Properties

Label 2-7942-1.1-c1-0-277
Degree $2$
Conductor $7942$
Sign $-1$
Analytic cond. $63.4171$
Root an. cond. $7.96349$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 0.385·3-s + 4-s − 0.181·5-s + 0.385·6-s + 4.50·7-s + 8-s − 2.85·9-s − 0.181·10-s − 11-s + 0.385·12-s + 0.761·13-s + 4.50·14-s − 0.0700·15-s + 16-s − 6.46·17-s − 2.85·18-s − 0.181·20-s + 1.73·21-s − 22-s − 3.57·23-s + 0.385·24-s − 4.96·25-s + 0.761·26-s − 2.25·27-s + 4.50·28-s − 2.59·29-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.222·3-s + 0.5·4-s − 0.0813·5-s + 0.157·6-s + 1.70·7-s + 0.353·8-s − 0.950·9-s − 0.0575·10-s − 0.301·11-s + 0.111·12-s + 0.211·13-s + 1.20·14-s − 0.0180·15-s + 0.250·16-s − 1.56·17-s − 0.672·18-s − 0.0406·20-s + 0.378·21-s − 0.213·22-s − 0.746·23-s + 0.0786·24-s − 0.993·25-s + 0.149·26-s − 0.433·27-s + 0.850·28-s − 0.482·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7942 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7942 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7942\)    =    \(2 \cdot 11 \cdot 19^{2}\)
Sign: $-1$
Analytic conductor: \(63.4171\)
Root analytic conductor: \(7.96349\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 7942,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
11 \( 1 + T \)
19 \( 1 \)
good3 \( 1 - 0.385T + 3T^{2} \)
5 \( 1 + 0.181T + 5T^{2} \)
7 \( 1 - 4.50T + 7T^{2} \)
13 \( 1 - 0.761T + 13T^{2} \)
17 \( 1 + 6.46T + 17T^{2} \)
23 \( 1 + 3.57T + 23T^{2} \)
29 \( 1 + 2.59T + 29T^{2} \)
31 \( 1 + 7.45T + 31T^{2} \)
37 \( 1 + 2.57T + 37T^{2} \)
41 \( 1 + 10.3T + 41T^{2} \)
43 \( 1 - 9.03T + 43T^{2} \)
47 \( 1 + 7.51T + 47T^{2} \)
53 \( 1 + 1.47T + 53T^{2} \)
59 \( 1 + 4.42T + 59T^{2} \)
61 \( 1 + 0.995T + 61T^{2} \)
67 \( 1 + 11.9T + 67T^{2} \)
71 \( 1 - 7.43T + 71T^{2} \)
73 \( 1 + 6.03T + 73T^{2} \)
79 \( 1 - 12.3T + 79T^{2} \)
83 \( 1 + 13.4T + 83T^{2} \)
89 \( 1 + 2.63T + 89T^{2} \)
97 \( 1 - 3.37T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.60676692068315683687136280060, −6.77815565884750920503237970674, −5.85620409446693575679431234536, −5.39943264759823758950622415057, −4.62889701622997284534431153520, −4.05883211423796976776922419317, −3.17225916068366999525321273566, −2.08780269100083208724401032297, −1.78262817768820759926666798913, 0, 1.78262817768820759926666798913, 2.08780269100083208724401032297, 3.17225916068366999525321273566, 4.05883211423796976776922419317, 4.62889701622997284534431153520, 5.39943264759823758950622415057, 5.85620409446693575679431234536, 6.77815565884750920503237970674, 7.60676692068315683687136280060

Graph of the $Z$-function along the critical line