + p^{5} T^{2} \)
67 \( 1 + 28652 T + p^{5} T^{2} \)
71 \( 1 - 40970 T + p^{5} T^{2} \)
73 \( 1 + 56002 T + p^{5} T^{2} \)
79 \( 1 - 16328 T + p^{5} T^{2} \)
83 \( 1 + 49962 T + p^{5} T^{2} \)
89 \( 1 + 62304 T + p^{5} T^{2} \)
97 \( 1 + 119722 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.60772043250875694950312104873, −11.70715460487360317747577025507, −10.64699266074999535464824415217, −9.585988899845665411616675875103, −8.428094522865072623543017545078, −6.95850646235105632652177115516, −5.95844252411820372949012293773, −4.09773098603447687162852988534, −1.84161534534573102855563261546, 0, 1.84161534534573102855563261546, 4.09773098603447687162852988534, 5.95844252411820372949012293773, 6.95850646235105632652177115516, 8.428094522865072623543017545078, 9.585988899845665411616675875103, 10.64699266074999535464824415217, 11.70715460487360317747577025507, 12.60772043250875694950312104873

Graph of the $Z$-function along the critical line