Properties

Label 2-7942-1.1-c1-0-17
Degree $2$
Conductor $7942$
Sign $1$
Analytic cond. $63.4171$
Root an. cond. $7.96349$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 1.52·3-s + 4-s − 2.93·5-s − 1.52·6-s − 0.464·7-s − 8-s − 0.684·9-s + 2.93·10-s − 11-s + 1.52·12-s − 4.49·13-s + 0.464·14-s − 4.46·15-s + 16-s + 0.188·17-s + 0.684·18-s − 2.93·20-s − 0.707·21-s + 22-s + 2.91·23-s − 1.52·24-s + 3.61·25-s + 4.49·26-s − 5.60·27-s − 0.464·28-s − 1.72·29-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.878·3-s + 0.5·4-s − 1.31·5-s − 0.621·6-s − 0.175·7-s − 0.353·8-s − 0.228·9-s + 0.928·10-s − 0.301·11-s + 0.439·12-s − 1.24·13-s + 0.124·14-s − 1.15·15-s + 0.250·16-s + 0.0457·17-s + 0.161·18-s − 0.656·20-s − 0.154·21-s + 0.213·22-s + 0.606·23-s − 0.310·24-s + 0.723·25-s + 0.882·26-s − 1.07·27-s − 0.0878·28-s − 0.320·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7942 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7942 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7942\)    =    \(2 \cdot 11 \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(63.4171\)
Root analytic conductor: \(7.96349\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7942,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6582656181\)
\(L(\frac12)\) \(\approx\) \(0.6582656181\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
11 \( 1 + T \)
19 \( 1 \)
good3 \( 1 - 1.52T + 3T^{2} \)
5 \( 1 + 2.93T + 5T^{2} \)
7 \( 1 + 0.464T + 7T^{2} \)
13 \( 1 + 4.49T + 13T^{2} \)
17 \( 1 - 0.188T + 17T^{2} \)
23 \( 1 - 2.91T + 23T^{2} \)
29 \( 1 + 1.72T + 29T^{2} \)
31 \( 1 - 1.87T + 31T^{2} \)
37 \( 1 - 6.48T + 37T^{2} \)
41 \( 1 - 3.30T + 41T^{2} \)
43 \( 1 + 10.7T + 43T^{2} \)
47 \( 1 + 4.02T + 47T^{2} \)
53 \( 1 - 1.35T + 53T^{2} \)
59 \( 1 - 5.50T + 59T^{2} \)
61 \( 1 + 10.9T + 61T^{2} \)
67 \( 1 + 5.56T + 67T^{2} \)
71 \( 1 + 3.98T + 71T^{2} \)
73 \( 1 - 10.9T + 73T^{2} \)
79 \( 1 + 5.54T + 79T^{2} \)
83 \( 1 + 12.8T + 83T^{2} \)
89 \( 1 + 16.9T + 89T^{2} \)
97 \( 1 - 12.1T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.032289685486247720888563586177, −7.37912565806856091178546150819, −6.87329915562058207527380623492, −5.85208695664234369858219510193, −4.90141890714502335863572530018, −4.16838429267773341714158963375, −3.17548466049406463268968741477, −2.85726573910394323413072738925, −1.83020309673483280031238317767, −0.40653433820674608097724918707, 0.40653433820674608097724918707, 1.83020309673483280031238317767, 2.85726573910394323413072738925, 3.17548466049406463268968741477, 4.16838429267773341714158963375, 4.90141890714502335863572530018, 5.85208695664234369858219510193, 6.87329915562058207527380623492, 7.37912565806856091178546150819, 8.032289685486247720888563586177

Graph of the $Z$-function along the critical line