Properties

Label 7942.2.a.bx
Level 79427942
Weight 22
Character orbit 7942.a
Self dual yes
Analytic conductor 63.41763.417
Analytic rank 11
Dimension 1212
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7942,2,Mod(1,7942)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7942, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7942.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 7942=211192 7942 = 2 \cdot 11 \cdot 19^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 7942.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,12,-3,12,-9,-3,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 63.417189285363.4171892853
Analytic rank: 11
Dimension: 1212
Coefficient field: Q[x]/(x12)\mathbb{Q}[x]/(x^{12} - \cdots)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x123x1115x10+41x9+90x8198x7285x6+396x5+486x4+3 x^{12} - 3 x^{11} - 15 x^{10} + 41 x^{9} + 90 x^{8} - 198 x^{7} - 285 x^{6} + 396 x^{5} + 486 x^{4} + \cdots - 3 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 418)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β111,\beta_1,\ldots,\beta_{11} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+q2β1q3+q4+(β21)q5β1q6+(β11β4+β2)q7+q8+(β8+β7β3+1)q9+(β21)q10++(β8β7+β3++1)q99+O(q100) q + q^{2} - \beta_1 q^{3} + q^{4} + ( - \beta_{2} - 1) q^{5} - \beta_1 q^{6} + ( - \beta_{11} - \beta_{4} + \beta_{2}) q^{7} + q^{8} + (\beta_{8} + \beta_{7} - \beta_{3} + \cdots - 1) q^{9} + ( - \beta_{2} - 1) q^{10}+ \cdots + ( - \beta_{8} - \beta_{7} + \beta_{3} + \cdots + 1) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 12q+12q23q3+12q49q53q6+12q8+3q99q1012q113q12+9q15+12q169q17+3q189q209q2112q2218q23+3q99+O(q100) 12 q + 12 q^{2} - 3 q^{3} + 12 q^{4} - 9 q^{5} - 3 q^{6} + 12 q^{8} + 3 q^{9} - 9 q^{10} - 12 q^{11} - 3 q^{12} + 9 q^{15} + 12 q^{16} - 9 q^{17} + 3 q^{18} - 9 q^{20} - 9 q^{21} - 12 q^{22} - 18 q^{23}+ \cdots - 3 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x123x1115x10+41x9+90x8198x7285x6+396x5+486x4+3 x^{12} - 3 x^{11} - 15 x^{10} + 41 x^{9} + 90 x^{8} - 198 x^{7} - 285 x^{6} + 396 x^{5} + 486 x^{4} + \cdots - 3 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (93ν11355ν10215ν9+1497ν84066ν7+11828ν6+16444ν5+7229)/2069 ( 93 \nu^{11} - 355 \nu^{10} - 215 \nu^{9} + 1497 \nu^{8} - 4066 \nu^{7} + 11828 \nu^{6} + 16444 \nu^{5} + \cdots - 7229 ) / 2069 Copy content Toggle raw display
β3\beta_{3}== (313ν111484ν103638ν9+21924ν8+13257ν7115656ν6++18207)/6207 ( 313 \nu^{11} - 1484 \nu^{10} - 3638 \nu^{9} + 21924 \nu^{8} + 13257 \nu^{7} - 115656 \nu^{6} + \cdots + 18207 ) / 6207 Copy content Toggle raw display
β4\beta_{4}== (316ν11+3164ν101027ν942996ν8+35796ν7+216255ν6+12234)/6207 ( - 316 \nu^{11} + 3164 \nu^{10} - 1027 \nu^{9} - 42996 \nu^{8} + 35796 \nu^{7} + 216255 \nu^{6} + \cdots - 12234 ) / 6207 Copy content Toggle raw display
β5\beta_{5}== (487ν11+388ν1012383ν93507ν8+97887ν7+14529ν6++744)/6207 ( 487 \nu^{11} + 388 \nu^{10} - 12383 \nu^{9} - 3507 \nu^{8} + 97887 \nu^{7} + 14529 \nu^{6} + \cdots + 744 ) / 6207 Copy content Toggle raw display
β6\beta_{6}== (614ν11+2455ν10+7315ν934044ν830309ν7+170301ν6++26592)/6207 ( - 614 \nu^{11} + 2455 \nu^{10} + 7315 \nu^{9} - 34044 \nu^{8} - 30309 \nu^{7} + 170301 \nu^{6} + \cdots + 26592 ) / 6207 Copy content Toggle raw display
β7\beta_{7}== (679ν11+1613ν10+11759ν923010ν880616ν7+117495ν6++27729)/6207 ( - 679 \nu^{11} + 1613 \nu^{10} + 11759 \nu^{9} - 23010 \nu^{8} - 80616 \nu^{7} + 117495 \nu^{6} + \cdots + 27729 ) / 6207 Copy content Toggle raw display
β8\beta_{8}== (992ν113097ν1015397ν9+44934ν8+93873ν7233151ν6+21936)/6207 ( 992 \nu^{11} - 3097 \nu^{10} - 15397 \nu^{9} + 44934 \nu^{8} + 93873 \nu^{7} - 233151 \nu^{6} + \cdots - 21936 ) / 6207 Copy content Toggle raw display
β9\beta_{9}== (1379ν11+2572ν10+21898ν925935ν8134418ν7+57789ν6++35199)/6207 ( - 1379 \nu^{11} + 2572 \nu^{10} + 21898 \nu^{9} - 25935 \nu^{8} - 134418 \nu^{7} + 57789 \nu^{6} + \cdots + 35199 ) / 6207 Copy content Toggle raw display
β10\beta_{10}== (1642ν117091ν1016388ν9+89769ν8+50727ν7400275ν6+20892)/6207 ( 1642 \nu^{11} - 7091 \nu^{10} - 16388 \nu^{9} + 89769 \nu^{8} + 50727 \nu^{7} - 400275 \nu^{6} + \cdots - 20892 ) / 6207 Copy content Toggle raw display
β11\beta_{11}== (854ν11+2370ν10+12742ν931500ν872342ν7+144983ν6+404)/2069 ( - 854 \nu^{11} + 2370 \nu^{10} + 12742 \nu^{9} - 31500 \nu^{8} - 72342 \nu^{7} + 144983 \nu^{6} + \cdots - 404 ) / 2069 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β8+β7β3+β1+2 \beta_{8} + \beta_{7} - \beta_{3} + \beta _1 + 2 Copy content Toggle raw display
ν3\nu^{3}== β112β10+β8+β7β6β5β4β3+β2+5β1+1 -\beta_{11} - 2\beta_{10} + \beta_{8} + \beta_{7} - \beta_{6} - \beta_{5} - \beta_{4} - \beta_{3} + \beta_{2} + 5\beta _1 + 1 Copy content Toggle raw display
ν4\nu^{4}== 2β114β10+9β8+10β7β64β410β3++6 - 2 \beta_{11} - 4 \beta_{10} + 9 \beta_{8} + 10 \beta_{7} - \beta_{6} - 4 \beta_{4} - 10 \beta_{3} + \cdots + 6 Copy content Toggle raw display
ν5\nu^{5}== 14β1125β10+15β8+17β710β612β515β4++2 - 14 \beta_{11} - 25 \beta_{10} + 15 \beta_{8} + 17 \beta_{7} - 10 \beta_{6} - 12 \beta_{5} - 15 \beta_{4} + \cdots + 2 Copy content Toggle raw display
ν6\nu^{6}== 33β1161β102β9+79β8+94β717β610β5++10 - 33 \beta_{11} - 61 \beta_{10} - 2 \beta_{9} + 79 \beta_{8} + 94 \beta_{7} - 17 \beta_{6} - 10 \beta_{5} + \cdots + 10 Copy content Toggle raw display
ν7\nu^{7}== 154β11264β103β9+172β8+208β793β6+34 - 154 \beta_{11} - 264 \beta_{10} - 3 \beta_{9} + 172 \beta_{8} + 208 \beta_{7} - 93 \beta_{6} + \cdots - 34 Copy content Toggle raw display
ν8\nu^{8}== 410β11721β1028β9+718β8+892β7210β6+113 - 410 \beta_{11} - 721 \beta_{10} - 28 \beta_{9} + 718 \beta_{8} + 892 \beta_{7} - 210 \beta_{6} + \cdots - 113 Copy content Toggle raw display
ν9\nu^{9}== 1596β112685β1054β9+1830β8+2300β7885β6+647 - 1596 \beta_{11} - 2685 \beta_{10} - 54 \beta_{9} + 1830 \beta_{8} + 2300 \beta_{7} - 885 \beta_{6} + \cdots - 647 Copy content Toggle raw display
ν10\nu^{10}== 4581β117828β10295β9+6767β8+8631β72335β6+2135 - 4581 \beta_{11} - 7828 \beta_{10} - 295 \beta_{9} + 6767 \beta_{8} + 8631 \beta_{7} - 2335 \beta_{6} + \cdots - 2135 Copy content Toggle raw display
ν11\nu^{11}== 16254β1127080β10677β9+18943β8+24349β78639β6+8165 - 16254 \beta_{11} - 27080 \beta_{10} - 677 \beta_{9} + 18943 \beta_{8} + 24349 \beta_{7} - 8639 \beta_{6} + \cdots - 8165 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
3.18066
2.35032
2.15246
1.68007
1.60684
−0.0391340
−0.385135
−0.528177
−1.33949
−1.61335
−1.69090
−2.37416
1.00000 −3.18066 1.00000 −3.45219 −3.18066 3.50612 1.00000 7.11660 −3.45219
1.2 1.00000 −2.35032 1.00000 −1.74497 −2.35032 1.14267 1.00000 2.52400 −1.74497
1.3 1.00000 −2.15246 1.00000 −2.91209 −2.15246 −3.24957 1.00000 1.63308 −2.91209
1.4 1.00000 −1.68007 1.00000 2.00084 −1.68007 −2.90736 1.00000 −0.177370 2.00084
1.5 1.00000 −1.60684 1.00000 0.823492 −1.60684 0.0824650 1.00000 −0.418066 0.823492
1.6 1.00000 0.0391340 1.00000 2.72238 0.0391340 0.967809 1.00000 −2.99847 2.72238
1.7 1.00000 0.385135 1.00000 −0.181888 0.385135 4.50277 1.00000 −2.85167 −0.181888
1.8 1.00000 0.528177 1.00000 −3.17061 0.528177 −0.0476453 1.00000 −2.72103 −3.17061
1.9 1.00000 1.33949 1.00000 0.688863 1.33949 −0.213889 1.00000 −1.20577 0.688863
1.10 1.00000 1.61335 1.00000 0.900419 1.61335 −2.89419 1.00000 −0.397104 0.900419
1.11 1.00000 1.69090 1.00000 −3.94474 1.69090 2.32587 1.00000 −0.140861 −3.94474
1.12 1.00000 2.37416 1.00000 −0.729513 2.37416 −3.21505 1.00000 2.63666 −0.729513
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.12
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
1111 +1 +1
1919 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7942.2.a.bx 12
19.b odd 2 1 7942.2.a.bt 12
19.f odd 18 2 418.2.j.a 24
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
418.2.j.a 24 19.f odd 18 2
7942.2.a.bt 12 19.b odd 2 1
7942.2.a.bx 12 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(7942))S_{2}^{\mathrm{new}}(\Gamma_0(7942)):

T312+3T31115T31041T39+90T38+198T37285T36+3 T_{3}^{12} + 3 T_{3}^{11} - 15 T_{3}^{10} - 41 T_{3}^{9} + 90 T_{3}^{8} + 198 T_{3}^{7} - 285 T_{3}^{6} + \cdots - 3 Copy content Toggle raw display
T512+9T511+9T510117T59261T58+459T57+1287T56+81 T_{5}^{12} + 9 T_{5}^{11} + 9 T_{5}^{10} - 117 T_{5}^{9} - 261 T_{5}^{8} + 459 T_{5}^{7} + 1287 T_{5}^{6} + \cdots - 81 Copy content Toggle raw display
T131275T1310+26T139+1683T1381944T13714682T136++11503 T_{13}^{12} - 75 T_{13}^{10} + 26 T_{13}^{9} + 1683 T_{13}^{8} - 1944 T_{13}^{7} - 14682 T_{13}^{6} + \cdots + 11503 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T1)12 (T - 1)^{12} Copy content Toggle raw display
33 T12+3T11+3 T^{12} + 3 T^{11} + \cdots - 3 Copy content Toggle raw display
55 T12+9T11+81 T^{12} + 9 T^{11} + \cdots - 81 Copy content Toggle raw display
77 T1239T10++3 T^{12} - 39 T^{10} + \cdots + 3 Copy content Toggle raw display
1111 (T+1)12 (T + 1)^{12} Copy content Toggle raw display
1313 T1275T10++11503 T^{12} - 75 T^{10} + \cdots + 11503 Copy content Toggle raw display
1717 T12+9T11++157797 T^{12} + 9 T^{11} + \cdots + 157797 Copy content Toggle raw display
1919 T12 T^{12} Copy content Toggle raw display
2323 T12+18T11++10344987 T^{12} + 18 T^{11} + \cdots + 10344987 Copy content Toggle raw display
2929 T129T11+6230061 T^{12} - 9 T^{11} + \cdots - 6230061 Copy content Toggle raw display
3131 T12+27T11++23815963 T^{12} + 27 T^{11} + \cdots + 23815963 Copy content Toggle raw display
3737 T12++133364607 T^{12} + \cdots + 133364607 Copy content Toggle raw display
4141 T12+27T11++19766277 T^{12} + 27 T^{11} + \cdots + 19766277 Copy content Toggle raw display
4343 T129T11+266779 T^{12} - 9 T^{11} + \cdots - 266779 Copy content Toggle raw display
4747 T12+27T11++81815211 T^{12} + 27 T^{11} + \cdots + 81815211 Copy content Toggle raw display
5353 T1218T11++1796247 T^{12} - 18 T^{11} + \cdots + 1796247 Copy content Toggle raw display
5959 T12++296333613 T^{12} + \cdots + 296333613 Copy content Toggle raw display
6161 T12+18T11++1638579 T^{12} + 18 T^{11} + \cdots + 1638579 Copy content Toggle raw display
6767 T12+1220891289 T^{12} + \cdots - 1220891289 Copy content Toggle raw display
7171 T12++198281169 T^{12} + \cdots + 198281169 Copy content Toggle raw display
7373 T12++516405459 T^{12} + \cdots + 516405459 Copy content Toggle raw display
7979 T12++487576423 T^{12} + \cdots + 487576423 Copy content Toggle raw display
8383 T12+1572682851 T^{12} + \cdots - 1572682851 Copy content Toggle raw display
8989 T12++458650431 T^{12} + \cdots + 458650431 Copy content Toggle raw display
9797 T12+1327182035957 T^{12} + \cdots - 1327182035957 Copy content Toggle raw display
show more
show less