gp: [N,k,chi] = [7942,2,Mod(1,7942)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(7942, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("7942.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [12,12,-3,12,-9,-3,0]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , … , β 11 1,\beta_1,\ldots,\beta_{11} 1 , β 1 , … , β 1 1 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 12 − 3 x 11 − 15 x 10 + 41 x 9 + 90 x 8 − 198 x 7 − 285 x 6 + 396 x 5 + 486 x 4 + ⋯ − 3 x^{12} - 3 x^{11} - 15 x^{10} + 41 x^{9} + 90 x^{8} - 198 x^{7} - 285 x^{6} + 396 x^{5} + 486 x^{4} + \cdots - 3 x 1 2 − 3 x 1 1 − 1 5 x 1 0 + 4 1 x 9 + 9 0 x 8 − 1 9 8 x 7 − 2 8 5 x 6 + 3 9 6 x 5 + 4 8 6 x 4 + ⋯ − 3
x^12 - 3*x^11 - 15*x^10 + 41*x^9 + 90*x^8 - 198*x^7 - 285*x^6 + 396*x^5 + 486*x^4 - 240*x^3 - 351*x^2 - 90*x - 3
:
β 1 \beta_{1} β 1 = = =
ν \nu ν
v
β 2 \beta_{2} β 2 = = =
( 93 ν 11 − 355 ν 10 − 215 ν 9 + 1497 ν 8 − 4066 ν 7 + 11828 ν 6 + 16444 ν 5 + ⋯ − 7229 ) / 2069 ( 93 \nu^{11} - 355 \nu^{10} - 215 \nu^{9} + 1497 \nu^{8} - 4066 \nu^{7} + 11828 \nu^{6} + 16444 \nu^{5} + \cdots - 7229 ) / 2069 ( 9 3 ν 1 1 − 3 5 5 ν 1 0 − 2 1 5 ν 9 + 1 4 9 7 ν 8 − 4 0 6 6 ν 7 + 1 1 8 2 8 ν 6 + 1 6 4 4 4 ν 5 + ⋯ − 7 2 2 9 ) / 2 0 6 9
(93*v^11 - 355*v^10 - 215*v^9 + 1497*v^8 - 4066*v^7 + 11828*v^6 + 16444*v^5 - 64398*v^4 - 21577*v^3 + 78629*v^2 + 15183*v - 7229) / 2069
β 3 \beta_{3} β 3 = = =
( 313 ν 11 − 1484 ν 10 − 3638 ν 9 + 21924 ν 8 + 13257 ν 7 − 115656 ν 6 + ⋯ + 18207 ) / 6207 ( 313 \nu^{11} - 1484 \nu^{10} - 3638 \nu^{9} + 21924 \nu^{8} + 13257 \nu^{7} - 115656 \nu^{6} + \cdots + 18207 ) / 6207 ( 3 1 3 ν 1 1 − 1 4 8 4 ν 1 0 − 3 6 3 8 ν 9 + 2 1 9 2 4 ν 8 + 1 3 2 5 7 ν 7 − 1 1 5 6 5 6 ν 6 + ⋯ + 1 8 2 0 7 ) / 6 2 0 7
(313*v^11 - 1484*v^10 - 3638*v^9 + 21924*v^8 + 13257*v^7 - 115656*v^6 - 16782*v^5 + 260334*v^4 + 17460*v^3 - 222939*v^2 - 35598*v + 18207) / 6207
β 4 \beta_{4} β 4 = = =
( − 316 ν 11 + 3164 ν 10 − 1027 ν 9 − 42996 ν 8 + 35796 ν 7 + 216255 ν 6 + ⋯ − 12234 ) / 6207 ( - 316 \nu^{11} + 3164 \nu^{10} - 1027 \nu^{9} - 42996 \nu^{8} + 35796 \nu^{7} + 216255 \nu^{6} + \cdots - 12234 ) / 6207 ( − 3 1 6 ν 1 1 + 3 1 6 4 ν 1 0 − 1 0 2 7 ν 9 − 4 2 9 9 6 ν 8 + 3 5 7 9 6 ν 7 + 2 1 6 2 5 5 ν 6 + ⋯ − 1 2 2 3 4 ) / 6 2 0 7
(-316*v^11 + 3164*v^10 - 1027*v^9 - 42996*v^8 + 35796*v^7 + 216255*v^6 - 128178*v^5 - 501531*v^4 + 57987*v^3 + 463143*v^2 + 165255*v - 12234) / 6207
β 5 \beta_{5} β 5 = = =
( 487 ν 11 + 388 ν 10 − 12383 ν 9 − 3507 ν 8 + 97887 ν 7 + 14529 ν 6 + ⋯ + 744 ) / 6207 ( 487 \nu^{11} + 388 \nu^{10} - 12383 \nu^{9} - 3507 \nu^{8} + 97887 \nu^{7} + 14529 \nu^{6} + \cdots + 744 ) / 6207 ( 4 8 7 ν 1 1 + 3 8 8 ν 1 0 − 1 2 3 8 3 ν 9 − 3 5 0 7 ν 8 + 9 7 8 8 7 ν 7 + 1 4 5 2 9 ν 6 + ⋯ + 7 4 4 ) / 6 2 0 7
(487*v^11 + 388*v^10 - 12383*v^9 - 3507*v^8 + 97887*v^7 + 14529*v^6 - 305109*v^5 - 57375*v^4 + 340233*v^3 + 96501*v^2 - 32820*v + 744) / 6207
β 6 \beta_{6} β 6 = = =
( − 614 ν 11 + 2455 ν 10 + 7315 ν 9 − 34044 ν 8 − 30309 ν 7 + 170301 ν 6 + ⋯ + 26592 ) / 6207 ( - 614 \nu^{11} + 2455 \nu^{10} + 7315 \nu^{9} - 34044 \nu^{8} - 30309 \nu^{7} + 170301 \nu^{6} + \cdots + 26592 ) / 6207 ( − 6 1 4 ν 1 1 + 2 4 5 5 ν 1 0 + 7 3 1 5 ν 9 − 3 4 0 4 4 ν 8 − 3 0 3 0 9 ν 7 + 1 7 0 3 0 1 ν 6 + ⋯ + 2 6 5 9 2 ) / 6 2 0 7
(-614*v^11 + 2455*v^10 + 7315*v^9 - 34044*v^8 - 30309*v^7 + 170301*v^6 + 67188*v^5 - 368997*v^4 - 138084*v^3 + 285765*v^2 + 179475*v + 26592) / 6207
β 7 \beta_{7} β 7 = = =
( − 679 ν 11 + 1613 ν 10 + 11759 ν 9 − 23010 ν 8 − 80616 ν 7 + 117495 ν 6 + ⋯ + 27729 ) / 6207 ( - 679 \nu^{11} + 1613 \nu^{10} + 11759 \nu^{9} - 23010 \nu^{8} - 80616 \nu^{7} + 117495 \nu^{6} + \cdots + 27729 ) / 6207 ( − 6 7 9 ν 1 1 + 1 6 1 3 ν 1 0 + 1 1 7 5 9 ν 9 − 2 3 0 1 0 ν 8 − 8 0 6 1 6 ν 7 + 1 1 7 4 9 5 ν 6 + ⋯ + 2 7 7 2 9 ) / 6 2 0 7
(-679*v^11 + 1613*v^10 + 11759*v^9 - 23010*v^8 - 80616*v^7 + 117495*v^6 + 269892*v^5 - 252774*v^4 - 421362*v^3 + 181131*v^2 + 230733*v + 27729) / 6207
β 8 \beta_{8} β 8 = = =
( 992 ν 11 − 3097 ν 10 − 15397 ν 9 + 44934 ν 8 + 93873 ν 7 − 233151 ν 6 + ⋯ − 21936 ) / 6207 ( 992 \nu^{11} - 3097 \nu^{10} - 15397 \nu^{9} + 44934 \nu^{8} + 93873 \nu^{7} - 233151 \nu^{6} + \cdots - 21936 ) / 6207 ( 9 9 2 ν 1 1 − 3 0 9 7 ν 1 0 − 1 5 3 9 7 ν 9 + 4 4 9 3 4 ν 8 + 9 3 8 7 3 ν 7 − 2 3 3 1 5 1 ν 6 + ⋯ − 2 1 9 3 6 ) / 6 2 0 7
(992*v^11 - 3097*v^10 - 15397*v^9 + 44934*v^8 + 93873*v^7 - 233151*v^6 - 286674*v^5 + 513108*v^4 + 438822*v^3 - 397863*v^2 - 272538*v - 21936) / 6207
β 9 \beta_{9} β 9 = = =
( − 1379 ν 11 + 2572 ν 10 + 21898 ν 9 − 25935 ν 8 − 134418 ν 7 + 57789 ν 6 + ⋯ + 35199 ) / 6207 ( - 1379 \nu^{11} + 2572 \nu^{10} + 21898 \nu^{9} - 25935 \nu^{8} - 134418 \nu^{7} + 57789 \nu^{6} + \cdots + 35199 ) / 6207 ( − 1 3 7 9 ν 1 1 + 2 5 7 2 ν 1 0 + 2 1 8 9 8 ν 9 − 2 5 9 3 5 ν 8 − 1 3 4 4 1 8 ν 7 + 5 7 7 8 9 ν 6 + ⋯ + 3 5 1 9 9 ) / 6 2 0 7
(-1379*v^11 + 2572*v^10 + 21898*v^9 - 25935*v^8 - 134418*v^7 + 57789*v^6 + 381630*v^5 + 90249*v^4 - 413907*v^3 - 302556*v^2 + 15939*v + 35199) / 6207
β 10 \beta_{10} β 1 0 = = =
( 1642 ν 11 − 7091 ν 10 − 16388 ν 9 + 89769 ν 8 + 50727 ν 7 − 400275 ν 6 + ⋯ − 20892 ) / 6207 ( 1642 \nu^{11} - 7091 \nu^{10} - 16388 \nu^{9} + 89769 \nu^{8} + 50727 \nu^{7} - 400275 \nu^{6} + \cdots - 20892 ) / 6207 ( 1 6 4 2 ν 1 1 − 7 0 9 1 ν 1 0 − 1 6 3 8 8 ν 9 + 8 9 7 6 9 ν 8 + 5 0 7 2 7 ν 7 − 4 0 0 2 7 5 ν 6 + ⋯ − 2 0 8 9 2 ) / 6 2 0 7
(1642*v^11 - 7091*v^10 - 16388*v^9 + 89769*v^8 + 50727*v^7 - 400275*v^6 - 85401*v^5 + 772281*v^4 + 192930*v^3 - 549474*v^2 - 257523*v - 20892) / 6207
β 11 \beta_{11} β 1 1 = = =
( − 854 ν 11 + 2370 ν 10 + 12742 ν 9 − 31500 ν 8 − 72342 ν 7 + 144983 ν 6 + ⋯ − 404 ) / 2069 ( - 854 \nu^{11} + 2370 \nu^{10} + 12742 \nu^{9} - 31500 \nu^{8} - 72342 \nu^{7} + 144983 \nu^{6} + \cdots - 404 ) / 2069 ( − 8 5 4 ν 1 1 + 2 3 7 0 ν 1 0 + 1 2 7 4 2 ν 9 − 3 1 5 0 0 ν 8 − 7 2 3 4 2 ν 7 + 1 4 4 9 8 3 ν 6 + ⋯ − 4 0 4 ) / 2 0 6 9
(-854*v^11 + 2370*v^10 + 12742*v^9 - 31500*v^8 - 72342*v^7 + 144983*v^6 + 195411*v^5 - 269951*v^4 - 238978*v^3 + 165211*v^2 + 91171*v - 404) / 2069
ν \nu ν = = =
β 1 \beta_1 β 1
b1
ν 2 \nu^{2} ν 2 = = =
β 8 + β 7 − β 3 + β 1 + 2 \beta_{8} + \beta_{7} - \beta_{3} + \beta _1 + 2 β 8 + β 7 − β 3 + β 1 + 2
b8 + b7 - b3 + b1 + 2
ν 3 \nu^{3} ν 3 = = =
− β 11 − 2 β 10 + β 8 + β 7 − β 6 − β 5 − β 4 − β 3 + β 2 + 5 β 1 + 1 -\beta_{11} - 2\beta_{10} + \beta_{8} + \beta_{7} - \beta_{6} - \beta_{5} - \beta_{4} - \beta_{3} + \beta_{2} + 5\beta _1 + 1 − β 1 1 − 2 β 1 0 + β 8 + β 7 − β 6 − β 5 − β 4 − β 3 + β 2 + 5 β 1 + 1
-b11 - 2*b10 + b8 + b7 - b6 - b5 - b4 - b3 + b2 + 5*b1 + 1
ν 4 \nu^{4} ν 4 = = =
− 2 β 11 − 4 β 10 + 9 β 8 + 10 β 7 − β 6 − 4 β 4 − 10 β 3 + ⋯ + 6 - 2 \beta_{11} - 4 \beta_{10} + 9 \beta_{8} + 10 \beta_{7} - \beta_{6} - 4 \beta_{4} - 10 \beta_{3} + \cdots + 6 − 2 β 1 1 − 4 β 1 0 + 9 β 8 + 1 0 β 7 − β 6 − 4 β 4 − 1 0 β 3 + ⋯ + 6
-2*b11 - 4*b10 + 9*b8 + 10*b7 - b6 - 4*b4 - 10*b3 + 2*b2 + 9*b1 + 6
ν 5 \nu^{5} ν 5 = = =
− 14 β 11 − 25 β 10 + 15 β 8 + 17 β 7 − 10 β 6 − 12 β 5 − 15 β 4 + ⋯ + 2 - 14 \beta_{11} - 25 \beta_{10} + 15 \beta_{8} + 17 \beta_{7} - 10 \beta_{6} - 12 \beta_{5} - 15 \beta_{4} + \cdots + 2 − 1 4 β 1 1 − 2 5 β 1 0 + 1 5 β 8 + 1 7 β 7 − 1 0 β 6 − 1 2 β 5 − 1 5 β 4 + ⋯ + 2
-14*b11 - 25*b10 + 15*b8 + 17*b7 - 10*b6 - 12*b5 - 15*b4 - 20*b3 + 11*b2 + 36*b1 + 2
ν 6 \nu^{6} ν 6 = = =
− 33 β 11 − 61 β 10 − 2 β 9 + 79 β 8 + 94 β 7 − 17 β 6 − 10 β 5 + ⋯ + 10 - 33 \beta_{11} - 61 \beta_{10} - 2 \beta_{9} + 79 \beta_{8} + 94 \beta_{7} - 17 \beta_{6} - 10 \beta_{5} + \cdots + 10 − 3 3 β 1 1 − 6 1 β 1 0 − 2 β 9 + 7 9 β 8 + 9 4 β 7 − 1 7 β 6 − 1 0 β 5 + ⋯ + 1 0
-33*b11 - 61*b10 - 2*b9 + 79*b8 + 94*b7 - 17*b6 - 10*b5 - 57*b4 - 103*b3 + 25*b2 + 85*b1 + 10
ν 7 \nu^{7} ν 7 = = =
− 154 β 11 − 264 β 10 − 3 β 9 + 172 β 8 + 208 β 7 − 93 β 6 + ⋯ − 34 - 154 \beta_{11} - 264 \beta_{10} - 3 \beta_{9} + 172 \beta_{8} + 208 \beta_{7} - 93 \beta_{6} + \cdots - 34 − 1 5 4 β 1 1 − 2 6 4 β 1 0 − 3 β 9 + 1 7 2 β 8 + 2 0 8 β 7 − 9 3 β 6 + ⋯ − 3 4
-154*b11 - 264*b10 - 3*b9 + 172*b8 + 208*b7 - 93*b6 - 116*b5 - 182*b4 - 262*b3 + 105*b2 + 309*b1 - 34
ν 8 \nu^{8} ν 8 = = =
− 410 β 11 − 721 β 10 − 28 β 9 + 718 β 8 + 892 β 7 − 210 β 6 + ⋯ − 113 - 410 \beta_{11} - 721 \beta_{10} - 28 \beta_{9} + 718 \beta_{8} + 892 \beta_{7} - 210 \beta_{6} + \cdots - 113 − 4 1 0 β 1 1 − 7 2 1 β 1 0 − 2 8 β 9 + 7 1 8 β 8 + 8 9 2 β 7 − 2 1 0 β 6 + ⋯ − 1 1 3
-410*b11 - 721*b10 - 28*b9 + 718*b8 + 892*b7 - 210*b6 - 181*b5 - 644*b4 - 1056*b3 + 267*b2 + 838*b1 - 113
ν 9 \nu^{9} ν 9 = = =
− 1596 β 11 − 2685 β 10 − 54 β 9 + 1830 β 8 + 2300 β 7 − 885 β 6 + ⋯ − 647 - 1596 \beta_{11} - 2685 \beta_{10} - 54 \beta_{9} + 1830 \beta_{8} + 2300 \beta_{7} - 885 \beta_{6} + \cdots - 647 − 1 5 9 6 β 1 1 − 2 6 8 5 β 1 0 − 5 4 β 9 + 1 8 3 0 β 8 + 2 3 0 0 β 7 − 8 8 5 β 6 + ⋯ − 6 4 7
-1596*b11 - 2685*b10 - 54*b9 + 1830*b8 + 2300*b7 - 885*b6 - 1091*b5 - 2013*b4 - 2987*b3 + 998*b2 + 2883*b1 - 647
ν 10 \nu^{10} ν 1 0 = = =
− 4581 β 11 − 7828 β 10 − 295 β 9 + 6767 β 8 + 8631 β 7 − 2335 β 6 + ⋯ − 2135 - 4581 \beta_{11} - 7828 \beta_{10} - 295 \beta_{9} + 6767 \beta_{8} + 8631 \beta_{7} - 2335 \beta_{6} + \cdots - 2135 − 4 5 8 1 β 1 1 − 7 8 2 8 β 1 0 − 2 9 5 β 9 + 6 7 6 7 β 8 + 8 6 3 1 β 7 − 2 3 3 5 β 6 + ⋯ − 2 1 3 5
-4581*b11 - 7828*b10 - 295*b9 + 6767*b8 + 8631*b7 - 2335*b6 - 2323*b5 - 6798*b4 - 10749*b3 + 2766*b2 + 8408*b1 - 2135
ν 11 \nu^{11} ν 1 1 = = =
− 16254 β 11 − 27080 β 10 − 677 β 9 + 18943 β 8 + 24349 β 7 − 8639 β 6 + ⋯ − 8165 - 16254 \beta_{11} - 27080 \beta_{10} - 677 \beta_{9} + 18943 \beta_{8} + 24349 \beta_{7} - 8639 \beta_{6} + \cdots - 8165 − 1 6 2 5 4 β 1 1 − 2 7 0 8 0 β 1 0 − 6 7 7 β 9 + 1 8 9 4 3 β 8 + 2 4 3 4 9 β 7 − 8 6 3 9 β 6 + ⋯ − 8 1 6 5
-16254*b11 - 27080*b10 - 677*b9 + 18943*b8 + 24349*b7 - 8639*b6 - 10386*b5 - 21294*b4 - 32068*b3 + 9673*b2 + 27988*b1 - 8165
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
2 2 2
− 1 -1 − 1
11 11 1 1
+ 1 +1 + 1
19 19 1 9
− 1 -1 − 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( Γ 0 ( 7942 ) ) S_{2}^{\mathrm{new}}(\Gamma_0(7942)) S 2 n e w ( Γ 0 ( 7 9 4 2 ) ) :
T 3 12 + 3 T 3 11 − 15 T 3 10 − 41 T 3 9 + 90 T 3 8 + 198 T 3 7 − 285 T 3 6 + ⋯ − 3 T_{3}^{12} + 3 T_{3}^{11} - 15 T_{3}^{10} - 41 T_{3}^{9} + 90 T_{3}^{8} + 198 T_{3}^{7} - 285 T_{3}^{6} + \cdots - 3 T 3 1 2 + 3 T 3 1 1 − 1 5 T 3 1 0 − 4 1 T 3 9 + 9 0 T 3 8 + 1 9 8 T 3 7 − 2 8 5 T 3 6 + ⋯ − 3
T3^12 + 3*T3^11 - 15*T3^10 - 41*T3^9 + 90*T3^8 + 198*T3^7 - 285*T3^6 - 396*T3^5 + 486*T3^4 + 240*T3^3 - 351*T3^2 + 90*T3 - 3
T 5 12 + 9 T 5 11 + 9 T 5 10 − 117 T 5 9 − 261 T 5 8 + 459 T 5 7 + 1287 T 5 6 + ⋯ − 81 T_{5}^{12} + 9 T_{5}^{11} + 9 T_{5}^{10} - 117 T_{5}^{9} - 261 T_{5}^{8} + 459 T_{5}^{7} + 1287 T_{5}^{6} + \cdots - 81 T 5 1 2 + 9 T 5 1 1 + 9 T 5 1 0 − 1 1 7 T 5 9 − 2 6 1 T 5 8 + 4 5 9 T 5 7 + 1 2 8 7 T 5 6 + ⋯ − 8 1
T5^12 + 9*T5^11 + 9*T5^10 - 117*T5^9 - 261*T5^8 + 459*T5^7 + 1287*T5^6 - 756*T5^5 - 1998*T5^4 + 900*T5^3 + 891*T5^2 - 324*T5 - 81
T 13 12 − 75 T 13 10 + 26 T 13 9 + 1683 T 13 8 − 1944 T 13 7 − 14682 T 13 6 + ⋯ + 11503 T_{13}^{12} - 75 T_{13}^{10} + 26 T_{13}^{9} + 1683 T_{13}^{8} - 1944 T_{13}^{7} - 14682 T_{13}^{6} + \cdots + 11503 T 1 3 1 2 − 7 5 T 1 3 1 0 + 2 6 T 1 3 9 + 1 6 8 3 T 1 3 8 − 1 9 4 4 T 1 3 7 − 1 4 6 8 2 T 1 3 6 + ⋯ + 1 1 5 0 3
T13^12 - 75*T13^10 + 26*T13^9 + 1683*T13^8 - 1944*T13^7 - 14682*T13^6 + 31302*T13^5 + 27864*T13^4 - 140461*T13^3 + 156069*T13^2 - 71439*T13 + 11503
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
( T − 1 ) 12 (T - 1)^{12} ( T − 1 ) 1 2
(T - 1)^12
3 3 3
T 12 + 3 T 11 + ⋯ − 3 T^{12} + 3 T^{11} + \cdots - 3 T 1 2 + 3 T 1 1 + ⋯ − 3
T^12 + 3*T^11 - 15*T^10 - 41*T^9 + 90*T^8 + 198*T^7 - 285*T^6 - 396*T^5 + 486*T^4 + 240*T^3 - 351*T^2 + 90*T - 3
5 5 5
T 12 + 9 T 11 + ⋯ − 81 T^{12} + 9 T^{11} + \cdots - 81 T 1 2 + 9 T 1 1 + ⋯ − 8 1
T^12 + 9*T^11 + 9*T^10 - 117*T^9 - 261*T^8 + 459*T^7 + 1287*T^6 - 756*T^5 - 1998*T^4 + 900*T^3 + 891*T^2 - 324*T - 81
7 7 7
T 12 − 39 T 10 + ⋯ + 3 T^{12} - 39 T^{10} + \cdots + 3 T 1 2 − 3 9 T 1 0 + ⋯ + 3
T^12 - 39*T^10 - 11*T^9 + 522*T^8 + 162*T^7 - 2829*T^6 - 126*T^5 + 5589*T^4 - 2589*T^3 - 702*T^2 + 36*T + 3
11 11 1 1
( T + 1 ) 12 (T + 1)^{12} ( T + 1 ) 1 2
(T + 1)^12
13 13 1 3
T 12 − 75 T 10 + ⋯ + 11503 T^{12} - 75 T^{10} + \cdots + 11503 T 1 2 − 7 5 T 1 0 + ⋯ + 1 1 5 0 3
T^12 - 75*T^10 + 26*T^9 + 1683*T^8 - 1944*T^7 - 14682*T^6 + 31302*T^5 + 27864*T^4 - 140461*T^3 + 156069*T^2 - 71439*T + 11503
17 17 1 7
T 12 + 9 T 11 + ⋯ + 157797 T^{12} + 9 T^{11} + \cdots + 157797 T 1 2 + 9 T 1 1 + ⋯ + 1 5 7 7 9 7
T^12 + 9*T^11 - 81*T^10 - 834*T^9 + 1782*T^8 + 24921*T^7 - 6354*T^6 - 274581*T^5 - 40293*T^4 + 970640*T^3 - 334809*T^2 - 380151*T + 157797
19 19 1 9
T 12 T^{12} T 1 2
T^12
23 23 2 3
T 12 + 18 T 11 + ⋯ + 10344987 T^{12} + 18 T^{11} + \cdots + 10344987 T 1 2 + 1 8 T 1 1 + ⋯ + 1 0 3 4 4 9 8 7
T^12 + 18*T^11 + 45*T^10 - 927*T^9 - 5814*T^8 + 7632*T^7 + 136770*T^6 + 186822*T^5 - 1060074*T^4 - 3031082*T^3 + 1184004*T^2 + 11563767*T + 10344987
29 29 2 9
T 12 − 9 T 11 + ⋯ − 6230061 T^{12} - 9 T^{11} + \cdots - 6230061 T 1 2 − 9 T 1 1 + ⋯ − 6 2 3 0 0 6 1
T^12 - 9*T^11 - 180*T^10 + 1275*T^9 + 13158*T^8 - 52974*T^7 - 483264*T^6 + 410697*T^5 + 7310970*T^4 + 9657282*T^3 - 14348610*T^2 - 29220048*T - 6230061
31 31 3 1
T 12 + 27 T 11 + ⋯ + 23815963 T^{12} + 27 T^{11} + \cdots + 23815963 T 1 2 + 2 7 T 1 1 + ⋯ + 2 3 8 1 5 9 6 3
T^12 + 27*T^11 + 150*T^10 - 1966*T^9 - 24435*T^8 - 22752*T^7 + 750390*T^6 + 2951019*T^5 - 3340989*T^4 - 30566002*T^3 - 13877163*T^2 + 75183132*T + 23815963
37 37 3 7
T 12 + ⋯ + 133364607 T^{12} + \cdots + 133364607 T 1 2 + ⋯ + 1 3 3 3 6 4 6 0 7
T^12 + 9*T^11 - 174*T^10 - 1975*T^9 + 6165*T^8 + 129501*T^7 + 192900*T^6 - 2792187*T^5 - 11200185*T^4 + 6336912*T^3 + 109668267*T^2 + 215284122*T + 133364607
41 41 4 1
T 12 + 27 T 11 + ⋯ + 19766277 T^{12} + 27 T^{11} + \cdots + 19766277 T 1 2 + 2 7 T 1 1 + ⋯ + 1 9 7 6 6 2 7 7
T^12 + 27*T^11 + 63*T^10 - 4002*T^9 - 30807*T^8 + 148050*T^7 + 2021067*T^6 + 556290*T^5 - 43454610*T^4 - 79419952*T^3 + 229112928*T^2 + 400399425*T + 19766277
43 43 4 3
T 12 − 9 T 11 + ⋯ − 266779 T^{12} - 9 T^{11} + \cdots - 266779 T 1 2 − 9 T 1 1 + ⋯ − 2 6 6 7 7 9
T^12 - 9*T^11 - 255*T^10 + 2422*T^9 + 20349*T^8 - 210258*T^7 - 548139*T^6 + 6767217*T^5 + 2558025*T^4 - 57320887*T^3 - 36293688*T^2 + 20787762*T - 266779
47 47 4 7
T 12 + 27 T 11 + ⋯ + 81815211 T^{12} + 27 T^{11} + \cdots + 81815211 T 1 2 + 2 7 T 1 1 + ⋯ + 8 1 8 1 5 2 1 1
T^12 + 27*T^11 + 45*T^10 - 4596*T^9 - 36990*T^8 + 145926*T^7 + 2422980*T^6 + 3259116*T^5 - 41634900*T^4 - 133180824*T^3 + 6246207*T^2 + 233105148*T + 81815211
53 53 5 3
T 12 − 18 T 11 + ⋯ + 1796247 T^{12} - 18 T^{11} + \cdots + 1796247 T 1 2 − 1 8 T 1 1 + ⋯ + 1 7 9 6 2 4 7
T^12 - 18*T^11 - 36*T^10 + 1971*T^9 - 4113*T^8 - 67752*T^7 + 216708*T^6 + 841554*T^5 - 2797470*T^4 - 4051801*T^3 + 8678133*T^2 + 11972997*T + 1796247
59 59 5 9
T 12 + ⋯ + 296333613 T^{12} + \cdots + 296333613 T 1 2 + ⋯ + 2 9 6 3 3 3 6 1 3
T^12 - 333*T^10 + 195*T^9 + 39159*T^8 - 19584*T^7 - 2042325*T^6 - 145944*T^5 + 47434374*T^4 + 38013508*T^3 - 372842154*T^2 - 410891697*T + 296333613
61 61 6 1
T 12 + 18 T 11 + ⋯ + 1638579 T^{12} + 18 T^{11} + \cdots + 1638579 T 1 2 + 1 8 T 1 1 + ⋯ + 1 6 3 8 5 7 9
T^12 + 18*T^11 - 3*T^10 - 1757*T^9 - 8712*T^8 + 29412*T^7 + 292866*T^6 + 297792*T^5 - 1899828*T^4 - 3363549*T^3 + 3426174*T^2 + 6473718*T + 1638579
67 67 6 7
T 12 + ⋯ − 1220891289 T^{12} + \cdots - 1220891289 T 1 2 + ⋯ − 1 2 2 0 8 9 1 2 8 9
T^12 - 9*T^11 - 417*T^10 + 4493*T^9 + 47880*T^8 - 686925*T^7 - 544278*T^6 + 34371270*T^5 - 111613095*T^4 - 242018175*T^3 + 1630440918*T^2 - 1593298953*T - 1220891289
71 71 7 1
T 12 + ⋯ + 198281169 T^{12} + \cdots + 198281169 T 1 2 + ⋯ + 1 9 8 2 8 1 1 6 9
T^12 + 9*T^11 - 351*T^10 - 2751*T^9 + 39789*T^8 + 278748*T^7 - 1509831*T^6 - 12490308*T^5 + 4459284*T^4 + 194273099*T^3 + 518084100*T^2 + 536543703*T + 198281169
73 73 7 3
T 12 + ⋯ + 516405459 T^{12} + \cdots + 516405459 T 1 2 + ⋯ + 5 1 6 4 0 5 4 5 9
T^12 - 18*T^11 - 246*T^10 + 4534*T^9 + 27774*T^8 - 401139*T^7 - 1914420*T^6 + 13822272*T^5 + 63176517*T^4 - 138304473*T^3 - 512575632*T^2 + 682722198*T + 516405459
79 79 7 9
T 12 + ⋯ + 487576423 T^{12} + \cdots + 487576423 T 1 2 + ⋯ + 4 8 7 5 7 6 4 2 3
T^12 + 18*T^11 - 201*T^10 - 5119*T^9 - 4419*T^8 + 406512*T^7 + 2274360*T^6 - 4586859*T^5 - 76145643*T^4 - 236451475*T^3 - 183934593*T^2 + 329870532*T + 487576423
83 83 8 3
T 12 + ⋯ − 1572682851 T^{12} + \cdots - 1572682851 T 1 2 + ⋯ − 1 5 7 2 6 8 2 8 5 1
T^12 + 36*T^11 + 171*T^10 - 6699*T^9 - 65043*T^8 + 382626*T^7 + 5423454*T^6 - 4143447*T^5 - 160885719*T^4 - 159551043*T^3 + 1206991071*T^2 + 678372462*T - 1572682851
89 89 8 9
T 12 + ⋯ + 458650431 T^{12} + \cdots + 458650431 T 1 2 + ⋯ + 4 5 8 6 5 0 4 3 1
T^12 + 18*T^11 - 234*T^10 - 7137*T^9 - 30447*T^8 + 406755*T^7 + 3905838*T^6 + 2092959*T^5 - 84367305*T^4 - 260436393*T^3 + 117112230*T^2 + 994097043*T + 458650431
97 97 9 7
T 12 + ⋯ − 1327182035957 T^{12} + \cdots - 1327182035957 T 1 2 + ⋯ − 1 3 2 7 1 8 2 0 3 5 9 5 7
T^12 - 12*T^11 - 798*T^10 + 9989*T^9 + 232677*T^8 - 3152808*T^7 - 28621479*T^6 + 459121113*T^5 + 1032880608*T^4 - 28930621732*T^3 + 40838841561*T^2 + 501790593534*T - 1327182035957
show more
show less