Properties

Label 7942.2.a.by.1.11
Level $7942$
Weight $2$
Character 7942.1
Self dual yes
Analytic conductor $63.417$
Analytic rank $0$
Dimension $15$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7942,2,Mod(1,7942)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7942, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7942.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7942 = 2 \cdot 11 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7942.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(63.4171892853\)
Analytic rank: \(0\)
Dimension: \(15\)
Coefficient field: \(\mathbb{Q}[x]/(x^{15} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{15} - 3 x^{14} - 33 x^{13} + 101 x^{12} + 408 x^{11} - 1314 x^{10} - 2271 x^{9} + 8292 x^{8} + \cdots - 3592 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 418)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.11
Root \(-1.52164\) of defining polynomial
Character \(\chi\) \(=\) 7942.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.52164 q^{3} +1.00000 q^{4} -2.93560 q^{5} -1.52164 q^{6} -0.464814 q^{7} -1.00000 q^{8} -0.684609 q^{9} +2.93560 q^{10} -1.00000 q^{11} +1.52164 q^{12} -4.49956 q^{13} +0.464814 q^{14} -4.46693 q^{15} +1.00000 q^{16} +0.188812 q^{17} +0.684609 q^{18} -2.93560 q^{20} -0.707279 q^{21} +1.00000 q^{22} +2.91060 q^{23} -1.52164 q^{24} +3.61774 q^{25} +4.49956 q^{26} -5.60665 q^{27} -0.464814 q^{28} -1.72567 q^{29} +4.46693 q^{30} +1.87404 q^{31} -1.00000 q^{32} -1.52164 q^{33} -0.188812 q^{34} +1.36451 q^{35} -0.684609 q^{36} +6.48294 q^{37} -6.84672 q^{39} +2.93560 q^{40} +3.30129 q^{41} +0.707279 q^{42} -10.7036 q^{43} -1.00000 q^{44} +2.00974 q^{45} -2.91060 q^{46} -4.02946 q^{47} +1.52164 q^{48} -6.78395 q^{49} -3.61774 q^{50} +0.287304 q^{51} -4.49956 q^{52} +1.35935 q^{53} +5.60665 q^{54} +2.93560 q^{55} +0.464814 q^{56} +1.72567 q^{58} +5.50657 q^{59} -4.46693 q^{60} -10.9663 q^{61} -1.87404 q^{62} +0.318216 q^{63} +1.00000 q^{64} +13.2089 q^{65} +1.52164 q^{66} -5.56717 q^{67} +0.188812 q^{68} +4.42889 q^{69} -1.36451 q^{70} -3.98279 q^{71} +0.684609 q^{72} +10.9027 q^{73} -6.48294 q^{74} +5.50491 q^{75} +0.464814 q^{77} +6.84672 q^{78} -5.54536 q^{79} -2.93560 q^{80} -6.47748 q^{81} -3.30129 q^{82} -12.8465 q^{83} -0.707279 q^{84} -0.554277 q^{85} +10.7036 q^{86} -2.62586 q^{87} +1.00000 q^{88} -16.9412 q^{89} -2.00974 q^{90} +2.09146 q^{91} +2.91060 q^{92} +2.85161 q^{93} +4.02946 q^{94} -1.52164 q^{96} +12.1485 q^{97} +6.78395 q^{98} +0.684609 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 15 q - 15 q^{2} - 3 q^{3} + 15 q^{4} + 9 q^{5} + 3 q^{6} - 15 q^{8} + 30 q^{9} - 9 q^{10} - 15 q^{11} - 3 q^{12} - 21 q^{15} + 15 q^{16} + 21 q^{17} - 30 q^{18} + 9 q^{20} + 9 q^{21} + 15 q^{22} + 21 q^{23}+ \cdots - 30 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 1.52164 0.878520 0.439260 0.898360i \(-0.355241\pi\)
0.439260 + 0.898360i \(0.355241\pi\)
\(4\) 1.00000 0.500000
\(5\) −2.93560 −1.31284 −0.656420 0.754396i \(-0.727930\pi\)
−0.656420 + 0.754396i \(0.727930\pi\)
\(6\) −1.52164 −0.621207
\(7\) −0.464814 −0.175683 −0.0878415 0.996134i \(-0.527997\pi\)
−0.0878415 + 0.996134i \(0.527997\pi\)
\(8\) −1.00000 −0.353553
\(9\) −0.684609 −0.228203
\(10\) 2.93560 0.928318
\(11\) −1.00000 −0.301511
\(12\) 1.52164 0.439260
\(13\) −4.49956 −1.24795 −0.623977 0.781443i \(-0.714484\pi\)
−0.623977 + 0.781443i \(0.714484\pi\)
\(14\) 0.464814 0.124227
\(15\) −4.46693 −1.15336
\(16\) 1.00000 0.250000
\(17\) 0.188812 0.0457937 0.0228969 0.999738i \(-0.492711\pi\)
0.0228969 + 0.999738i \(0.492711\pi\)
\(18\) 0.684609 0.161364
\(19\) 0 0
\(20\) −2.93560 −0.656420
\(21\) −0.707279 −0.154341
\(22\) 1.00000 0.213201
\(23\) 2.91060 0.606903 0.303451 0.952847i \(-0.401861\pi\)
0.303451 + 0.952847i \(0.401861\pi\)
\(24\) −1.52164 −0.310604
\(25\) 3.61774 0.723549
\(26\) 4.49956 0.882437
\(27\) −5.60665 −1.07900
\(28\) −0.464814 −0.0878415
\(29\) −1.72567 −0.320450 −0.160225 0.987081i \(-0.551222\pi\)
−0.160225 + 0.987081i \(0.551222\pi\)
\(30\) 4.46693 0.815546
\(31\) 1.87404 0.336587 0.168293 0.985737i \(-0.446174\pi\)
0.168293 + 0.985737i \(0.446174\pi\)
\(32\) −1.00000 −0.176777
\(33\) −1.52164 −0.264884
\(34\) −0.188812 −0.0323810
\(35\) 1.36451 0.230644
\(36\) −0.684609 −0.114102
\(37\) 6.48294 1.06579 0.532894 0.846182i \(-0.321104\pi\)
0.532894 + 0.846182i \(0.321104\pi\)
\(38\) 0 0
\(39\) −6.84672 −1.09635
\(40\) 2.93560 0.464159
\(41\) 3.30129 0.515575 0.257788 0.966202i \(-0.417007\pi\)
0.257788 + 0.966202i \(0.417007\pi\)
\(42\) 0.707279 0.109136
\(43\) −10.7036 −1.63229 −0.816145 0.577847i \(-0.803893\pi\)
−0.816145 + 0.577847i \(0.803893\pi\)
\(44\) −1.00000 −0.150756
\(45\) 2.00974 0.299594
\(46\) −2.91060 −0.429145
\(47\) −4.02946 −0.587757 −0.293878 0.955843i \(-0.594946\pi\)
−0.293878 + 0.955843i \(0.594946\pi\)
\(48\) 1.52164 0.219630
\(49\) −6.78395 −0.969135
\(50\) −3.61774 −0.511626
\(51\) 0.287304 0.0402307
\(52\) −4.49956 −0.623977
\(53\) 1.35935 0.186721 0.0933605 0.995632i \(-0.470239\pi\)
0.0933605 + 0.995632i \(0.470239\pi\)
\(54\) 5.60665 0.762969
\(55\) 2.93560 0.395836
\(56\) 0.464814 0.0621133
\(57\) 0 0
\(58\) 1.72567 0.226592
\(59\) 5.50657 0.716895 0.358447 0.933550i \(-0.383306\pi\)
0.358447 + 0.933550i \(0.383306\pi\)
\(60\) −4.46693 −0.576678
\(61\) −10.9663 −1.40409 −0.702046 0.712132i \(-0.747730\pi\)
−0.702046 + 0.712132i \(0.747730\pi\)
\(62\) −1.87404 −0.238003
\(63\) 0.318216 0.0400914
\(64\) 1.00000 0.125000
\(65\) 13.2089 1.63836
\(66\) 1.52164 0.187301
\(67\) −5.56717 −0.680138 −0.340069 0.940400i \(-0.610450\pi\)
−0.340069 + 0.940400i \(0.610450\pi\)
\(68\) 0.188812 0.0228969
\(69\) 4.42889 0.533176
\(70\) −1.36451 −0.163090
\(71\) −3.98279 −0.472670 −0.236335 0.971672i \(-0.575946\pi\)
−0.236335 + 0.971672i \(0.575946\pi\)
\(72\) 0.684609 0.0806820
\(73\) 10.9027 1.27607 0.638033 0.770009i \(-0.279748\pi\)
0.638033 + 0.770009i \(0.279748\pi\)
\(74\) −6.48294 −0.753626
\(75\) 5.50491 0.635652
\(76\) 0 0
\(77\) 0.464814 0.0529704
\(78\) 6.84672 0.775238
\(79\) −5.54536 −0.623902 −0.311951 0.950098i \(-0.600982\pi\)
−0.311951 + 0.950098i \(0.600982\pi\)
\(80\) −2.93560 −0.328210
\(81\) −6.47748 −0.719720
\(82\) −3.30129 −0.364567
\(83\) −12.8465 −1.41009 −0.705043 0.709164i \(-0.749073\pi\)
−0.705043 + 0.709164i \(0.749073\pi\)
\(84\) −0.707279 −0.0771705
\(85\) −0.554277 −0.0601198
\(86\) 10.7036 1.15420
\(87\) −2.62586 −0.281521
\(88\) 1.00000 0.106600
\(89\) −16.9412 −1.79577 −0.897884 0.440232i \(-0.854896\pi\)
−0.897884 + 0.440232i \(0.854896\pi\)
\(90\) −2.00974 −0.211845
\(91\) 2.09146 0.219244
\(92\) 2.91060 0.303451
\(93\) 2.85161 0.295698
\(94\) 4.02946 0.415607
\(95\) 0 0
\(96\) −1.52164 −0.155302
\(97\) 12.1485 1.23350 0.616748 0.787161i \(-0.288450\pi\)
0.616748 + 0.787161i \(0.288450\pi\)
\(98\) 6.78395 0.685282
\(99\) 0.684609 0.0688058
\(100\) 3.61774 0.361774
\(101\) 8.90820 0.886399 0.443200 0.896423i \(-0.353843\pi\)
0.443200 + 0.896423i \(0.353843\pi\)
\(102\) −0.287304 −0.0284474
\(103\) −1.74670 −0.172108 −0.0860539 0.996290i \(-0.527426\pi\)
−0.0860539 + 0.996290i \(0.527426\pi\)
\(104\) 4.49956 0.441218
\(105\) 2.07629 0.202625
\(106\) −1.35935 −0.132032
\(107\) 0.0663443 0.00641374 0.00320687 0.999995i \(-0.498979\pi\)
0.00320687 + 0.999995i \(0.498979\pi\)
\(108\) −5.60665 −0.539500
\(109\) −3.81573 −0.365481 −0.182741 0.983161i \(-0.558497\pi\)
−0.182741 + 0.983161i \(0.558497\pi\)
\(110\) −2.93560 −0.279898
\(111\) 9.86470 0.936316
\(112\) −0.464814 −0.0439208
\(113\) 0.0177717 0.00167182 0.000835908 1.00000i \(-0.499734\pi\)
0.000835908 1.00000i \(0.499734\pi\)
\(114\) 0 0
\(115\) −8.54437 −0.796766
\(116\) −1.72567 −0.160225
\(117\) 3.08044 0.284787
\(118\) −5.50657 −0.506921
\(119\) −0.0877625 −0.00804518
\(120\) 4.46693 0.407773
\(121\) 1.00000 0.0909091
\(122\) 10.9663 0.992842
\(123\) 5.02338 0.452943
\(124\) 1.87404 0.168293
\(125\) 4.05775 0.362936
\(126\) −0.318216 −0.0283489
\(127\) −7.69028 −0.682402 −0.341201 0.939990i \(-0.610834\pi\)
−0.341201 + 0.939990i \(0.610834\pi\)
\(128\) −1.00000 −0.0883883
\(129\) −16.2871 −1.43400
\(130\) −13.2089 −1.15850
\(131\) 22.1186 1.93251 0.966257 0.257578i \(-0.0829246\pi\)
0.966257 + 0.257578i \(0.0829246\pi\)
\(132\) −1.52164 −0.132442
\(133\) 0 0
\(134\) 5.56717 0.480930
\(135\) 16.4589 1.41656
\(136\) −0.188812 −0.0161905
\(137\) 3.98966 0.340860 0.170430 0.985370i \(-0.445484\pi\)
0.170430 + 0.985370i \(0.445484\pi\)
\(138\) −4.42889 −0.377013
\(139\) 1.48693 0.126120 0.0630598 0.998010i \(-0.479914\pi\)
0.0630598 + 0.998010i \(0.479914\pi\)
\(140\) 1.36451 0.115322
\(141\) −6.13139 −0.516356
\(142\) 3.98279 0.334228
\(143\) 4.49956 0.376272
\(144\) −0.684609 −0.0570508
\(145\) 5.06589 0.420699
\(146\) −10.9027 −0.902315
\(147\) −10.3227 −0.851405
\(148\) 6.48294 0.532894
\(149\) 8.10477 0.663969 0.331984 0.943285i \(-0.392282\pi\)
0.331984 + 0.943285i \(0.392282\pi\)
\(150\) −5.50491 −0.449474
\(151\) 16.0446 1.30569 0.652846 0.757490i \(-0.273575\pi\)
0.652846 + 0.757490i \(0.273575\pi\)
\(152\) 0 0
\(153\) −0.129263 −0.0104503
\(154\) −0.464814 −0.0374557
\(155\) −5.50142 −0.441885
\(156\) −6.84672 −0.548176
\(157\) 18.1493 1.44847 0.724234 0.689554i \(-0.242194\pi\)
0.724234 + 0.689554i \(0.242194\pi\)
\(158\) 5.54536 0.441165
\(159\) 2.06844 0.164038
\(160\) 2.93560 0.232080
\(161\) −1.35289 −0.106623
\(162\) 6.47748 0.508919
\(163\) 21.3870 1.67516 0.837579 0.546316i \(-0.183970\pi\)
0.837579 + 0.546316i \(0.183970\pi\)
\(164\) 3.30129 0.257788
\(165\) 4.46693 0.347750
\(166\) 12.8465 0.997082
\(167\) −11.0690 −0.856548 −0.428274 0.903649i \(-0.640878\pi\)
−0.428274 + 0.903649i \(0.640878\pi\)
\(168\) 0.707279 0.0545678
\(169\) 7.24605 0.557389
\(170\) 0.554277 0.0425111
\(171\) 0 0
\(172\) −10.7036 −0.816145
\(173\) 8.71135 0.662311 0.331156 0.943576i \(-0.392561\pi\)
0.331156 + 0.943576i \(0.392561\pi\)
\(174\) 2.62586 0.199066
\(175\) −1.68158 −0.127115
\(176\) −1.00000 −0.0753778
\(177\) 8.37903 0.629806
\(178\) 16.9412 1.26980
\(179\) 9.62721 0.719572 0.359786 0.933035i \(-0.382850\pi\)
0.359786 + 0.933035i \(0.382850\pi\)
\(180\) 2.00974 0.149797
\(181\) −17.8108 −1.32387 −0.661935 0.749561i \(-0.730264\pi\)
−0.661935 + 0.749561i \(0.730264\pi\)
\(182\) −2.09146 −0.155029
\(183\) −16.6868 −1.23352
\(184\) −2.91060 −0.214573
\(185\) −19.0313 −1.39921
\(186\) −2.85161 −0.209090
\(187\) −0.188812 −0.0138073
\(188\) −4.02946 −0.293878
\(189\) 2.60605 0.189562
\(190\) 0 0
\(191\) 25.2728 1.82868 0.914338 0.404952i \(-0.132712\pi\)
0.914338 + 0.404952i \(0.132712\pi\)
\(192\) 1.52164 0.109815
\(193\) −16.7371 −1.20476 −0.602381 0.798209i \(-0.705781\pi\)
−0.602381 + 0.798209i \(0.705781\pi\)
\(194\) −12.1485 −0.872214
\(195\) 20.0992 1.43933
\(196\) −6.78395 −0.484568
\(197\) 8.52528 0.607401 0.303700 0.952768i \(-0.401778\pi\)
0.303700 + 0.952768i \(0.401778\pi\)
\(198\) −0.684609 −0.0486531
\(199\) 21.7367 1.54087 0.770435 0.637518i \(-0.220039\pi\)
0.770435 + 0.637518i \(0.220039\pi\)
\(200\) −3.61774 −0.255813
\(201\) −8.47123 −0.597515
\(202\) −8.90820 −0.626779
\(203\) 0.802117 0.0562976
\(204\) 0.287304 0.0201153
\(205\) −9.69127 −0.676868
\(206\) 1.74670 0.121699
\(207\) −1.99263 −0.138497
\(208\) −4.49956 −0.311988
\(209\) 0 0
\(210\) −2.07629 −0.143278
\(211\) −8.82448 −0.607503 −0.303751 0.952751i \(-0.598239\pi\)
−0.303751 + 0.952751i \(0.598239\pi\)
\(212\) 1.35935 0.0933605
\(213\) −6.06037 −0.415250
\(214\) −0.0663443 −0.00453520
\(215\) 31.4216 2.14293
\(216\) 5.60665 0.381484
\(217\) −0.871078 −0.0591326
\(218\) 3.81573 0.258434
\(219\) 16.5900 1.12105
\(220\) 2.93560 0.197918
\(221\) −0.849573 −0.0571484
\(222\) −9.86470 −0.662076
\(223\) −6.40530 −0.428931 −0.214465 0.976732i \(-0.568801\pi\)
−0.214465 + 0.976732i \(0.568801\pi\)
\(224\) 0.464814 0.0310567
\(225\) −2.47674 −0.165116
\(226\) −0.0177717 −0.00118215
\(227\) 13.8824 0.921409 0.460705 0.887554i \(-0.347597\pi\)
0.460705 + 0.887554i \(0.347597\pi\)
\(228\) 0 0
\(229\) −6.38691 −0.422059 −0.211030 0.977480i \(-0.567682\pi\)
−0.211030 + 0.977480i \(0.567682\pi\)
\(230\) 8.54437 0.563399
\(231\) 0.707279 0.0465356
\(232\) 1.72567 0.113296
\(233\) −5.19556 −0.340372 −0.170186 0.985412i \(-0.554437\pi\)
−0.170186 + 0.985412i \(0.554437\pi\)
\(234\) −3.08044 −0.201375
\(235\) 11.8289 0.771631
\(236\) 5.50657 0.358447
\(237\) −8.43804 −0.548110
\(238\) 0.0877625 0.00568880
\(239\) −8.20845 −0.530960 −0.265480 0.964116i \(-0.585530\pi\)
−0.265480 + 0.964116i \(0.585530\pi\)
\(240\) −4.46693 −0.288339
\(241\) 17.8978 1.15290 0.576448 0.817134i \(-0.304438\pi\)
0.576448 + 0.817134i \(0.304438\pi\)
\(242\) −1.00000 −0.0642824
\(243\) 6.96355 0.446712
\(244\) −10.9663 −0.702046
\(245\) 19.9150 1.27232
\(246\) −5.02338 −0.320279
\(247\) 0 0
\(248\) −1.87404 −0.119001
\(249\) −19.5478 −1.23879
\(250\) −4.05775 −0.256635
\(251\) 11.9474 0.754111 0.377056 0.926191i \(-0.376937\pi\)
0.377056 + 0.926191i \(0.376937\pi\)
\(252\) 0.318216 0.0200457
\(253\) −2.91060 −0.182988
\(254\) 7.69028 0.482531
\(255\) −0.843411 −0.0528164
\(256\) 1.00000 0.0625000
\(257\) −4.07347 −0.254096 −0.127048 0.991897i \(-0.540550\pi\)
−0.127048 + 0.991897i \(0.540550\pi\)
\(258\) 16.2871 1.01399
\(259\) −3.01336 −0.187241
\(260\) 13.2089 0.819182
\(261\) 1.18141 0.0731276
\(262\) −22.1186 −1.36649
\(263\) 7.22171 0.445310 0.222655 0.974897i \(-0.428528\pi\)
0.222655 + 0.974897i \(0.428528\pi\)
\(264\) 1.52164 0.0936505
\(265\) −3.99050 −0.245135
\(266\) 0 0
\(267\) −25.7785 −1.57762
\(268\) −5.56717 −0.340069
\(269\) 31.8344 1.94098 0.970488 0.241149i \(-0.0775241\pi\)
0.970488 + 0.241149i \(0.0775241\pi\)
\(270\) −16.4589 −1.00166
\(271\) −31.2403 −1.89771 −0.948857 0.315706i \(-0.897759\pi\)
−0.948857 + 0.315706i \(0.897759\pi\)
\(272\) 0.188812 0.0114484
\(273\) 3.18245 0.192610
\(274\) −3.98966 −0.241024
\(275\) −3.61774 −0.218158
\(276\) 4.42889 0.266588
\(277\) 12.3578 0.742506 0.371253 0.928532i \(-0.378928\pi\)
0.371253 + 0.928532i \(0.378928\pi\)
\(278\) −1.48693 −0.0891800
\(279\) −1.28298 −0.0768102
\(280\) −1.36451 −0.0815449
\(281\) 6.73851 0.401986 0.200993 0.979593i \(-0.435583\pi\)
0.200993 + 0.979593i \(0.435583\pi\)
\(282\) 6.13139 0.365119
\(283\) 3.67917 0.218704 0.109352 0.994003i \(-0.465122\pi\)
0.109352 + 0.994003i \(0.465122\pi\)
\(284\) −3.98279 −0.236335
\(285\) 0 0
\(286\) −4.49956 −0.266065
\(287\) −1.53449 −0.0905778
\(288\) 0.684609 0.0403410
\(289\) −16.9643 −0.997903
\(290\) −5.06589 −0.297479
\(291\) 18.4857 1.08365
\(292\) 10.9027 0.638033
\(293\) −2.79512 −0.163293 −0.0816464 0.996661i \(-0.526018\pi\)
−0.0816464 + 0.996661i \(0.526018\pi\)
\(294\) 10.3227 0.602034
\(295\) −16.1651 −0.941168
\(296\) −6.48294 −0.376813
\(297\) 5.60665 0.325331
\(298\) −8.10477 −0.469497
\(299\) −13.0964 −0.757387
\(300\) 5.50491 0.317826
\(301\) 4.97520 0.286766
\(302\) −16.0446 −0.923264
\(303\) 13.5551 0.778719
\(304\) 0 0
\(305\) 32.1927 1.84335
\(306\) 0.129263 0.00738945
\(307\) −11.8371 −0.675581 −0.337790 0.941221i \(-0.609679\pi\)
−0.337790 + 0.941221i \(0.609679\pi\)
\(308\) 0.464814 0.0264852
\(309\) −2.65786 −0.151200
\(310\) 5.50142 0.312460
\(311\) 15.9983 0.907180 0.453590 0.891210i \(-0.350143\pi\)
0.453590 + 0.891210i \(0.350143\pi\)
\(312\) 6.84672 0.387619
\(313\) −17.4536 −0.986539 −0.493269 0.869877i \(-0.664198\pi\)
−0.493269 + 0.869877i \(0.664198\pi\)
\(314\) −18.1493 −1.02422
\(315\) −0.934154 −0.0526336
\(316\) −5.54536 −0.311951
\(317\) 22.7519 1.27787 0.638936 0.769260i \(-0.279375\pi\)
0.638936 + 0.769260i \(0.279375\pi\)
\(318\) −2.06844 −0.115992
\(319\) 1.72567 0.0966192
\(320\) −2.93560 −0.164105
\(321\) 0.100952 0.00563460
\(322\) 1.35289 0.0753935
\(323\) 0 0
\(324\) −6.47748 −0.359860
\(325\) −16.2783 −0.902955
\(326\) −21.3870 −1.18452
\(327\) −5.80618 −0.321082
\(328\) −3.30129 −0.182283
\(329\) 1.87295 0.103259
\(330\) −4.46693 −0.245896
\(331\) 9.94526 0.546641 0.273320 0.961923i \(-0.411878\pi\)
0.273320 + 0.961923i \(0.411878\pi\)
\(332\) −12.8465 −0.705043
\(333\) −4.43828 −0.243216
\(334\) 11.0690 0.605671
\(335\) 16.3430 0.892912
\(336\) −0.707279 −0.0385853
\(337\) 27.0670 1.47443 0.737216 0.675658i \(-0.236140\pi\)
0.737216 + 0.675658i \(0.236140\pi\)
\(338\) −7.24605 −0.394133
\(339\) 0.0270421 0.00146872
\(340\) −0.554277 −0.0300599
\(341\) −1.87404 −0.101485
\(342\) 0 0
\(343\) 6.40697 0.345944
\(344\) 10.7036 0.577102
\(345\) −13.0015 −0.699975
\(346\) −8.71135 −0.468325
\(347\) 19.4414 1.04367 0.521834 0.853047i \(-0.325248\pi\)
0.521834 + 0.853047i \(0.325248\pi\)
\(348\) −2.62586 −0.140761
\(349\) 22.6056 1.21005 0.605025 0.796206i \(-0.293163\pi\)
0.605025 + 0.796206i \(0.293163\pi\)
\(350\) 1.68158 0.0898840
\(351\) 25.2275 1.34654
\(352\) 1.00000 0.0533002
\(353\) 24.0961 1.28251 0.641254 0.767328i \(-0.278414\pi\)
0.641254 + 0.767328i \(0.278414\pi\)
\(354\) −8.37903 −0.445340
\(355\) 11.6919 0.620540
\(356\) −16.9412 −0.897884
\(357\) −0.133543 −0.00706785
\(358\) −9.62721 −0.508814
\(359\) 25.6187 1.35210 0.676052 0.736854i \(-0.263689\pi\)
0.676052 + 0.736854i \(0.263689\pi\)
\(360\) −2.00974 −0.105923
\(361\) 0 0
\(362\) 17.8108 0.936117
\(363\) 1.52164 0.0798654
\(364\) 2.09146 0.109622
\(365\) −32.0060 −1.67527
\(366\) 16.6868 0.872232
\(367\) −1.01974 −0.0532300 −0.0266150 0.999646i \(-0.508473\pi\)
−0.0266150 + 0.999646i \(0.508473\pi\)
\(368\) 2.91060 0.151726
\(369\) −2.26010 −0.117656
\(370\) 19.0313 0.989391
\(371\) −0.631844 −0.0328037
\(372\) 2.85161 0.147849
\(373\) 31.7363 1.64325 0.821623 0.570031i \(-0.193069\pi\)
0.821623 + 0.570031i \(0.193069\pi\)
\(374\) 0.188812 0.00976325
\(375\) 6.17444 0.318847
\(376\) 4.02946 0.207803
\(377\) 7.76478 0.399906
\(378\) −2.60605 −0.134041
\(379\) 19.0665 0.979382 0.489691 0.871896i \(-0.337110\pi\)
0.489691 + 0.871896i \(0.337110\pi\)
\(380\) 0 0
\(381\) −11.7018 −0.599504
\(382\) −25.2728 −1.29307
\(383\) 18.1444 0.927137 0.463568 0.886061i \(-0.346569\pi\)
0.463568 + 0.886061i \(0.346569\pi\)
\(384\) −1.52164 −0.0776509
\(385\) −1.36451 −0.0695417
\(386\) 16.7371 0.851895
\(387\) 7.32781 0.372494
\(388\) 12.1485 0.616748
\(389\) 3.88312 0.196882 0.0984411 0.995143i \(-0.468614\pi\)
0.0984411 + 0.995143i \(0.468614\pi\)
\(390\) −20.0992 −1.01776
\(391\) 0.549558 0.0277923
\(392\) 6.78395 0.342641
\(393\) 33.6566 1.69775
\(394\) −8.52528 −0.429497
\(395\) 16.2790 0.819083
\(396\) 0.684609 0.0344029
\(397\) 17.8589 0.896311 0.448155 0.893956i \(-0.352081\pi\)
0.448155 + 0.893956i \(0.352081\pi\)
\(398\) −21.7367 −1.08956
\(399\) 0 0
\(400\) 3.61774 0.180887
\(401\) −33.5041 −1.67311 −0.836557 0.547880i \(-0.815435\pi\)
−0.836557 + 0.547880i \(0.815435\pi\)
\(402\) 8.47123 0.422507
\(403\) −8.43234 −0.420045
\(404\) 8.90820 0.443200
\(405\) 19.0153 0.944877
\(406\) −0.802117 −0.0398084
\(407\) −6.48294 −0.321347
\(408\) −0.287304 −0.0142237
\(409\) −26.3286 −1.30186 −0.650932 0.759136i \(-0.725622\pi\)
−0.650932 + 0.759136i \(0.725622\pi\)
\(410\) 9.69127 0.478618
\(411\) 6.07083 0.299452
\(412\) −1.74670 −0.0860539
\(413\) −2.55953 −0.125946
\(414\) 1.99263 0.0979323
\(415\) 37.7122 1.85122
\(416\) 4.49956 0.220609
\(417\) 2.26257 0.110799
\(418\) 0 0
\(419\) −32.1866 −1.57242 −0.786209 0.617961i \(-0.787959\pi\)
−0.786209 + 0.617961i \(0.787959\pi\)
\(420\) 2.07629 0.101313
\(421\) −20.0204 −0.975733 −0.487867 0.872918i \(-0.662225\pi\)
−0.487867 + 0.872918i \(0.662225\pi\)
\(422\) 8.82448 0.429569
\(423\) 2.75860 0.134128
\(424\) −1.35935 −0.0660158
\(425\) 0.683074 0.0331340
\(426\) 6.06037 0.293626
\(427\) 5.09729 0.246675
\(428\) 0.0663443 0.00320687
\(429\) 6.84672 0.330563
\(430\) −31.4216 −1.51528
\(431\) −29.2413 −1.40850 −0.704252 0.709950i \(-0.748717\pi\)
−0.704252 + 0.709950i \(0.748717\pi\)
\(432\) −5.60665 −0.269750
\(433\) −21.8706 −1.05103 −0.525516 0.850784i \(-0.676128\pi\)
−0.525516 + 0.850784i \(0.676128\pi\)
\(434\) 0.871078 0.0418131
\(435\) 7.70846 0.369593
\(436\) −3.81573 −0.182741
\(437\) 0 0
\(438\) −16.5900 −0.792702
\(439\) −25.8255 −1.23258 −0.616291 0.787518i \(-0.711366\pi\)
−0.616291 + 0.787518i \(0.711366\pi\)
\(440\) −2.93560 −0.139949
\(441\) 4.64435 0.221160
\(442\) 0.849573 0.0404100
\(443\) 7.15530 0.339958 0.169979 0.985448i \(-0.445630\pi\)
0.169979 + 0.985448i \(0.445630\pi\)
\(444\) 9.86470 0.468158
\(445\) 49.7327 2.35756
\(446\) 6.40530 0.303300
\(447\) 12.3326 0.583310
\(448\) −0.464814 −0.0219604
\(449\) −14.0318 −0.662202 −0.331101 0.943595i \(-0.607420\pi\)
−0.331101 + 0.943595i \(0.607420\pi\)
\(450\) 2.47674 0.116755
\(451\) −3.30129 −0.155452
\(452\) 0.0177717 0.000835908 0
\(453\) 24.4141 1.14708
\(454\) −13.8824 −0.651535
\(455\) −6.13968 −0.287833
\(456\) 0 0
\(457\) −31.3113 −1.46468 −0.732340 0.680940i \(-0.761572\pi\)
−0.732340 + 0.680940i \(0.761572\pi\)
\(458\) 6.38691 0.298441
\(459\) −1.05860 −0.0494114
\(460\) −8.54437 −0.398383
\(461\) 12.2299 0.569603 0.284802 0.958586i \(-0.408072\pi\)
0.284802 + 0.958586i \(0.408072\pi\)
\(462\) −0.707279 −0.0329056
\(463\) −23.2772 −1.08178 −0.540892 0.841092i \(-0.681913\pi\)
−0.540892 + 0.841092i \(0.681913\pi\)
\(464\) −1.72567 −0.0801124
\(465\) −8.37119 −0.388205
\(466\) 5.19556 0.240680
\(467\) 17.2913 0.800146 0.400073 0.916483i \(-0.368985\pi\)
0.400073 + 0.916483i \(0.368985\pi\)
\(468\) 3.08044 0.142393
\(469\) 2.58770 0.119489
\(470\) −11.8289 −0.545625
\(471\) 27.6166 1.27251
\(472\) −5.50657 −0.253461
\(473\) 10.7036 0.492154
\(474\) 8.43804 0.387572
\(475\) 0 0
\(476\) −0.0877625 −0.00402259
\(477\) −0.930623 −0.0426103
\(478\) 8.20845 0.375446
\(479\) −13.2757 −0.606584 −0.303292 0.952898i \(-0.598086\pi\)
−0.303292 + 0.952898i \(0.598086\pi\)
\(480\) 4.46693 0.203886
\(481\) −29.1704 −1.33005
\(482\) −17.8978 −0.815221
\(483\) −2.05861 −0.0936700
\(484\) 1.00000 0.0454545
\(485\) −35.6632 −1.61938
\(486\) −6.96355 −0.315873
\(487\) 27.2081 1.23292 0.616459 0.787387i \(-0.288566\pi\)
0.616459 + 0.787387i \(0.288566\pi\)
\(488\) 10.9663 0.496421
\(489\) 32.5433 1.47166
\(490\) −19.9150 −0.899666
\(491\) 35.5134 1.60270 0.801348 0.598198i \(-0.204116\pi\)
0.801348 + 0.598198i \(0.204116\pi\)
\(492\) 5.02338 0.226471
\(493\) −0.325829 −0.0146746
\(494\) 0 0
\(495\) −2.00974 −0.0903310
\(496\) 1.87404 0.0841467
\(497\) 1.85125 0.0830401
\(498\) 19.5478 0.875956
\(499\) −9.33762 −0.418009 −0.209005 0.977915i \(-0.567022\pi\)
−0.209005 + 0.977915i \(0.567022\pi\)
\(500\) 4.05775 0.181468
\(501\) −16.8431 −0.752495
\(502\) −11.9474 −0.533237
\(503\) 14.2368 0.634787 0.317393 0.948294i \(-0.397192\pi\)
0.317393 + 0.948294i \(0.397192\pi\)
\(504\) −0.318216 −0.0141745
\(505\) −26.1509 −1.16370
\(506\) 2.91060 0.129392
\(507\) 11.0259 0.489677
\(508\) −7.69028 −0.341201
\(509\) −20.5706 −0.911778 −0.455889 0.890037i \(-0.650679\pi\)
−0.455889 + 0.890037i \(0.650679\pi\)
\(510\) 0.843411 0.0373469
\(511\) −5.06773 −0.224183
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) 4.07347 0.179673
\(515\) 5.12762 0.225950
\(516\) −16.2871 −0.716999
\(517\) 4.02946 0.177215
\(518\) 3.01336 0.132399
\(519\) 13.2555 0.581854
\(520\) −13.2089 −0.579249
\(521\) −36.0695 −1.58024 −0.790118 0.612955i \(-0.789981\pi\)
−0.790118 + 0.612955i \(0.789981\pi\)
\(522\) −1.18141 −0.0517090
\(523\) 28.4282 1.24308 0.621539 0.783383i \(-0.286508\pi\)
0.621539 + 0.783383i \(0.286508\pi\)
\(524\) 22.1186 0.966257
\(525\) −2.55875 −0.111673
\(526\) −7.22171 −0.314881
\(527\) 0.353841 0.0154136
\(528\) −1.52164 −0.0662209
\(529\) −14.5284 −0.631669
\(530\) 3.99050 0.173336
\(531\) −3.76985 −0.163598
\(532\) 0 0
\(533\) −14.8544 −0.643414
\(534\) 25.7785 1.11554
\(535\) −0.194760 −0.00842022
\(536\) 5.56717 0.240465
\(537\) 14.6492 0.632158
\(538\) −31.8344 −1.37248
\(539\) 6.78395 0.292205
\(540\) 16.4589 0.708278
\(541\) −13.5875 −0.584173 −0.292086 0.956392i \(-0.594350\pi\)
−0.292086 + 0.956392i \(0.594350\pi\)
\(542\) 31.2403 1.34189
\(543\) −27.1017 −1.16305
\(544\) −0.188812 −0.00809526
\(545\) 11.2015 0.479818
\(546\) −3.18245 −0.136196
\(547\) −21.3894 −0.914544 −0.457272 0.889327i \(-0.651173\pi\)
−0.457272 + 0.889327i \(0.651173\pi\)
\(548\) 3.98966 0.170430
\(549\) 7.50763 0.320418
\(550\) 3.61774 0.154261
\(551\) 0 0
\(552\) −4.42889 −0.188506
\(553\) 2.57756 0.109609
\(554\) −12.3578 −0.525031
\(555\) −28.9588 −1.22923
\(556\) 1.48693 0.0630598
\(557\) −21.3938 −0.906484 −0.453242 0.891387i \(-0.649733\pi\)
−0.453242 + 0.891387i \(0.649733\pi\)
\(558\) 1.28298 0.0543130
\(559\) 48.1617 2.03702
\(560\) 1.36451 0.0576609
\(561\) −0.287304 −0.0121300
\(562\) −6.73851 −0.284247
\(563\) −20.1053 −0.847337 −0.423669 0.905817i \(-0.639258\pi\)
−0.423669 + 0.905817i \(0.639258\pi\)
\(564\) −6.13139 −0.258178
\(565\) −0.0521705 −0.00219483
\(566\) −3.67917 −0.154647
\(567\) 3.01082 0.126443
\(568\) 3.98279 0.167114
\(569\) 12.2391 0.513089 0.256544 0.966532i \(-0.417416\pi\)
0.256544 + 0.966532i \(0.417416\pi\)
\(570\) 0 0
\(571\) −8.38225 −0.350786 −0.175393 0.984498i \(-0.556120\pi\)
−0.175393 + 0.984498i \(0.556120\pi\)
\(572\) 4.49956 0.188136
\(573\) 38.4561 1.60653
\(574\) 1.53449 0.0640482
\(575\) 10.5298 0.439124
\(576\) −0.684609 −0.0285254
\(577\) 20.3140 0.845683 0.422841 0.906204i \(-0.361033\pi\)
0.422841 + 0.906204i \(0.361033\pi\)
\(578\) 16.9643 0.705624
\(579\) −25.4678 −1.05841
\(580\) 5.06589 0.210350
\(581\) 5.97123 0.247728
\(582\) −18.4857 −0.766257
\(583\) −1.35935 −0.0562985
\(584\) −10.9027 −0.451158
\(585\) −9.04294 −0.373880
\(586\) 2.79512 0.115465
\(587\) −6.13299 −0.253136 −0.126568 0.991958i \(-0.540396\pi\)
−0.126568 + 0.991958i \(0.540396\pi\)
\(588\) −10.3227 −0.425702
\(589\) 0 0
\(590\) 16.1651 0.665507
\(591\) 12.9724 0.533614
\(592\) 6.48294 0.266447
\(593\) 43.8711 1.80157 0.900785 0.434266i \(-0.142992\pi\)
0.900785 + 0.434266i \(0.142992\pi\)
\(594\) −5.60665 −0.230044
\(595\) 0.257636 0.0105620
\(596\) 8.10477 0.331984
\(597\) 33.0754 1.35369
\(598\) 13.0964 0.535553
\(599\) −36.7077 −1.49984 −0.749919 0.661530i \(-0.769907\pi\)
−0.749919 + 0.661530i \(0.769907\pi\)
\(600\) −5.50491 −0.224737
\(601\) −25.0723 −1.02272 −0.511361 0.859366i \(-0.670858\pi\)
−0.511361 + 0.859366i \(0.670858\pi\)
\(602\) −4.97520 −0.202774
\(603\) 3.81134 0.155210
\(604\) 16.0446 0.652846
\(605\) −2.93560 −0.119349
\(606\) −13.5551 −0.550638
\(607\) −11.3520 −0.460765 −0.230382 0.973100i \(-0.573998\pi\)
−0.230382 + 0.973100i \(0.573998\pi\)
\(608\) 0 0
\(609\) 1.22053 0.0494585
\(610\) −32.1927 −1.30344
\(611\) 18.1308 0.733493
\(612\) −0.129263 −0.00522513
\(613\) −19.4685 −0.786325 −0.393162 0.919469i \(-0.628619\pi\)
−0.393162 + 0.919469i \(0.628619\pi\)
\(614\) 11.8371 0.477708
\(615\) −14.7466 −0.594642
\(616\) −0.464814 −0.0187279
\(617\) −25.2893 −1.01811 −0.509055 0.860734i \(-0.670005\pi\)
−0.509055 + 0.860734i \(0.670005\pi\)
\(618\) 2.65786 0.106915
\(619\) 11.1209 0.446986 0.223493 0.974705i \(-0.428254\pi\)
0.223493 + 0.974705i \(0.428254\pi\)
\(620\) −5.50142 −0.220942
\(621\) −16.3187 −0.654849
\(622\) −15.9983 −0.641473
\(623\) 7.87452 0.315486
\(624\) −6.84672 −0.274088
\(625\) −30.0007 −1.20003
\(626\) 17.4536 0.697588
\(627\) 0 0
\(628\) 18.1493 0.724234
\(629\) 1.22406 0.0488064
\(630\) 0.934154 0.0372176
\(631\) 32.3028 1.28596 0.642978 0.765885i \(-0.277699\pi\)
0.642978 + 0.765885i \(0.277699\pi\)
\(632\) 5.54536 0.220583
\(633\) −13.4277 −0.533703
\(634\) −22.7519 −0.903591
\(635\) 22.5756 0.895885
\(636\) 2.06844 0.0820190
\(637\) 30.5248 1.20944
\(638\) −1.72567 −0.0683201
\(639\) 2.72665 0.107865
\(640\) 2.93560 0.116040
\(641\) 38.5887 1.52416 0.762080 0.647483i \(-0.224178\pi\)
0.762080 + 0.647483i \(0.224178\pi\)
\(642\) −0.100952 −0.00398426
\(643\) −41.6452 −1.64233 −0.821163 0.570693i \(-0.806675\pi\)
−0.821163 + 0.570693i \(0.806675\pi\)
\(644\) −1.35289 −0.0533113
\(645\) 47.8124 1.88261
\(646\) 0 0
\(647\) 11.2852 0.443667 0.221834 0.975085i \(-0.428796\pi\)
0.221834 + 0.975085i \(0.428796\pi\)
\(648\) 6.47748 0.254460
\(649\) −5.50657 −0.216152
\(650\) 16.2783 0.638486
\(651\) −1.32547 −0.0519492
\(652\) 21.3870 0.837579
\(653\) 6.98352 0.273286 0.136643 0.990620i \(-0.456369\pi\)
0.136643 + 0.990620i \(0.456369\pi\)
\(654\) 5.80618 0.227039
\(655\) −64.9315 −2.53708
\(656\) 3.30129 0.128894
\(657\) −7.46410 −0.291202
\(658\) −1.87295 −0.0730151
\(659\) 34.6339 1.34915 0.674573 0.738208i \(-0.264328\pi\)
0.674573 + 0.738208i \(0.264328\pi\)
\(660\) 4.46693 0.173875
\(661\) 4.29030 0.166873 0.0834367 0.996513i \(-0.473410\pi\)
0.0834367 + 0.996513i \(0.473410\pi\)
\(662\) −9.94526 −0.386533
\(663\) −1.29274 −0.0502060
\(664\) 12.8465 0.498541
\(665\) 0 0
\(666\) 4.43828 0.171980
\(667\) −5.02276 −0.194482
\(668\) −11.0690 −0.428274
\(669\) −9.74657 −0.376824
\(670\) −16.3430 −0.631384
\(671\) 10.9663 0.423349
\(672\) 0.707279 0.0272839
\(673\) −45.7513 −1.76358 −0.881792 0.471638i \(-0.843663\pi\)
−0.881792 + 0.471638i \(0.843663\pi\)
\(674\) −27.0670 −1.04258
\(675\) −20.2834 −0.780709
\(676\) 7.24605 0.278694
\(677\) −6.11715 −0.235101 −0.117551 0.993067i \(-0.537504\pi\)
−0.117551 + 0.993067i \(0.537504\pi\)
\(678\) −0.0270421 −0.00103854
\(679\) −5.64680 −0.216704
\(680\) 0.554277 0.0212556
\(681\) 21.1241 0.809476
\(682\) 1.87404 0.0717606
\(683\) −8.43385 −0.322712 −0.161356 0.986896i \(-0.551587\pi\)
−0.161356 + 0.986896i \(0.551587\pi\)
\(684\) 0 0
\(685\) −11.7120 −0.447494
\(686\) −6.40697 −0.244619
\(687\) −9.71859 −0.370787
\(688\) −10.7036 −0.408072
\(689\) −6.11647 −0.233019
\(690\) 13.0015 0.494957
\(691\) 0.287350 0.0109313 0.00546566 0.999985i \(-0.498260\pi\)
0.00546566 + 0.999985i \(0.498260\pi\)
\(692\) 8.71135 0.331156
\(693\) −0.318216 −0.0120880
\(694\) −19.4414 −0.737985
\(695\) −4.36503 −0.165575
\(696\) 2.62586 0.0995328
\(697\) 0.623324 0.0236101
\(698\) −22.6056 −0.855635
\(699\) −7.90578 −0.299024
\(700\) −1.68158 −0.0635576
\(701\) −2.87902 −0.108739 −0.0543696 0.998521i \(-0.517315\pi\)
−0.0543696 + 0.998521i \(0.517315\pi\)
\(702\) −25.2275 −0.952150
\(703\) 0 0
\(704\) −1.00000 −0.0376889
\(705\) 17.9993 0.677893
\(706\) −24.0961 −0.906870
\(707\) −4.14065 −0.155725
\(708\) 8.37903 0.314903
\(709\) −37.7391 −1.41732 −0.708662 0.705548i \(-0.750701\pi\)
−0.708662 + 0.705548i \(0.750701\pi\)
\(710\) −11.6919 −0.438788
\(711\) 3.79640 0.142376
\(712\) 16.9412 0.634900
\(713\) 5.45458 0.204276
\(714\) 0.133543 0.00499772
\(715\) −13.2089 −0.493985
\(716\) 9.62721 0.359786
\(717\) −12.4903 −0.466459
\(718\) −25.6187 −0.956082
\(719\) 44.2686 1.65094 0.825469 0.564447i \(-0.190911\pi\)
0.825469 + 0.564447i \(0.190911\pi\)
\(720\) 2.00974 0.0748985
\(721\) 0.811892 0.0302364
\(722\) 0 0
\(723\) 27.2340 1.01284
\(724\) −17.8108 −0.661935
\(725\) −6.24305 −0.231861
\(726\) −1.52164 −0.0564734
\(727\) −10.9177 −0.404917 −0.202458 0.979291i \(-0.564893\pi\)
−0.202458 + 0.979291i \(0.564893\pi\)
\(728\) −2.09146 −0.0775146
\(729\) 30.0285 1.11217
\(730\) 32.0060 1.18460
\(731\) −2.02098 −0.0747486
\(732\) −16.6868 −0.616761
\(733\) 35.3266 1.30482 0.652409 0.757867i \(-0.273758\pi\)
0.652409 + 0.757867i \(0.273758\pi\)
\(734\) 1.01974 0.0376393
\(735\) 30.3034 1.11776
\(736\) −2.91060 −0.107286
\(737\) 5.56717 0.205069
\(738\) 2.26010 0.0831952
\(739\) 1.14794 0.0422276 0.0211138 0.999777i \(-0.493279\pi\)
0.0211138 + 0.999777i \(0.493279\pi\)
\(740\) −19.0313 −0.699605
\(741\) 0 0
\(742\) 0.631844 0.0231957
\(743\) −10.9608 −0.402114 −0.201057 0.979580i \(-0.564438\pi\)
−0.201057 + 0.979580i \(0.564438\pi\)
\(744\) −2.85161 −0.104545
\(745\) −23.7924 −0.871685
\(746\) −31.7363 −1.16195
\(747\) 8.79484 0.321786
\(748\) −0.188812 −0.00690366
\(749\) −0.0308377 −0.00112679
\(750\) −6.17444 −0.225459
\(751\) −20.6039 −0.751847 −0.375923 0.926651i \(-0.622674\pi\)
−0.375923 + 0.926651i \(0.622674\pi\)
\(752\) −4.02946 −0.146939
\(753\) 18.1796 0.662502
\(754\) −7.76478 −0.282777
\(755\) −47.1006 −1.71417
\(756\) 2.60605 0.0947810
\(757\) 34.2368 1.24436 0.622178 0.782875i \(-0.286248\pi\)
0.622178 + 0.782875i \(0.286248\pi\)
\(758\) −19.0665 −0.692527
\(759\) −4.42889 −0.160759
\(760\) 0 0
\(761\) −43.6051 −1.58069 −0.790343 0.612665i \(-0.790097\pi\)
−0.790343 + 0.612665i \(0.790097\pi\)
\(762\) 11.7018 0.423913
\(763\) 1.77360 0.0642088
\(764\) 25.2728 0.914338
\(765\) 0.379463 0.0137195
\(766\) −18.1444 −0.655585
\(767\) −24.7772 −0.894652
\(768\) 1.52164 0.0549075
\(769\) 36.4963 1.31609 0.658045 0.752979i \(-0.271384\pi\)
0.658045 + 0.752979i \(0.271384\pi\)
\(770\) 1.36451 0.0491734
\(771\) −6.19836 −0.223228
\(772\) −16.7371 −0.602381
\(773\) −46.1555 −1.66010 −0.830049 0.557690i \(-0.811688\pi\)
−0.830049 + 0.557690i \(0.811688\pi\)
\(774\) −7.32781 −0.263393
\(775\) 6.77978 0.243537
\(776\) −12.1485 −0.436107
\(777\) −4.58525 −0.164495
\(778\) −3.88312 −0.139217
\(779\) 0 0
\(780\) 20.0992 0.719667
\(781\) 3.98279 0.142515
\(782\) −0.549558 −0.0196522
\(783\) 9.67526 0.345765
\(784\) −6.78395 −0.242284
\(785\) −53.2789 −1.90161
\(786\) −33.6566 −1.20049
\(787\) −29.8430 −1.06379 −0.531893 0.846811i \(-0.678519\pi\)
−0.531893 + 0.846811i \(0.678519\pi\)
\(788\) 8.52528 0.303700
\(789\) 10.9888 0.391213
\(790\) −16.2790 −0.579179
\(791\) −0.00826051 −0.000293710 0
\(792\) −0.684609 −0.0243265
\(793\) 49.3436 1.75224
\(794\) −17.8589 −0.633787
\(795\) −6.07211 −0.215356
\(796\) 21.7367 0.770435
\(797\) 26.9999 0.956386 0.478193 0.878255i \(-0.341292\pi\)
0.478193 + 0.878255i \(0.341292\pi\)
\(798\) 0 0
\(799\) −0.760811 −0.0269156
\(800\) −3.61774 −0.127907
\(801\) 11.5981 0.409800
\(802\) 33.5041 1.18307
\(803\) −10.9027 −0.384749
\(804\) −8.47123 −0.298757
\(805\) 3.97154 0.139978
\(806\) 8.43234 0.297017
\(807\) 48.4405 1.70519
\(808\) −8.90820 −0.313390
\(809\) 41.6163 1.46315 0.731575 0.681761i \(-0.238786\pi\)
0.731575 + 0.681761i \(0.238786\pi\)
\(810\) −19.0153 −0.668129
\(811\) −17.0281 −0.597937 −0.298968 0.954263i \(-0.596643\pi\)
−0.298968 + 0.954263i \(0.596643\pi\)
\(812\) 0.802117 0.0281488
\(813\) −47.5365 −1.66718
\(814\) 6.48294 0.227227
\(815\) −62.7836 −2.19921
\(816\) 0.287304 0.0100577
\(817\) 0 0
\(818\) 26.3286 0.920556
\(819\) −1.43183 −0.0500322
\(820\) −9.69127 −0.338434
\(821\) 24.8643 0.867771 0.433885 0.900968i \(-0.357142\pi\)
0.433885 + 0.900968i \(0.357142\pi\)
\(822\) −6.07083 −0.211745
\(823\) 38.2993 1.33503 0.667514 0.744597i \(-0.267358\pi\)
0.667514 + 0.744597i \(0.267358\pi\)
\(824\) 1.74670 0.0608493
\(825\) −5.50491 −0.191656
\(826\) 2.55953 0.0890575
\(827\) 4.14004 0.143963 0.0719816 0.997406i \(-0.477068\pi\)
0.0719816 + 0.997406i \(0.477068\pi\)
\(828\) −1.99263 −0.0692486
\(829\) 22.6282 0.785909 0.392955 0.919558i \(-0.371453\pi\)
0.392955 + 0.919558i \(0.371453\pi\)
\(830\) −37.7122 −1.30901
\(831\) 18.8041 0.652306
\(832\) −4.49956 −0.155994
\(833\) −1.28089 −0.0443803
\(834\) −2.26257 −0.0783464
\(835\) 32.4943 1.12451
\(836\) 0 0
\(837\) −10.5071 −0.363178
\(838\) 32.1866 1.11187
\(839\) 15.4313 0.532746 0.266373 0.963870i \(-0.414175\pi\)
0.266373 + 0.963870i \(0.414175\pi\)
\(840\) −2.07629 −0.0716388
\(841\) −26.0220 −0.897312
\(842\) 20.0204 0.689948
\(843\) 10.2536 0.353152
\(844\) −8.82448 −0.303751
\(845\) −21.2715 −0.731762
\(846\) −2.75860 −0.0948428
\(847\) −0.464814 −0.0159712
\(848\) 1.35935 0.0466802
\(849\) 5.59838 0.192136
\(850\) −0.683074 −0.0234293
\(851\) 18.8693 0.646830
\(852\) −6.06037 −0.207625
\(853\) −34.6022 −1.18476 −0.592379 0.805659i \(-0.701811\pi\)
−0.592379 + 0.805659i \(0.701811\pi\)
\(854\) −5.09729 −0.174426
\(855\) 0 0
\(856\) −0.0663443 −0.00226760
\(857\) −47.4450 −1.62069 −0.810345 0.585953i \(-0.800720\pi\)
−0.810345 + 0.585953i \(0.800720\pi\)
\(858\) −6.84672 −0.233743
\(859\) 41.6905 1.42246 0.711230 0.702959i \(-0.248138\pi\)
0.711230 + 0.702959i \(0.248138\pi\)
\(860\) 31.4216 1.07147
\(861\) −2.33494 −0.0795744
\(862\) 29.2413 0.995963
\(863\) 39.0792 1.33027 0.665136 0.746722i \(-0.268374\pi\)
0.665136 + 0.746722i \(0.268374\pi\)
\(864\) 5.60665 0.190742
\(865\) −25.5730 −0.869509
\(866\) 21.8706 0.743192
\(867\) −25.8136 −0.876677
\(868\) −0.871078 −0.0295663
\(869\) 5.54536 0.188113
\(870\) −7.70846 −0.261341
\(871\) 25.0498 0.848781
\(872\) 3.81573 0.129217
\(873\) −8.31700 −0.281488
\(874\) 0 0
\(875\) −1.88610 −0.0637618
\(876\) 16.5900 0.560525
\(877\) −5.61044 −0.189451 −0.0947255 0.995503i \(-0.530197\pi\)
−0.0947255 + 0.995503i \(0.530197\pi\)
\(878\) 25.8255 0.871567
\(879\) −4.25317 −0.143456
\(880\) 2.93560 0.0989590
\(881\) 14.5597 0.490530 0.245265 0.969456i \(-0.421125\pi\)
0.245265 + 0.969456i \(0.421125\pi\)
\(882\) −4.64435 −0.156384
\(883\) 0.760531 0.0255939 0.0127969 0.999918i \(-0.495926\pi\)
0.0127969 + 0.999918i \(0.495926\pi\)
\(884\) −0.849573 −0.0285742
\(885\) −24.5975 −0.826835
\(886\) −7.15530 −0.240387
\(887\) −37.0738 −1.24482 −0.622409 0.782692i \(-0.713846\pi\)
−0.622409 + 0.782692i \(0.713846\pi\)
\(888\) −9.86470 −0.331038
\(889\) 3.57455 0.119886
\(890\) −49.7327 −1.66704
\(891\) 6.47748 0.217004
\(892\) −6.40530 −0.214465
\(893\) 0 0
\(894\) −12.3326 −0.412462
\(895\) −28.2616 −0.944682
\(896\) 0.464814 0.0155283
\(897\) −19.9281 −0.665379
\(898\) 14.0318 0.468248
\(899\) −3.23398 −0.107859
\(900\) −2.47674 −0.0825580
\(901\) 0.256662 0.00855064
\(902\) 3.30129 0.109921
\(903\) 7.57046 0.251929
\(904\) −0.0177717 −0.000591077 0
\(905\) 52.2855 1.73803
\(906\) −24.4141 −0.811106
\(907\) 16.2729 0.540333 0.270166 0.962814i \(-0.412921\pi\)
0.270166 + 0.962814i \(0.412921\pi\)
\(908\) 13.8824 0.460705
\(909\) −6.09864 −0.202279
\(910\) 6.13968 0.203528
\(911\) 17.9183 0.593659 0.296830 0.954930i \(-0.404071\pi\)
0.296830 + 0.954930i \(0.404071\pi\)
\(912\) 0 0
\(913\) 12.8465 0.425157
\(914\) 31.3113 1.03568
\(915\) 48.9857 1.61942
\(916\) −6.38691 −0.211030
\(917\) −10.2810 −0.339510
\(918\) 1.05860 0.0349392
\(919\) −34.5775 −1.14061 −0.570303 0.821435i \(-0.693174\pi\)
−0.570303 + 0.821435i \(0.693174\pi\)
\(920\) 8.54437 0.281699
\(921\) −18.0119 −0.593511
\(922\) −12.2299 −0.402770
\(923\) 17.9208 0.589870
\(924\) 0.707279 0.0232678
\(925\) 23.4536 0.771150
\(926\) 23.2772 0.764937
\(927\) 1.19581 0.0392756
\(928\) 1.72567 0.0566480
\(929\) −19.0657 −0.625524 −0.312762 0.949831i \(-0.601254\pi\)
−0.312762 + 0.949831i \(0.601254\pi\)
\(930\) 8.37119 0.274502
\(931\) 0 0
\(932\) −5.19556 −0.170186
\(933\) 24.3437 0.796976
\(934\) −17.2913 −0.565789
\(935\) 0.554277 0.0181268
\(936\) −3.08044 −0.100687
\(937\) −49.0690 −1.60301 −0.801507 0.597985i \(-0.795968\pi\)
−0.801507 + 0.597985i \(0.795968\pi\)
\(938\) −2.58770 −0.0844913
\(939\) −26.5582 −0.866694
\(940\) 11.8289 0.385815
\(941\) −26.1208 −0.851512 −0.425756 0.904838i \(-0.639992\pi\)
−0.425756 + 0.904838i \(0.639992\pi\)
\(942\) −27.6166 −0.899799
\(943\) 9.60875 0.312904
\(944\) 5.50657 0.179224
\(945\) −7.65031 −0.248865
\(946\) −10.7036 −0.348005
\(947\) 16.5343 0.537294 0.268647 0.963239i \(-0.413424\pi\)
0.268647 + 0.963239i \(0.413424\pi\)
\(948\) −8.43804 −0.274055
\(949\) −49.0574 −1.59247
\(950\) 0 0
\(951\) 34.6201 1.12264
\(952\) 0.0877625 0.00284440
\(953\) 14.5445 0.471142 0.235571 0.971857i \(-0.424304\pi\)
0.235571 + 0.971857i \(0.424304\pi\)
\(954\) 0.930623 0.0301300
\(955\) −74.1908 −2.40076
\(956\) −8.20845 −0.265480
\(957\) 2.62586 0.0848819
\(958\) 13.2757 0.428919
\(959\) −1.85445 −0.0598833
\(960\) −4.46693 −0.144169
\(961\) −27.4880 −0.886709
\(962\) 29.1704 0.940491
\(963\) −0.0454199 −0.00146364
\(964\) 17.8978 0.576448
\(965\) 49.1334 1.58166
\(966\) 2.05861 0.0662347
\(967\) −17.1147 −0.550371 −0.275186 0.961391i \(-0.588739\pi\)
−0.275186 + 0.961391i \(0.588739\pi\)
\(968\) −1.00000 −0.0321412
\(969\) 0 0
\(970\) 35.6632 1.14508
\(971\) 17.0715 0.547850 0.273925 0.961751i \(-0.411678\pi\)
0.273925 + 0.961751i \(0.411678\pi\)
\(972\) 6.96355 0.223356
\(973\) −0.691145 −0.0221571
\(974\) −27.2081 −0.871805
\(975\) −24.7697 −0.793264
\(976\) −10.9663 −0.351023
\(977\) −21.8610 −0.699396 −0.349698 0.936862i \(-0.613716\pi\)
−0.349698 + 0.936862i \(0.613716\pi\)
\(978\) −32.5433 −1.04062
\(979\) 16.9412 0.541444
\(980\) 19.9150 0.636160
\(981\) 2.61229 0.0834039
\(982\) −35.5134 −1.13328
\(983\) −29.5680 −0.943072 −0.471536 0.881847i \(-0.656300\pi\)
−0.471536 + 0.881847i \(0.656300\pi\)
\(984\) −5.02338 −0.160140
\(985\) −25.0268 −0.797420
\(986\) 0.325829 0.0103765
\(987\) 2.84995 0.0907150
\(988\) 0 0
\(989\) −31.1541 −0.990641
\(990\) 2.00974 0.0638737
\(991\) 33.6392 1.06858 0.534292 0.845300i \(-0.320578\pi\)
0.534292 + 0.845300i \(0.320578\pi\)
\(992\) −1.87404 −0.0595007
\(993\) 15.1331 0.480235
\(994\) −1.85125 −0.0587182
\(995\) −63.8101 −2.02292
\(996\) −19.5478 −0.619395
\(997\) 50.8390 1.61009 0.805043 0.593216i \(-0.202142\pi\)
0.805043 + 0.593216i \(0.202142\pi\)
\(998\) 9.33762 0.295577
\(999\) −36.3476 −1.14999
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7942.2.a.by.1.11 15
19.3 odd 18 418.2.j.d.199.2 30
19.13 odd 18 418.2.j.d.397.2 yes 30
19.18 odd 2 7942.2.a.ca.1.5 15
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
418.2.j.d.199.2 30 19.3 odd 18
418.2.j.d.397.2 yes 30 19.13 odd 18
7942.2.a.by.1.11 15 1.1 even 1 trivial
7942.2.a.ca.1.5 15 19.18 odd 2