Properties

Label 2-28e2-1.1-c5-0-65
Degree $2$
Conductor $784$
Sign $-1$
Analytic cond. $125.740$
Root an. cond. $11.2134$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 10·3-s − 84·5-s − 143·9-s + 336·11-s − 584·13-s − 840·15-s + 1.45e3·17-s + 470·19-s + 4.20e3·23-s + 3.93e3·25-s − 3.86e3·27-s + 4.86e3·29-s − 7.37e3·31-s + 3.36e3·33-s + 1.43e4·37-s − 5.84e3·39-s − 6.22e3·41-s − 3.70e3·43-s + 1.20e4·45-s − 1.81e3·47-s + 1.45e4·51-s − 3.72e4·53-s − 2.82e4·55-s + 4.70e3·57-s + 3.43e4·59-s − 2.44e4·61-s + 4.90e4·65-s + ⋯
L(s)  = 1  + 0.641·3-s − 1.50·5-s − 0.588·9-s + 0.837·11-s − 0.958·13-s − 0.963·15-s + 1.22·17-s + 0.298·19-s + 1.65·23-s + 1.25·25-s − 1.01·27-s + 1.07·29-s − 1.37·31-s + 0.537·33-s + 1.72·37-s − 0.614·39-s − 0.578·41-s − 0.305·43-s + 0.884·45-s − 0.119·47-s + 0.784·51-s − 1.82·53-s − 1.25·55-s + 0.191·57-s + 1.28·59-s − 0.842·61-s + 1.44·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 784 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 784 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(784\)    =    \(2^{4} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(125.740\)
Root analytic conductor: \(11.2134\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 784,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
good3 \( 1 - 10 T + p^{5} T^{2} \)
5 \( 1 + 84 T + p^{5} T^{2} \)
11 \( 1 - 336 T + p^{5} T^{2} \)
13 \( 1 + 584 T + p^{5} T^{2} \)
17 \( 1 - 1458 T + p^{5} T^{2} \)
19 \( 1 - 470 T + p^{5} T^{2} \)
23 \( 1 - 4200 T + p^{5} T^{2} \)
29 \( 1 - 4866 T + p^{5} T^{2} \)
31 \( 1 + 7372 T + p^{5} T^{2} \)
37 \( 1 - 14330 T + p^{5} T^{2} \)
41 \( 1 + 6222 T + p^{5} T^{2} \)
43 \( 1 + 3704 T + p^{5} T^{2} \)
47 \( 1 + 1812 T + p^{5} T^{2} \)
53 \( 1 + 37242 T + p^{5} T^{2} \)
59 \( 1 - 34302 T + p^{5} T^{2} \)
61 \( 1 + 24476 T + p^{5} T^{2} \)
67 \( 1 - 17452 T + p^{5} T^{2} \)
71 \( 1 + 28224 T + p^{5} T^{2} \)
73 \( 1 + 3602 T + p^{5} T^{2} \)
79 \( 1 + 42872 T + p^{5} T^{2} \)
83 \( 1 + 35202 T + p^{5} T^{2} \)
89 \( 1 + 26730 T + p^{5} T^{2} \)
97 \( 1 - 16978 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.032651152314828871476961988173, −8.151907807435224999155651612292, −7.58358075550629032868440981878, −6.78610692388255677658014028333, −5.41160569603738275873205852152, −4.41408406214326022029159289132, −3.42335796159392902091704565607, −2.83084809603543374774581528358, −1.16778353231208119146753746316, 0, 1.16778353231208119146753746316, 2.83084809603543374774581528358, 3.42335796159392902091704565607, 4.41408406214326022029159289132, 5.41160569603738275873205852152, 6.78610692388255677658014028333, 7.58358075550629032868440981878, 8.151907807435224999155651612292, 9.032651152314828871476961988173

Graph of the $Z$-function along the critical line