Properties

Label 78.6.a.a
Level $78$
Weight $6$
Character orbit 78.a
Self dual yes
Analytic conductor $12.510$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [78,6,Mod(1,78)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(78, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("78.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 78 = 2 \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 78.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(12.5099379454\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 4 q^{2} - 9 q^{3} + 16 q^{4} + 4 q^{5} + 36 q^{6} - 8 q^{7} - 64 q^{8} + 81 q^{9} - 16 q^{10} + 470 q^{11} - 144 q^{12} - 169 q^{13} + 32 q^{14} - 36 q^{15} + 256 q^{16} - 270 q^{17} - 324 q^{18} - 2688 q^{19}+ \cdots + 38070 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−4.00000 −9.00000 16.0000 4.00000 36.0000 −8.00000 −64.0000 81.0000 −16.0000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( +1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 78.6.a.a 1
3.b odd 2 1 234.6.a.f 1
4.b odd 2 1 624.6.a.f 1
13.b even 2 1 1014.6.a.e 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
78.6.a.a 1 1.a even 1 1 trivial
234.6.a.f 1 3.b odd 2 1
624.6.a.f 1 4.b odd 2 1
1014.6.a.e 1 13.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(78))\):

\( T_{5} - 4 \) Copy content Toggle raw display
\( T_{7} + 8 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 4 \) Copy content Toggle raw display
$3$ \( T + 9 \) Copy content Toggle raw display
$5$ \( T - 4 \) Copy content Toggle raw display
$7$ \( T + 8 \) Copy content Toggle raw display
$11$ \( T - 470 \) Copy content Toggle raw display
$13$ \( T + 169 \) Copy content Toggle raw display
$17$ \( T + 270 \) Copy content Toggle raw display
$19$ \( T + 2688 \) Copy content Toggle raw display
$23$ \( T + 2636 \) Copy content Toggle raw display
$29$ \( T + 950 \) Copy content Toggle raw display
$31$ \( T + 284 \) Copy content Toggle raw display
$37$ \( T + 15978 \) Copy content Toggle raw display
$41$ \( T - 6324 \) Copy content Toggle raw display
$43$ \( T - 6916 \) Copy content Toggle raw display
$47$ \( T - 5810 \) Copy content Toggle raw display
$53$ \( T + 1986 \) Copy content Toggle raw display
$59$ \( T - 7210 \) Copy content Toggle raw display
$61$ \( T - 17050 \) Copy content Toggle raw display
$67$ \( T + 28652 \) Copy content Toggle raw display
$71$ \( T - 40970 \) Copy content Toggle raw display
$73$ \( T + 56002 \) Copy content Toggle raw display
$79$ \( T - 16328 \) Copy content Toggle raw display
$83$ \( T + 49962 \) Copy content Toggle raw display
$89$ \( T + 62304 \) Copy content Toggle raw display
$97$ \( T + 119722 \) Copy content Toggle raw display
show more
show less