Properties

Label 7942.2.a.ca.1.5
Level $7942$
Weight $2$
Character 7942.1
Self dual yes
Analytic conductor $63.417$
Analytic rank $0$
Dimension $15$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7942,2,Mod(1,7942)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7942, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7942.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7942 = 2 \cdot 11 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7942.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(63.4171892853\)
Analytic rank: \(0\)
Dimension: \(15\)
Coefficient field: \(\mathbb{Q}[x]/(x^{15} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{15} - 3 x^{14} - 33 x^{13} + 101 x^{12} + 408 x^{11} - 1314 x^{10} - 2271 x^{9} + 8292 x^{8} + \cdots - 3592 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 418)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-1.52164\) of defining polynomial
Character \(\chi\) \(=\) 7942.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} -1.52164 q^{3} +1.00000 q^{4} -2.93560 q^{5} -1.52164 q^{6} -0.464814 q^{7} +1.00000 q^{8} -0.684609 q^{9} -2.93560 q^{10} -1.00000 q^{11} -1.52164 q^{12} +4.49956 q^{13} -0.464814 q^{14} +4.46693 q^{15} +1.00000 q^{16} +0.188812 q^{17} -0.684609 q^{18} -2.93560 q^{20} +0.707279 q^{21} -1.00000 q^{22} +2.91060 q^{23} -1.52164 q^{24} +3.61774 q^{25} +4.49956 q^{26} +5.60665 q^{27} -0.464814 q^{28} +1.72567 q^{29} +4.46693 q^{30} -1.87404 q^{31} +1.00000 q^{32} +1.52164 q^{33} +0.188812 q^{34} +1.36451 q^{35} -0.684609 q^{36} -6.48294 q^{37} -6.84672 q^{39} -2.93560 q^{40} -3.30129 q^{41} +0.707279 q^{42} -10.7036 q^{43} -1.00000 q^{44} +2.00974 q^{45} +2.91060 q^{46} -4.02946 q^{47} -1.52164 q^{48} -6.78395 q^{49} +3.61774 q^{50} -0.287304 q^{51} +4.49956 q^{52} -1.35935 q^{53} +5.60665 q^{54} +2.93560 q^{55} -0.464814 q^{56} +1.72567 q^{58} -5.50657 q^{59} +4.46693 q^{60} -10.9663 q^{61} -1.87404 q^{62} +0.318216 q^{63} +1.00000 q^{64} -13.2089 q^{65} +1.52164 q^{66} +5.56717 q^{67} +0.188812 q^{68} -4.42889 q^{69} +1.36451 q^{70} +3.98279 q^{71} -0.684609 q^{72} +10.9027 q^{73} -6.48294 q^{74} -5.50491 q^{75} +0.464814 q^{77} -6.84672 q^{78} +5.54536 q^{79} -2.93560 q^{80} -6.47748 q^{81} -3.30129 q^{82} -12.8465 q^{83} +0.707279 q^{84} -0.554277 q^{85} -10.7036 q^{86} -2.62586 q^{87} -1.00000 q^{88} +16.9412 q^{89} +2.00974 q^{90} -2.09146 q^{91} +2.91060 q^{92} +2.85161 q^{93} -4.02946 q^{94} -1.52164 q^{96} -12.1485 q^{97} -6.78395 q^{98} +0.684609 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 15 q + 15 q^{2} + 3 q^{3} + 15 q^{4} + 9 q^{5} + 3 q^{6} + 15 q^{8} + 30 q^{9} + 9 q^{10} - 15 q^{11} + 3 q^{12} + 21 q^{15} + 15 q^{16} + 21 q^{17} + 30 q^{18} + 9 q^{20} - 9 q^{21} - 15 q^{22} + 21 q^{23}+ \cdots - 30 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) −1.52164 −0.878520 −0.439260 0.898360i \(-0.644759\pi\)
−0.439260 + 0.898360i \(0.644759\pi\)
\(4\) 1.00000 0.500000
\(5\) −2.93560 −1.31284 −0.656420 0.754396i \(-0.727930\pi\)
−0.656420 + 0.754396i \(0.727930\pi\)
\(6\) −1.52164 −0.621207
\(7\) −0.464814 −0.175683 −0.0878415 0.996134i \(-0.527997\pi\)
−0.0878415 + 0.996134i \(0.527997\pi\)
\(8\) 1.00000 0.353553
\(9\) −0.684609 −0.228203
\(10\) −2.93560 −0.928318
\(11\) −1.00000 −0.301511
\(12\) −1.52164 −0.439260
\(13\) 4.49956 1.24795 0.623977 0.781443i \(-0.285516\pi\)
0.623977 + 0.781443i \(0.285516\pi\)
\(14\) −0.464814 −0.124227
\(15\) 4.46693 1.15336
\(16\) 1.00000 0.250000
\(17\) 0.188812 0.0457937 0.0228969 0.999738i \(-0.492711\pi\)
0.0228969 + 0.999738i \(0.492711\pi\)
\(18\) −0.684609 −0.161364
\(19\) 0 0
\(20\) −2.93560 −0.656420
\(21\) 0.707279 0.154341
\(22\) −1.00000 −0.213201
\(23\) 2.91060 0.606903 0.303451 0.952847i \(-0.401861\pi\)
0.303451 + 0.952847i \(0.401861\pi\)
\(24\) −1.52164 −0.310604
\(25\) 3.61774 0.723549
\(26\) 4.49956 0.882437
\(27\) 5.60665 1.07900
\(28\) −0.464814 −0.0878415
\(29\) 1.72567 0.320450 0.160225 0.987081i \(-0.448778\pi\)
0.160225 + 0.987081i \(0.448778\pi\)
\(30\) 4.46693 0.815546
\(31\) −1.87404 −0.336587 −0.168293 0.985737i \(-0.553826\pi\)
−0.168293 + 0.985737i \(0.553826\pi\)
\(32\) 1.00000 0.176777
\(33\) 1.52164 0.264884
\(34\) 0.188812 0.0323810
\(35\) 1.36451 0.230644
\(36\) −0.684609 −0.114102
\(37\) −6.48294 −1.06579 −0.532894 0.846182i \(-0.678896\pi\)
−0.532894 + 0.846182i \(0.678896\pi\)
\(38\) 0 0
\(39\) −6.84672 −1.09635
\(40\) −2.93560 −0.464159
\(41\) −3.30129 −0.515575 −0.257788 0.966202i \(-0.582993\pi\)
−0.257788 + 0.966202i \(0.582993\pi\)
\(42\) 0.707279 0.109136
\(43\) −10.7036 −1.63229 −0.816145 0.577847i \(-0.803893\pi\)
−0.816145 + 0.577847i \(0.803893\pi\)
\(44\) −1.00000 −0.150756
\(45\) 2.00974 0.299594
\(46\) 2.91060 0.429145
\(47\) −4.02946 −0.587757 −0.293878 0.955843i \(-0.594946\pi\)
−0.293878 + 0.955843i \(0.594946\pi\)
\(48\) −1.52164 −0.219630
\(49\) −6.78395 −0.969135
\(50\) 3.61774 0.511626
\(51\) −0.287304 −0.0402307
\(52\) 4.49956 0.623977
\(53\) −1.35935 −0.186721 −0.0933605 0.995632i \(-0.529761\pi\)
−0.0933605 + 0.995632i \(0.529761\pi\)
\(54\) 5.60665 0.762969
\(55\) 2.93560 0.395836
\(56\) −0.464814 −0.0621133
\(57\) 0 0
\(58\) 1.72567 0.226592
\(59\) −5.50657 −0.716895 −0.358447 0.933550i \(-0.616694\pi\)
−0.358447 + 0.933550i \(0.616694\pi\)
\(60\) 4.46693 0.576678
\(61\) −10.9663 −1.40409 −0.702046 0.712132i \(-0.747730\pi\)
−0.702046 + 0.712132i \(0.747730\pi\)
\(62\) −1.87404 −0.238003
\(63\) 0.318216 0.0400914
\(64\) 1.00000 0.125000
\(65\) −13.2089 −1.63836
\(66\) 1.52164 0.187301
\(67\) 5.56717 0.680138 0.340069 0.940400i \(-0.389550\pi\)
0.340069 + 0.940400i \(0.389550\pi\)
\(68\) 0.188812 0.0228969
\(69\) −4.42889 −0.533176
\(70\) 1.36451 0.163090
\(71\) 3.98279 0.472670 0.236335 0.971672i \(-0.424054\pi\)
0.236335 + 0.971672i \(0.424054\pi\)
\(72\) −0.684609 −0.0806820
\(73\) 10.9027 1.27607 0.638033 0.770009i \(-0.279748\pi\)
0.638033 + 0.770009i \(0.279748\pi\)
\(74\) −6.48294 −0.753626
\(75\) −5.50491 −0.635652
\(76\) 0 0
\(77\) 0.464814 0.0529704
\(78\) −6.84672 −0.775238
\(79\) 5.54536 0.623902 0.311951 0.950098i \(-0.399018\pi\)
0.311951 + 0.950098i \(0.399018\pi\)
\(80\) −2.93560 −0.328210
\(81\) −6.47748 −0.719720
\(82\) −3.30129 −0.364567
\(83\) −12.8465 −1.41009 −0.705043 0.709164i \(-0.749073\pi\)
−0.705043 + 0.709164i \(0.749073\pi\)
\(84\) 0.707279 0.0771705
\(85\) −0.554277 −0.0601198
\(86\) −10.7036 −1.15420
\(87\) −2.62586 −0.281521
\(88\) −1.00000 −0.106600
\(89\) 16.9412 1.79577 0.897884 0.440232i \(-0.145104\pi\)
0.897884 + 0.440232i \(0.145104\pi\)
\(90\) 2.00974 0.211845
\(91\) −2.09146 −0.219244
\(92\) 2.91060 0.303451
\(93\) 2.85161 0.295698
\(94\) −4.02946 −0.415607
\(95\) 0 0
\(96\) −1.52164 −0.155302
\(97\) −12.1485 −1.23350 −0.616748 0.787161i \(-0.711550\pi\)
−0.616748 + 0.787161i \(0.711550\pi\)
\(98\) −6.78395 −0.685282
\(99\) 0.684609 0.0688058
\(100\) 3.61774 0.361774
\(101\) 8.90820 0.886399 0.443200 0.896423i \(-0.353843\pi\)
0.443200 + 0.896423i \(0.353843\pi\)
\(102\) −0.287304 −0.0284474
\(103\) 1.74670 0.172108 0.0860539 0.996290i \(-0.472574\pi\)
0.0860539 + 0.996290i \(0.472574\pi\)
\(104\) 4.49956 0.441218
\(105\) −2.07629 −0.202625
\(106\) −1.35935 −0.132032
\(107\) −0.0663443 −0.00641374 −0.00320687 0.999995i \(-0.501021\pi\)
−0.00320687 + 0.999995i \(0.501021\pi\)
\(108\) 5.60665 0.539500
\(109\) 3.81573 0.365481 0.182741 0.983161i \(-0.441503\pi\)
0.182741 + 0.983161i \(0.441503\pi\)
\(110\) 2.93560 0.279898
\(111\) 9.86470 0.936316
\(112\) −0.464814 −0.0439208
\(113\) −0.0177717 −0.00167182 −0.000835908 1.00000i \(-0.500266\pi\)
−0.000835908 1.00000i \(0.500266\pi\)
\(114\) 0 0
\(115\) −8.54437 −0.796766
\(116\) 1.72567 0.160225
\(117\) −3.08044 −0.284787
\(118\) −5.50657 −0.506921
\(119\) −0.0877625 −0.00804518
\(120\) 4.46693 0.407773
\(121\) 1.00000 0.0909091
\(122\) −10.9663 −0.992842
\(123\) 5.02338 0.452943
\(124\) −1.87404 −0.168293
\(125\) 4.05775 0.362936
\(126\) 0.318216 0.0283489
\(127\) 7.69028 0.682402 0.341201 0.939990i \(-0.389166\pi\)
0.341201 + 0.939990i \(0.389166\pi\)
\(128\) 1.00000 0.0883883
\(129\) 16.2871 1.43400
\(130\) −13.2089 −1.15850
\(131\) 22.1186 1.93251 0.966257 0.257578i \(-0.0829246\pi\)
0.966257 + 0.257578i \(0.0829246\pi\)
\(132\) 1.52164 0.132442
\(133\) 0 0
\(134\) 5.56717 0.480930
\(135\) −16.4589 −1.41656
\(136\) 0.188812 0.0161905
\(137\) 3.98966 0.340860 0.170430 0.985370i \(-0.445484\pi\)
0.170430 + 0.985370i \(0.445484\pi\)
\(138\) −4.42889 −0.377013
\(139\) 1.48693 0.126120 0.0630598 0.998010i \(-0.479914\pi\)
0.0630598 + 0.998010i \(0.479914\pi\)
\(140\) 1.36451 0.115322
\(141\) 6.13139 0.516356
\(142\) 3.98279 0.334228
\(143\) −4.49956 −0.376272
\(144\) −0.684609 −0.0570508
\(145\) −5.06589 −0.420699
\(146\) 10.9027 0.902315
\(147\) 10.3227 0.851405
\(148\) −6.48294 −0.532894
\(149\) 8.10477 0.663969 0.331984 0.943285i \(-0.392282\pi\)
0.331984 + 0.943285i \(0.392282\pi\)
\(150\) −5.50491 −0.449474
\(151\) −16.0446 −1.30569 −0.652846 0.757490i \(-0.726425\pi\)
−0.652846 + 0.757490i \(0.726425\pi\)
\(152\) 0 0
\(153\) −0.129263 −0.0104503
\(154\) 0.464814 0.0374557
\(155\) 5.50142 0.441885
\(156\) −6.84672 −0.548176
\(157\) 18.1493 1.44847 0.724234 0.689554i \(-0.242194\pi\)
0.724234 + 0.689554i \(0.242194\pi\)
\(158\) 5.54536 0.441165
\(159\) 2.06844 0.164038
\(160\) −2.93560 −0.232080
\(161\) −1.35289 −0.106623
\(162\) −6.47748 −0.508919
\(163\) 21.3870 1.67516 0.837579 0.546316i \(-0.183970\pi\)
0.837579 + 0.546316i \(0.183970\pi\)
\(164\) −3.30129 −0.257788
\(165\) −4.46693 −0.347750
\(166\) −12.8465 −0.997082
\(167\) 11.0690 0.856548 0.428274 0.903649i \(-0.359122\pi\)
0.428274 + 0.903649i \(0.359122\pi\)
\(168\) 0.707279 0.0545678
\(169\) 7.24605 0.557389
\(170\) −0.554277 −0.0425111
\(171\) 0 0
\(172\) −10.7036 −0.816145
\(173\) −8.71135 −0.662311 −0.331156 0.943576i \(-0.607439\pi\)
−0.331156 + 0.943576i \(0.607439\pi\)
\(174\) −2.62586 −0.199066
\(175\) −1.68158 −0.127115
\(176\) −1.00000 −0.0753778
\(177\) 8.37903 0.629806
\(178\) 16.9412 1.26980
\(179\) −9.62721 −0.719572 −0.359786 0.933035i \(-0.617150\pi\)
−0.359786 + 0.933035i \(0.617150\pi\)
\(180\) 2.00974 0.149797
\(181\) 17.8108 1.32387 0.661935 0.749561i \(-0.269736\pi\)
0.661935 + 0.749561i \(0.269736\pi\)
\(182\) −2.09146 −0.155029
\(183\) 16.6868 1.23352
\(184\) 2.91060 0.214573
\(185\) 19.0313 1.39921
\(186\) 2.85161 0.209090
\(187\) −0.188812 −0.0138073
\(188\) −4.02946 −0.293878
\(189\) −2.60605 −0.189562
\(190\) 0 0
\(191\) 25.2728 1.82868 0.914338 0.404952i \(-0.132712\pi\)
0.914338 + 0.404952i \(0.132712\pi\)
\(192\) −1.52164 −0.109815
\(193\) 16.7371 1.20476 0.602381 0.798209i \(-0.294219\pi\)
0.602381 + 0.798209i \(0.294219\pi\)
\(194\) −12.1485 −0.872214
\(195\) 20.0992 1.43933
\(196\) −6.78395 −0.484568
\(197\) 8.52528 0.607401 0.303700 0.952768i \(-0.401778\pi\)
0.303700 + 0.952768i \(0.401778\pi\)
\(198\) 0.684609 0.0486531
\(199\) 21.7367 1.54087 0.770435 0.637518i \(-0.220039\pi\)
0.770435 + 0.637518i \(0.220039\pi\)
\(200\) 3.61774 0.255813
\(201\) −8.47123 −0.597515
\(202\) 8.90820 0.626779
\(203\) −0.802117 −0.0562976
\(204\) −0.287304 −0.0201153
\(205\) 9.69127 0.676868
\(206\) 1.74670 0.121699
\(207\) −1.99263 −0.138497
\(208\) 4.49956 0.311988
\(209\) 0 0
\(210\) −2.07629 −0.143278
\(211\) 8.82448 0.607503 0.303751 0.952751i \(-0.401761\pi\)
0.303751 + 0.952751i \(0.401761\pi\)
\(212\) −1.35935 −0.0933605
\(213\) −6.06037 −0.415250
\(214\) −0.0663443 −0.00453520
\(215\) 31.4216 2.14293
\(216\) 5.60665 0.381484
\(217\) 0.871078 0.0591326
\(218\) 3.81573 0.258434
\(219\) −16.5900 −1.12105
\(220\) 2.93560 0.197918
\(221\) 0.849573 0.0571484
\(222\) 9.86470 0.662076
\(223\) 6.40530 0.428931 0.214465 0.976732i \(-0.431199\pi\)
0.214465 + 0.976732i \(0.431199\pi\)
\(224\) −0.464814 −0.0310567
\(225\) −2.47674 −0.165116
\(226\) −0.0177717 −0.00118215
\(227\) −13.8824 −0.921409 −0.460705 0.887554i \(-0.652403\pi\)
−0.460705 + 0.887554i \(0.652403\pi\)
\(228\) 0 0
\(229\) −6.38691 −0.422059 −0.211030 0.977480i \(-0.567682\pi\)
−0.211030 + 0.977480i \(0.567682\pi\)
\(230\) −8.54437 −0.563399
\(231\) −0.707279 −0.0465356
\(232\) 1.72567 0.113296
\(233\) −5.19556 −0.340372 −0.170186 0.985412i \(-0.554437\pi\)
−0.170186 + 0.985412i \(0.554437\pi\)
\(234\) −3.08044 −0.201375
\(235\) 11.8289 0.771631
\(236\) −5.50657 −0.358447
\(237\) −8.43804 −0.548110
\(238\) −0.0877625 −0.00568880
\(239\) −8.20845 −0.530960 −0.265480 0.964116i \(-0.585530\pi\)
−0.265480 + 0.964116i \(0.585530\pi\)
\(240\) 4.46693 0.288339
\(241\) −17.8978 −1.15290 −0.576448 0.817134i \(-0.695562\pi\)
−0.576448 + 0.817134i \(0.695562\pi\)
\(242\) 1.00000 0.0642824
\(243\) −6.96355 −0.446712
\(244\) −10.9663 −0.702046
\(245\) 19.9150 1.27232
\(246\) 5.02338 0.320279
\(247\) 0 0
\(248\) −1.87404 −0.119001
\(249\) 19.5478 1.23879
\(250\) 4.05775 0.256635
\(251\) 11.9474 0.754111 0.377056 0.926191i \(-0.376937\pi\)
0.377056 + 0.926191i \(0.376937\pi\)
\(252\) 0.318216 0.0200457
\(253\) −2.91060 −0.182988
\(254\) 7.69028 0.482531
\(255\) 0.843411 0.0528164
\(256\) 1.00000 0.0625000
\(257\) 4.07347 0.254096 0.127048 0.991897i \(-0.459450\pi\)
0.127048 + 0.991897i \(0.459450\pi\)
\(258\) 16.2871 1.01399
\(259\) 3.01336 0.187241
\(260\) −13.2089 −0.819182
\(261\) −1.18141 −0.0731276
\(262\) 22.1186 1.36649
\(263\) 7.22171 0.445310 0.222655 0.974897i \(-0.428528\pi\)
0.222655 + 0.974897i \(0.428528\pi\)
\(264\) 1.52164 0.0936505
\(265\) 3.99050 0.245135
\(266\) 0 0
\(267\) −25.7785 −1.57762
\(268\) 5.56717 0.340069
\(269\) −31.8344 −1.94098 −0.970488 0.241149i \(-0.922476\pi\)
−0.970488 + 0.241149i \(0.922476\pi\)
\(270\) −16.4589 −1.00166
\(271\) −31.2403 −1.89771 −0.948857 0.315706i \(-0.897759\pi\)
−0.948857 + 0.315706i \(0.897759\pi\)
\(272\) 0.188812 0.0114484
\(273\) 3.18245 0.192610
\(274\) 3.98966 0.241024
\(275\) −3.61774 −0.218158
\(276\) −4.42889 −0.266588
\(277\) 12.3578 0.742506 0.371253 0.928532i \(-0.378928\pi\)
0.371253 + 0.928532i \(0.378928\pi\)
\(278\) 1.48693 0.0891800
\(279\) 1.28298 0.0768102
\(280\) 1.36451 0.0815449
\(281\) −6.73851 −0.401986 −0.200993 0.979593i \(-0.564417\pi\)
−0.200993 + 0.979593i \(0.564417\pi\)
\(282\) 6.13139 0.365119
\(283\) 3.67917 0.218704 0.109352 0.994003i \(-0.465122\pi\)
0.109352 + 0.994003i \(0.465122\pi\)
\(284\) 3.98279 0.236335
\(285\) 0 0
\(286\) −4.49956 −0.266065
\(287\) 1.53449 0.0905778
\(288\) −0.684609 −0.0403410
\(289\) −16.9643 −0.997903
\(290\) −5.06589 −0.297479
\(291\) 18.4857 1.08365
\(292\) 10.9027 0.638033
\(293\) 2.79512 0.163293 0.0816464 0.996661i \(-0.473982\pi\)
0.0816464 + 0.996661i \(0.473982\pi\)
\(294\) 10.3227 0.602034
\(295\) 16.1651 0.941168
\(296\) −6.48294 −0.376813
\(297\) −5.60665 −0.325331
\(298\) 8.10477 0.469497
\(299\) 13.0964 0.757387
\(300\) −5.50491 −0.317826
\(301\) 4.97520 0.286766
\(302\) −16.0446 −0.923264
\(303\) −13.5551 −0.778719
\(304\) 0 0
\(305\) 32.1927 1.84335
\(306\) −0.129263 −0.00738945
\(307\) 11.8371 0.675581 0.337790 0.941221i \(-0.390321\pi\)
0.337790 + 0.941221i \(0.390321\pi\)
\(308\) 0.464814 0.0264852
\(309\) −2.65786 −0.151200
\(310\) 5.50142 0.312460
\(311\) 15.9983 0.907180 0.453590 0.891210i \(-0.350143\pi\)
0.453590 + 0.891210i \(0.350143\pi\)
\(312\) −6.84672 −0.387619
\(313\) −17.4536 −0.986539 −0.493269 0.869877i \(-0.664198\pi\)
−0.493269 + 0.869877i \(0.664198\pi\)
\(314\) 18.1493 1.02422
\(315\) −0.934154 −0.0526336
\(316\) 5.54536 0.311951
\(317\) −22.7519 −1.27787 −0.638936 0.769260i \(-0.720625\pi\)
−0.638936 + 0.769260i \(0.720625\pi\)
\(318\) 2.06844 0.115992
\(319\) −1.72567 −0.0966192
\(320\) −2.93560 −0.164105
\(321\) 0.100952 0.00563460
\(322\) −1.35289 −0.0753935
\(323\) 0 0
\(324\) −6.47748 −0.359860
\(325\) 16.2783 0.902955
\(326\) 21.3870 1.18452
\(327\) −5.80618 −0.321082
\(328\) −3.30129 −0.182283
\(329\) 1.87295 0.103259
\(330\) −4.46693 −0.245896
\(331\) −9.94526 −0.546641 −0.273320 0.961923i \(-0.588122\pi\)
−0.273320 + 0.961923i \(0.588122\pi\)
\(332\) −12.8465 −0.705043
\(333\) 4.43828 0.243216
\(334\) 11.0690 0.605671
\(335\) −16.3430 −0.892912
\(336\) 0.707279 0.0385853
\(337\) −27.0670 −1.47443 −0.737216 0.675658i \(-0.763860\pi\)
−0.737216 + 0.675658i \(0.763860\pi\)
\(338\) 7.24605 0.394133
\(339\) 0.0270421 0.00146872
\(340\) −0.554277 −0.0300599
\(341\) 1.87404 0.101485
\(342\) 0 0
\(343\) 6.40697 0.345944
\(344\) −10.7036 −0.577102
\(345\) 13.0015 0.699975
\(346\) −8.71135 −0.468325
\(347\) 19.4414 1.04367 0.521834 0.853047i \(-0.325248\pi\)
0.521834 + 0.853047i \(0.325248\pi\)
\(348\) −2.62586 −0.140761
\(349\) 22.6056 1.21005 0.605025 0.796206i \(-0.293163\pi\)
0.605025 + 0.796206i \(0.293163\pi\)
\(350\) −1.68158 −0.0898840
\(351\) 25.2275 1.34654
\(352\) −1.00000 −0.0533002
\(353\) 24.0961 1.28251 0.641254 0.767328i \(-0.278414\pi\)
0.641254 + 0.767328i \(0.278414\pi\)
\(354\) 8.37903 0.445340
\(355\) −11.6919 −0.620540
\(356\) 16.9412 0.897884
\(357\) 0.133543 0.00706785
\(358\) −9.62721 −0.508814
\(359\) 25.6187 1.35210 0.676052 0.736854i \(-0.263689\pi\)
0.676052 + 0.736854i \(0.263689\pi\)
\(360\) 2.00974 0.105923
\(361\) 0 0
\(362\) 17.8108 0.936117
\(363\) −1.52164 −0.0798654
\(364\) −2.09146 −0.109622
\(365\) −32.0060 −1.67527
\(366\) 16.6868 0.872232
\(367\) −1.01974 −0.0532300 −0.0266150 0.999646i \(-0.508473\pi\)
−0.0266150 + 0.999646i \(0.508473\pi\)
\(368\) 2.91060 0.151726
\(369\) 2.26010 0.117656
\(370\) 19.0313 0.989391
\(371\) 0.631844 0.0328037
\(372\) 2.85161 0.147849
\(373\) −31.7363 −1.64325 −0.821623 0.570031i \(-0.806931\pi\)
−0.821623 + 0.570031i \(0.806931\pi\)
\(374\) −0.188812 −0.00976325
\(375\) −6.17444 −0.318847
\(376\) −4.02946 −0.207803
\(377\) 7.76478 0.399906
\(378\) −2.60605 −0.134041
\(379\) −19.0665 −0.979382 −0.489691 0.871896i \(-0.662890\pi\)
−0.489691 + 0.871896i \(0.662890\pi\)
\(380\) 0 0
\(381\) −11.7018 −0.599504
\(382\) 25.2728 1.29307
\(383\) −18.1444 −0.927137 −0.463568 0.886061i \(-0.653431\pi\)
−0.463568 + 0.886061i \(0.653431\pi\)
\(384\) −1.52164 −0.0776509
\(385\) −1.36451 −0.0695417
\(386\) 16.7371 0.851895
\(387\) 7.32781 0.372494
\(388\) −12.1485 −0.616748
\(389\) 3.88312 0.196882 0.0984411 0.995143i \(-0.468614\pi\)
0.0984411 + 0.995143i \(0.468614\pi\)
\(390\) 20.0992 1.01776
\(391\) 0.549558 0.0277923
\(392\) −6.78395 −0.342641
\(393\) −33.6566 −1.69775
\(394\) 8.52528 0.429497
\(395\) −16.2790 −0.819083
\(396\) 0.684609 0.0344029
\(397\) 17.8589 0.896311 0.448155 0.893956i \(-0.352081\pi\)
0.448155 + 0.893956i \(0.352081\pi\)
\(398\) 21.7367 1.08956
\(399\) 0 0
\(400\) 3.61774 0.180887
\(401\) 33.5041 1.67311 0.836557 0.547880i \(-0.184565\pi\)
0.836557 + 0.547880i \(0.184565\pi\)
\(402\) −8.47123 −0.422507
\(403\) −8.43234 −0.420045
\(404\) 8.90820 0.443200
\(405\) 19.0153 0.944877
\(406\) −0.802117 −0.0398084
\(407\) 6.48294 0.321347
\(408\) −0.287304 −0.0142237
\(409\) 26.3286 1.30186 0.650932 0.759136i \(-0.274378\pi\)
0.650932 + 0.759136i \(0.274378\pi\)
\(410\) 9.69127 0.478618
\(411\) −6.07083 −0.299452
\(412\) 1.74670 0.0860539
\(413\) 2.55953 0.125946
\(414\) −1.99263 −0.0979323
\(415\) 37.7122 1.85122
\(416\) 4.49956 0.220609
\(417\) −2.26257 −0.110799
\(418\) 0 0
\(419\) −32.1866 −1.57242 −0.786209 0.617961i \(-0.787959\pi\)
−0.786209 + 0.617961i \(0.787959\pi\)
\(420\) −2.07629 −0.101313
\(421\) 20.0204 0.975733 0.487867 0.872918i \(-0.337775\pi\)
0.487867 + 0.872918i \(0.337775\pi\)
\(422\) 8.82448 0.429569
\(423\) 2.75860 0.134128
\(424\) −1.35935 −0.0660158
\(425\) 0.683074 0.0331340
\(426\) −6.06037 −0.293626
\(427\) 5.09729 0.246675
\(428\) −0.0663443 −0.00320687
\(429\) 6.84672 0.330563
\(430\) 31.4216 1.51528
\(431\) 29.2413 1.40850 0.704252 0.709950i \(-0.251283\pi\)
0.704252 + 0.709950i \(0.251283\pi\)
\(432\) 5.60665 0.269750
\(433\) 21.8706 1.05103 0.525516 0.850784i \(-0.323872\pi\)
0.525516 + 0.850784i \(0.323872\pi\)
\(434\) 0.871078 0.0418131
\(435\) 7.70846 0.369593
\(436\) 3.81573 0.182741
\(437\) 0 0
\(438\) −16.5900 −0.792702
\(439\) 25.8255 1.23258 0.616291 0.787518i \(-0.288634\pi\)
0.616291 + 0.787518i \(0.288634\pi\)
\(440\) 2.93560 0.139949
\(441\) 4.64435 0.221160
\(442\) 0.849573 0.0404100
\(443\) 7.15530 0.339958 0.169979 0.985448i \(-0.445630\pi\)
0.169979 + 0.985448i \(0.445630\pi\)
\(444\) 9.86470 0.468158
\(445\) −49.7327 −2.35756
\(446\) 6.40530 0.303300
\(447\) −12.3326 −0.583310
\(448\) −0.464814 −0.0219604
\(449\) 14.0318 0.662202 0.331101 0.943595i \(-0.392580\pi\)
0.331101 + 0.943595i \(0.392580\pi\)
\(450\) −2.47674 −0.116755
\(451\) 3.30129 0.155452
\(452\) −0.0177717 −0.000835908 0
\(453\) 24.4141 1.14708
\(454\) −13.8824 −0.651535
\(455\) 6.13968 0.287833
\(456\) 0 0
\(457\) −31.3113 −1.46468 −0.732340 0.680940i \(-0.761572\pi\)
−0.732340 + 0.680940i \(0.761572\pi\)
\(458\) −6.38691 −0.298441
\(459\) 1.05860 0.0494114
\(460\) −8.54437 −0.398383
\(461\) 12.2299 0.569603 0.284802 0.958586i \(-0.408072\pi\)
0.284802 + 0.958586i \(0.408072\pi\)
\(462\) −0.707279 −0.0329056
\(463\) −23.2772 −1.08178 −0.540892 0.841092i \(-0.681913\pi\)
−0.540892 + 0.841092i \(0.681913\pi\)
\(464\) 1.72567 0.0801124
\(465\) −8.37119 −0.388205
\(466\) −5.19556 −0.240680
\(467\) 17.2913 0.800146 0.400073 0.916483i \(-0.368985\pi\)
0.400073 + 0.916483i \(0.368985\pi\)
\(468\) −3.08044 −0.142393
\(469\) −2.58770 −0.119489
\(470\) 11.8289 0.545625
\(471\) −27.6166 −1.27251
\(472\) −5.50657 −0.253461
\(473\) 10.7036 0.492154
\(474\) −8.43804 −0.387572
\(475\) 0 0
\(476\) −0.0877625 −0.00402259
\(477\) 0.930623 0.0426103
\(478\) −8.20845 −0.375446
\(479\) −13.2757 −0.606584 −0.303292 0.952898i \(-0.598086\pi\)
−0.303292 + 0.952898i \(0.598086\pi\)
\(480\) 4.46693 0.203886
\(481\) −29.1704 −1.33005
\(482\) −17.8978 −0.815221
\(483\) 2.05861 0.0936700
\(484\) 1.00000 0.0454545
\(485\) 35.6632 1.61938
\(486\) −6.96355 −0.315873
\(487\) −27.2081 −1.23292 −0.616459 0.787387i \(-0.711434\pi\)
−0.616459 + 0.787387i \(0.711434\pi\)
\(488\) −10.9663 −0.496421
\(489\) −32.5433 −1.47166
\(490\) 19.9150 0.899666
\(491\) 35.5134 1.60270 0.801348 0.598198i \(-0.204116\pi\)
0.801348 + 0.598198i \(0.204116\pi\)
\(492\) 5.02338 0.226471
\(493\) 0.325829 0.0146746
\(494\) 0 0
\(495\) −2.00974 −0.0903310
\(496\) −1.87404 −0.0841467
\(497\) −1.85125 −0.0830401
\(498\) 19.5478 0.875956
\(499\) −9.33762 −0.418009 −0.209005 0.977915i \(-0.567022\pi\)
−0.209005 + 0.977915i \(0.567022\pi\)
\(500\) 4.05775 0.181468
\(501\) −16.8431 −0.752495
\(502\) 11.9474 0.533237
\(503\) 14.2368 0.634787 0.317393 0.948294i \(-0.397192\pi\)
0.317393 + 0.948294i \(0.397192\pi\)
\(504\) 0.318216 0.0141745
\(505\) −26.1509 −1.16370
\(506\) −2.91060 −0.129392
\(507\) −11.0259 −0.489677
\(508\) 7.69028 0.341201
\(509\) 20.5706 0.911778 0.455889 0.890037i \(-0.349321\pi\)
0.455889 + 0.890037i \(0.349321\pi\)
\(510\) 0.843411 0.0373469
\(511\) −5.06773 −0.224183
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) 4.07347 0.179673
\(515\) −5.12762 −0.225950
\(516\) 16.2871 0.716999
\(517\) 4.02946 0.177215
\(518\) 3.01336 0.132399
\(519\) 13.2555 0.581854
\(520\) −13.2089 −0.579249
\(521\) 36.0695 1.58024 0.790118 0.612955i \(-0.210019\pi\)
0.790118 + 0.612955i \(0.210019\pi\)
\(522\) −1.18141 −0.0517090
\(523\) −28.4282 −1.24308 −0.621539 0.783383i \(-0.713492\pi\)
−0.621539 + 0.783383i \(0.713492\pi\)
\(524\) 22.1186 0.966257
\(525\) 2.55875 0.111673
\(526\) 7.22171 0.314881
\(527\) −0.353841 −0.0154136
\(528\) 1.52164 0.0662209
\(529\) −14.5284 −0.631669
\(530\) 3.99050 0.173336
\(531\) 3.76985 0.163598
\(532\) 0 0
\(533\) −14.8544 −0.643414
\(534\) −25.7785 −1.11554
\(535\) 0.194760 0.00842022
\(536\) 5.56717 0.240465
\(537\) 14.6492 0.632158
\(538\) −31.8344 −1.37248
\(539\) 6.78395 0.292205
\(540\) −16.4589 −0.708278
\(541\) −13.5875 −0.584173 −0.292086 0.956392i \(-0.594350\pi\)
−0.292086 + 0.956392i \(0.594350\pi\)
\(542\) −31.2403 −1.34189
\(543\) −27.1017 −1.16305
\(544\) 0.188812 0.00809526
\(545\) −11.2015 −0.479818
\(546\) 3.18245 0.136196
\(547\) 21.3894 0.914544 0.457272 0.889327i \(-0.348827\pi\)
0.457272 + 0.889327i \(0.348827\pi\)
\(548\) 3.98966 0.170430
\(549\) 7.50763 0.320418
\(550\) −3.61774 −0.154261
\(551\) 0 0
\(552\) −4.42889 −0.188506
\(553\) −2.57756 −0.109609
\(554\) 12.3578 0.525031
\(555\) −28.9588 −1.22923
\(556\) 1.48693 0.0630598
\(557\) −21.3938 −0.906484 −0.453242 0.891387i \(-0.649733\pi\)
−0.453242 + 0.891387i \(0.649733\pi\)
\(558\) 1.28298 0.0543130
\(559\) −48.1617 −2.03702
\(560\) 1.36451 0.0576609
\(561\) 0.287304 0.0121300
\(562\) −6.73851 −0.284247
\(563\) 20.1053 0.847337 0.423669 0.905817i \(-0.360742\pi\)
0.423669 + 0.905817i \(0.360742\pi\)
\(564\) 6.13139 0.258178
\(565\) 0.0521705 0.00219483
\(566\) 3.67917 0.154647
\(567\) 3.01082 0.126443
\(568\) 3.98279 0.167114
\(569\) −12.2391 −0.513089 −0.256544 0.966532i \(-0.582584\pi\)
−0.256544 + 0.966532i \(0.582584\pi\)
\(570\) 0 0
\(571\) −8.38225 −0.350786 −0.175393 0.984498i \(-0.556120\pi\)
−0.175393 + 0.984498i \(0.556120\pi\)
\(572\) −4.49956 −0.188136
\(573\) −38.4561 −1.60653
\(574\) 1.53449 0.0640482
\(575\) 10.5298 0.439124
\(576\) −0.684609 −0.0285254
\(577\) 20.3140 0.845683 0.422841 0.906204i \(-0.361033\pi\)
0.422841 + 0.906204i \(0.361033\pi\)
\(578\) −16.9643 −0.705624
\(579\) −25.4678 −1.05841
\(580\) −5.06589 −0.210350
\(581\) 5.97123 0.247728
\(582\) 18.4857 0.766257
\(583\) 1.35935 0.0562985
\(584\) 10.9027 0.451158
\(585\) 9.04294 0.373880
\(586\) 2.79512 0.115465
\(587\) −6.13299 −0.253136 −0.126568 0.991958i \(-0.540396\pi\)
−0.126568 + 0.991958i \(0.540396\pi\)
\(588\) 10.3227 0.425702
\(589\) 0 0
\(590\) 16.1651 0.665507
\(591\) −12.9724 −0.533614
\(592\) −6.48294 −0.266447
\(593\) 43.8711 1.80157 0.900785 0.434266i \(-0.142992\pi\)
0.900785 + 0.434266i \(0.142992\pi\)
\(594\) −5.60665 −0.230044
\(595\) 0.257636 0.0105620
\(596\) 8.10477 0.331984
\(597\) −33.0754 −1.35369
\(598\) 13.0964 0.535553
\(599\) 36.7077 1.49984 0.749919 0.661530i \(-0.230093\pi\)
0.749919 + 0.661530i \(0.230093\pi\)
\(600\) −5.50491 −0.224737
\(601\) 25.0723 1.02272 0.511361 0.859366i \(-0.329142\pi\)
0.511361 + 0.859366i \(0.329142\pi\)
\(602\) 4.97520 0.202774
\(603\) −3.81134 −0.155210
\(604\) −16.0446 −0.652846
\(605\) −2.93560 −0.119349
\(606\) −13.5551 −0.550638
\(607\) 11.3520 0.460765 0.230382 0.973100i \(-0.426002\pi\)
0.230382 + 0.973100i \(0.426002\pi\)
\(608\) 0 0
\(609\) 1.22053 0.0494585
\(610\) 32.1927 1.30344
\(611\) −18.1308 −0.733493
\(612\) −0.129263 −0.00522513
\(613\) −19.4685 −0.786325 −0.393162 0.919469i \(-0.628619\pi\)
−0.393162 + 0.919469i \(0.628619\pi\)
\(614\) 11.8371 0.477708
\(615\) −14.7466 −0.594642
\(616\) 0.464814 0.0187279
\(617\) −25.2893 −1.01811 −0.509055 0.860734i \(-0.670005\pi\)
−0.509055 + 0.860734i \(0.670005\pi\)
\(618\) −2.65786 −0.106915
\(619\) 11.1209 0.446986 0.223493 0.974705i \(-0.428254\pi\)
0.223493 + 0.974705i \(0.428254\pi\)
\(620\) 5.50142 0.220942
\(621\) 16.3187 0.654849
\(622\) 15.9983 0.641473
\(623\) −7.87452 −0.315486
\(624\) −6.84672 −0.274088
\(625\) −30.0007 −1.20003
\(626\) −17.4536 −0.697588
\(627\) 0 0
\(628\) 18.1493 0.724234
\(629\) −1.22406 −0.0488064
\(630\) −0.934154 −0.0372176
\(631\) 32.3028 1.28596 0.642978 0.765885i \(-0.277699\pi\)
0.642978 + 0.765885i \(0.277699\pi\)
\(632\) 5.54536 0.220583
\(633\) −13.4277 −0.533703
\(634\) −22.7519 −0.903591
\(635\) −22.5756 −0.895885
\(636\) 2.06844 0.0820190
\(637\) −30.5248 −1.20944
\(638\) −1.72567 −0.0683201
\(639\) −2.72665 −0.107865
\(640\) −2.93560 −0.116040
\(641\) −38.5887 −1.52416 −0.762080 0.647483i \(-0.775822\pi\)
−0.762080 + 0.647483i \(0.775822\pi\)
\(642\) 0.100952 0.00398426
\(643\) −41.6452 −1.64233 −0.821163 0.570693i \(-0.806675\pi\)
−0.821163 + 0.570693i \(0.806675\pi\)
\(644\) −1.35289 −0.0533113
\(645\) −47.8124 −1.88261
\(646\) 0 0
\(647\) 11.2852 0.443667 0.221834 0.975085i \(-0.428796\pi\)
0.221834 + 0.975085i \(0.428796\pi\)
\(648\) −6.47748 −0.254460
\(649\) 5.50657 0.216152
\(650\) 16.2783 0.638486
\(651\) −1.32547 −0.0519492
\(652\) 21.3870 0.837579
\(653\) 6.98352 0.273286 0.136643 0.990620i \(-0.456369\pi\)
0.136643 + 0.990620i \(0.456369\pi\)
\(654\) −5.80618 −0.227039
\(655\) −64.9315 −2.53708
\(656\) −3.30129 −0.128894
\(657\) −7.46410 −0.291202
\(658\) 1.87295 0.0730151
\(659\) −34.6339 −1.34915 −0.674573 0.738208i \(-0.735672\pi\)
−0.674573 + 0.738208i \(0.735672\pi\)
\(660\) −4.46693 −0.173875
\(661\) −4.29030 −0.166873 −0.0834367 0.996513i \(-0.526590\pi\)
−0.0834367 + 0.996513i \(0.526590\pi\)
\(662\) −9.94526 −0.386533
\(663\) −1.29274 −0.0502060
\(664\) −12.8465 −0.498541
\(665\) 0 0
\(666\) 4.43828 0.171980
\(667\) 5.02276 0.194482
\(668\) 11.0690 0.428274
\(669\) −9.74657 −0.376824
\(670\) −16.3430 −0.631384
\(671\) 10.9663 0.423349
\(672\) 0.707279 0.0272839
\(673\) 45.7513 1.76358 0.881792 0.471638i \(-0.156337\pi\)
0.881792 + 0.471638i \(0.156337\pi\)
\(674\) −27.0670 −1.04258
\(675\) 20.2834 0.780709
\(676\) 7.24605 0.278694
\(677\) 6.11715 0.235101 0.117551 0.993067i \(-0.462496\pi\)
0.117551 + 0.993067i \(0.462496\pi\)
\(678\) 0.0270421 0.00103854
\(679\) 5.64680 0.216704
\(680\) −0.554277 −0.0212556
\(681\) 21.1241 0.809476
\(682\) 1.87404 0.0717606
\(683\) 8.43385 0.322712 0.161356 0.986896i \(-0.448413\pi\)
0.161356 + 0.986896i \(0.448413\pi\)
\(684\) 0 0
\(685\) −11.7120 −0.447494
\(686\) 6.40697 0.244619
\(687\) 9.71859 0.370787
\(688\) −10.7036 −0.408072
\(689\) −6.11647 −0.233019
\(690\) 13.0015 0.494957
\(691\) 0.287350 0.0109313 0.00546566 0.999985i \(-0.498260\pi\)
0.00546566 + 0.999985i \(0.498260\pi\)
\(692\) −8.71135 −0.331156
\(693\) −0.318216 −0.0120880
\(694\) 19.4414 0.737985
\(695\) −4.36503 −0.165575
\(696\) −2.62586 −0.0995328
\(697\) −0.623324 −0.0236101
\(698\) 22.6056 0.855635
\(699\) 7.90578 0.299024
\(700\) −1.68158 −0.0635576
\(701\) −2.87902 −0.108739 −0.0543696 0.998521i \(-0.517315\pi\)
−0.0543696 + 0.998521i \(0.517315\pi\)
\(702\) 25.2275 0.952150
\(703\) 0 0
\(704\) −1.00000 −0.0376889
\(705\) −17.9993 −0.677893
\(706\) 24.0961 0.906870
\(707\) −4.14065 −0.155725
\(708\) 8.37903 0.314903
\(709\) −37.7391 −1.41732 −0.708662 0.705548i \(-0.750701\pi\)
−0.708662 + 0.705548i \(0.750701\pi\)
\(710\) −11.6919 −0.438788
\(711\) −3.79640 −0.142376
\(712\) 16.9412 0.634900
\(713\) −5.45458 −0.204276
\(714\) 0.133543 0.00499772
\(715\) 13.2089 0.493985
\(716\) −9.62721 −0.359786
\(717\) 12.4903 0.466459
\(718\) 25.6187 0.956082
\(719\) 44.2686 1.65094 0.825469 0.564447i \(-0.190911\pi\)
0.825469 + 0.564447i \(0.190911\pi\)
\(720\) 2.00974 0.0748985
\(721\) −0.811892 −0.0302364
\(722\) 0 0
\(723\) 27.2340 1.01284
\(724\) 17.8108 0.661935
\(725\) 6.24305 0.231861
\(726\) −1.52164 −0.0564734
\(727\) −10.9177 −0.404917 −0.202458 0.979291i \(-0.564893\pi\)
−0.202458 + 0.979291i \(0.564893\pi\)
\(728\) −2.09146 −0.0775146
\(729\) 30.0285 1.11217
\(730\) −32.0060 −1.18460
\(731\) −2.02098 −0.0747486
\(732\) 16.6868 0.616761
\(733\) 35.3266 1.30482 0.652409 0.757867i \(-0.273758\pi\)
0.652409 + 0.757867i \(0.273758\pi\)
\(734\) −1.01974 −0.0376393
\(735\) −30.3034 −1.11776
\(736\) 2.91060 0.107286
\(737\) −5.56717 −0.205069
\(738\) 2.26010 0.0831952
\(739\) 1.14794 0.0422276 0.0211138 0.999777i \(-0.493279\pi\)
0.0211138 + 0.999777i \(0.493279\pi\)
\(740\) 19.0313 0.699605
\(741\) 0 0
\(742\) 0.631844 0.0231957
\(743\) 10.9608 0.402114 0.201057 0.979580i \(-0.435562\pi\)
0.201057 + 0.979580i \(0.435562\pi\)
\(744\) 2.85161 0.104545
\(745\) −23.7924 −0.871685
\(746\) −31.7363 −1.16195
\(747\) 8.79484 0.321786
\(748\) −0.188812 −0.00690366
\(749\) 0.0308377 0.00112679
\(750\) −6.17444 −0.225459
\(751\) 20.6039 0.751847 0.375923 0.926651i \(-0.377326\pi\)
0.375923 + 0.926651i \(0.377326\pi\)
\(752\) −4.02946 −0.146939
\(753\) −18.1796 −0.662502
\(754\) 7.76478 0.282777
\(755\) 47.1006 1.71417
\(756\) −2.60605 −0.0947810
\(757\) 34.2368 1.24436 0.622178 0.782875i \(-0.286248\pi\)
0.622178 + 0.782875i \(0.286248\pi\)
\(758\) −19.0665 −0.692527
\(759\) 4.42889 0.160759
\(760\) 0 0
\(761\) −43.6051 −1.58069 −0.790343 0.612665i \(-0.790097\pi\)
−0.790343 + 0.612665i \(0.790097\pi\)
\(762\) −11.7018 −0.423913
\(763\) −1.77360 −0.0642088
\(764\) 25.2728 0.914338
\(765\) 0.379463 0.0137195
\(766\) −18.1444 −0.655585
\(767\) −24.7772 −0.894652
\(768\) −1.52164 −0.0549075
\(769\) 36.4963 1.31609 0.658045 0.752979i \(-0.271384\pi\)
0.658045 + 0.752979i \(0.271384\pi\)
\(770\) −1.36451 −0.0491734
\(771\) −6.19836 −0.223228
\(772\) 16.7371 0.602381
\(773\) 46.1555 1.66010 0.830049 0.557690i \(-0.188312\pi\)
0.830049 + 0.557690i \(0.188312\pi\)
\(774\) 7.32781 0.263393
\(775\) −6.77978 −0.243537
\(776\) −12.1485 −0.436107
\(777\) −4.58525 −0.164495
\(778\) 3.88312 0.139217
\(779\) 0 0
\(780\) 20.0992 0.719667
\(781\) −3.98279 −0.142515
\(782\) 0.549558 0.0196522
\(783\) 9.67526 0.345765
\(784\) −6.78395 −0.242284
\(785\) −53.2789 −1.90161
\(786\) −33.6566 −1.20049
\(787\) 29.8430 1.06379 0.531893 0.846811i \(-0.321481\pi\)
0.531893 + 0.846811i \(0.321481\pi\)
\(788\) 8.52528 0.303700
\(789\) −10.9888 −0.391213
\(790\) −16.2790 −0.579179
\(791\) 0.00826051 0.000293710 0
\(792\) 0.684609 0.0243265
\(793\) −49.3436 −1.75224
\(794\) 17.8589 0.633787
\(795\) −6.07211 −0.215356
\(796\) 21.7367 0.770435
\(797\) −26.9999 −0.956386 −0.478193 0.878255i \(-0.658708\pi\)
−0.478193 + 0.878255i \(0.658708\pi\)
\(798\) 0 0
\(799\) −0.760811 −0.0269156
\(800\) 3.61774 0.127907
\(801\) −11.5981 −0.409800
\(802\) 33.5041 1.18307
\(803\) −10.9027 −0.384749
\(804\) −8.47123 −0.298757
\(805\) 3.97154 0.139978
\(806\) −8.43234 −0.297017
\(807\) 48.4405 1.70519
\(808\) 8.90820 0.313390
\(809\) 41.6163 1.46315 0.731575 0.681761i \(-0.238786\pi\)
0.731575 + 0.681761i \(0.238786\pi\)
\(810\) 19.0153 0.668129
\(811\) 17.0281 0.597937 0.298968 0.954263i \(-0.403357\pi\)
0.298968 + 0.954263i \(0.403357\pi\)
\(812\) −0.802117 −0.0281488
\(813\) 47.5365 1.66718
\(814\) 6.48294 0.227227
\(815\) −62.7836 −2.19921
\(816\) −0.287304 −0.0100577
\(817\) 0 0
\(818\) 26.3286 0.920556
\(819\) 1.43183 0.0500322
\(820\) 9.69127 0.338434
\(821\) 24.8643 0.867771 0.433885 0.900968i \(-0.357142\pi\)
0.433885 + 0.900968i \(0.357142\pi\)
\(822\) −6.07083 −0.211745
\(823\) 38.2993 1.33503 0.667514 0.744597i \(-0.267358\pi\)
0.667514 + 0.744597i \(0.267358\pi\)
\(824\) 1.74670 0.0608493
\(825\) 5.50491 0.191656
\(826\) 2.55953 0.0890575
\(827\) −4.14004 −0.143963 −0.0719816 0.997406i \(-0.522932\pi\)
−0.0719816 + 0.997406i \(0.522932\pi\)
\(828\) −1.99263 −0.0692486
\(829\) −22.6282 −0.785909 −0.392955 0.919558i \(-0.628547\pi\)
−0.392955 + 0.919558i \(0.628547\pi\)
\(830\) 37.7122 1.30901
\(831\) −18.8041 −0.652306
\(832\) 4.49956 0.155994
\(833\) −1.28089 −0.0443803
\(834\) −2.26257 −0.0783464
\(835\) −32.4943 −1.12451
\(836\) 0 0
\(837\) −10.5071 −0.363178
\(838\) −32.1866 −1.11187
\(839\) −15.4313 −0.532746 −0.266373 0.963870i \(-0.585825\pi\)
−0.266373 + 0.963870i \(0.585825\pi\)
\(840\) −2.07629 −0.0716388
\(841\) −26.0220 −0.897312
\(842\) 20.0204 0.689948
\(843\) 10.2536 0.353152
\(844\) 8.82448 0.303751
\(845\) −21.2715 −0.731762
\(846\) 2.75860 0.0948428
\(847\) −0.464814 −0.0159712
\(848\) −1.35935 −0.0466802
\(849\) −5.59838 −0.192136
\(850\) 0.683074 0.0234293
\(851\) −18.8693 −0.646830
\(852\) −6.06037 −0.207625
\(853\) −34.6022 −1.18476 −0.592379 0.805659i \(-0.701811\pi\)
−0.592379 + 0.805659i \(0.701811\pi\)
\(854\) 5.09729 0.174426
\(855\) 0 0
\(856\) −0.0663443 −0.00226760
\(857\) 47.4450 1.62069 0.810345 0.585953i \(-0.199280\pi\)
0.810345 + 0.585953i \(0.199280\pi\)
\(858\) 6.84672 0.233743
\(859\) 41.6905 1.42246 0.711230 0.702959i \(-0.248138\pi\)
0.711230 + 0.702959i \(0.248138\pi\)
\(860\) 31.4216 1.07147
\(861\) −2.33494 −0.0795744
\(862\) 29.2413 0.995963
\(863\) −39.0792 −1.33027 −0.665136 0.746722i \(-0.731626\pi\)
−0.665136 + 0.746722i \(0.731626\pi\)
\(864\) 5.60665 0.190742
\(865\) 25.5730 0.869509
\(866\) 21.8706 0.743192
\(867\) 25.8136 0.876677
\(868\) 0.871078 0.0295663
\(869\) −5.54536 −0.188113
\(870\) 7.70846 0.261341
\(871\) 25.0498 0.848781
\(872\) 3.81573 0.129217
\(873\) 8.31700 0.281488
\(874\) 0 0
\(875\) −1.88610 −0.0637618
\(876\) −16.5900 −0.560525
\(877\) 5.61044 0.189451 0.0947255 0.995503i \(-0.469803\pi\)
0.0947255 + 0.995503i \(0.469803\pi\)
\(878\) 25.8255 0.871567
\(879\) −4.25317 −0.143456
\(880\) 2.93560 0.0989590
\(881\) 14.5597 0.490530 0.245265 0.969456i \(-0.421125\pi\)
0.245265 + 0.969456i \(0.421125\pi\)
\(882\) 4.64435 0.156384
\(883\) 0.760531 0.0255939 0.0127969 0.999918i \(-0.495926\pi\)
0.0127969 + 0.999918i \(0.495926\pi\)
\(884\) 0.849573 0.0285742
\(885\) −24.5975 −0.826835
\(886\) 7.15530 0.240387
\(887\) 37.0738 1.24482 0.622409 0.782692i \(-0.286154\pi\)
0.622409 + 0.782692i \(0.286154\pi\)
\(888\) 9.86470 0.331038
\(889\) −3.57455 −0.119886
\(890\) −49.7327 −1.66704
\(891\) 6.47748 0.217004
\(892\) 6.40530 0.214465
\(893\) 0 0
\(894\) −12.3326 −0.412462
\(895\) 28.2616 0.944682
\(896\) −0.464814 −0.0155283
\(897\) −19.9281 −0.665379
\(898\) 14.0318 0.468248
\(899\) −3.23398 −0.107859
\(900\) −2.47674 −0.0825580
\(901\) −0.256662 −0.00855064
\(902\) 3.30129 0.109921
\(903\) −7.57046 −0.251929
\(904\) −0.0177717 −0.000591077 0
\(905\) −52.2855 −1.73803
\(906\) 24.4141 0.811106
\(907\) −16.2729 −0.540333 −0.270166 0.962814i \(-0.587079\pi\)
−0.270166 + 0.962814i \(0.587079\pi\)
\(908\) −13.8824 −0.460705
\(909\) −6.09864 −0.202279
\(910\) 6.13968 0.203528
\(911\) −17.9183 −0.593659 −0.296830 0.954930i \(-0.595929\pi\)
−0.296830 + 0.954930i \(0.595929\pi\)
\(912\) 0 0
\(913\) 12.8465 0.425157
\(914\) −31.3113 −1.03568
\(915\) −48.9857 −1.61942
\(916\) −6.38691 −0.211030
\(917\) −10.2810 −0.339510
\(918\) 1.05860 0.0349392
\(919\) −34.5775 −1.14061 −0.570303 0.821435i \(-0.693174\pi\)
−0.570303 + 0.821435i \(0.693174\pi\)
\(920\) −8.54437 −0.281699
\(921\) −18.0119 −0.593511
\(922\) 12.2299 0.402770
\(923\) 17.9208 0.589870
\(924\) −0.707279 −0.0232678
\(925\) −23.4536 −0.771150
\(926\) −23.2772 −0.764937
\(927\) −1.19581 −0.0392756
\(928\) 1.72567 0.0566480
\(929\) −19.0657 −0.625524 −0.312762 0.949831i \(-0.601254\pi\)
−0.312762 + 0.949831i \(0.601254\pi\)
\(930\) −8.37119 −0.274502
\(931\) 0 0
\(932\) −5.19556 −0.170186
\(933\) −24.3437 −0.796976
\(934\) 17.2913 0.565789
\(935\) 0.554277 0.0181268
\(936\) −3.08044 −0.100687
\(937\) −49.0690 −1.60301 −0.801507 0.597985i \(-0.795968\pi\)
−0.801507 + 0.597985i \(0.795968\pi\)
\(938\) −2.58770 −0.0844913
\(939\) 26.5582 0.866694
\(940\) 11.8289 0.385815
\(941\) 26.1208 0.851512 0.425756 0.904838i \(-0.360008\pi\)
0.425756 + 0.904838i \(0.360008\pi\)
\(942\) −27.6166 −0.899799
\(943\) −9.60875 −0.312904
\(944\) −5.50657 −0.179224
\(945\) 7.65031 0.248865
\(946\) 10.7036 0.348005
\(947\) 16.5343 0.537294 0.268647 0.963239i \(-0.413424\pi\)
0.268647 + 0.963239i \(0.413424\pi\)
\(948\) −8.43804 −0.274055
\(949\) 49.0574 1.59247
\(950\) 0 0
\(951\) 34.6201 1.12264
\(952\) −0.0877625 −0.00284440
\(953\) −14.5445 −0.471142 −0.235571 0.971857i \(-0.575696\pi\)
−0.235571 + 0.971857i \(0.575696\pi\)
\(954\) 0.930623 0.0301300
\(955\) −74.1908 −2.40076
\(956\) −8.20845 −0.265480
\(957\) 2.62586 0.0848819
\(958\) −13.2757 −0.428919
\(959\) −1.85445 −0.0598833
\(960\) 4.46693 0.144169
\(961\) −27.4880 −0.886709
\(962\) −29.1704 −0.940491
\(963\) 0.0454199 0.00146364
\(964\) −17.8978 −0.576448
\(965\) −49.1334 −1.58166
\(966\) 2.05861 0.0662347
\(967\) −17.1147 −0.550371 −0.275186 0.961391i \(-0.588739\pi\)
−0.275186 + 0.961391i \(0.588739\pi\)
\(968\) 1.00000 0.0321412
\(969\) 0 0
\(970\) 35.6632 1.14508
\(971\) −17.0715 −0.547850 −0.273925 0.961751i \(-0.588322\pi\)
−0.273925 + 0.961751i \(0.588322\pi\)
\(972\) −6.96355 −0.223356
\(973\) −0.691145 −0.0221571
\(974\) −27.2081 −0.871805
\(975\) −24.7697 −0.793264
\(976\) −10.9663 −0.351023
\(977\) 21.8610 0.699396 0.349698 0.936862i \(-0.386284\pi\)
0.349698 + 0.936862i \(0.386284\pi\)
\(978\) −32.5433 −1.04062
\(979\) −16.9412 −0.541444
\(980\) 19.9150 0.636160
\(981\) −2.61229 −0.0834039
\(982\) 35.5134 1.13328
\(983\) 29.5680 0.943072 0.471536 0.881847i \(-0.343700\pi\)
0.471536 + 0.881847i \(0.343700\pi\)
\(984\) 5.02338 0.160140
\(985\) −25.0268 −0.797420
\(986\) 0.325829 0.0103765
\(987\) −2.84995 −0.0907150
\(988\) 0 0
\(989\) −31.1541 −0.990641
\(990\) −2.00974 −0.0638737
\(991\) −33.6392 −1.06858 −0.534292 0.845300i \(-0.679422\pi\)
−0.534292 + 0.845300i \(0.679422\pi\)
\(992\) −1.87404 −0.0595007
\(993\) 15.1331 0.480235
\(994\) −1.85125 −0.0587182
\(995\) −63.8101 −2.02292
\(996\) 19.5478 0.619395
\(997\) 50.8390 1.61009 0.805043 0.593216i \(-0.202142\pi\)
0.805043 + 0.593216i \(0.202142\pi\)
\(998\) −9.33762 −0.295577
\(999\) −36.3476 −1.14999
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7942.2.a.ca.1.5 15
19.6 even 9 418.2.j.d.397.2 yes 30
19.16 even 9 418.2.j.d.199.2 30
19.18 odd 2 7942.2.a.by.1.11 15
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
418.2.j.d.199.2 30 19.16 even 9
418.2.j.d.397.2 yes 30 19.6 even 9
7942.2.a.by.1.11 15 19.18 odd 2
7942.2.a.ca.1.5 15 1.1 even 1 trivial