L(s) = 1 | − 0.618·2-s + 1.17i·3-s − 0.618·4-s − 0.726i·6-s + 1.90i·7-s + 8-s − 0.381·9-s − 0.726i·12-s − 1.17i·14-s + (−0.809 − 0.587i)17-s + 0.236·18-s − 2.23·21-s + 1.17i·24-s − 25-s + 0.726i·27-s − 1.17i·28-s + ⋯ |
L(s) = 1 | − 0.618·2-s + 1.17i·3-s − 0.618·4-s − 0.726i·6-s + 1.90i·7-s + 8-s − 0.381·9-s − 0.726i·12-s − 1.17i·14-s + (−0.809 − 0.587i)17-s + 0.236·18-s − 2.23·21-s + 1.17i·24-s − 25-s + 0.726i·27-s − 1.17i·28-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 799 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.809 - 0.587i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 799 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.809 - 0.587i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5437377824\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5437377824\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 17 | \( 1 + (0.809 + 0.587i)T \) |
| 47 | \( 1 - T \) |
good | 2 | \( 1 + 0.618T + T^{2} \) |
| 3 | \( 1 - 1.17iT - T^{2} \) |
| 5 | \( 1 + T^{2} \) |
| 7 | \( 1 - 1.90iT - T^{2} \) |
| 11 | \( 1 + T^{2} \) |
| 13 | \( 1 - T^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 + T^{2} \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 - 1.17iT - T^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 53 | \( 1 - 0.618T + T^{2} \) |
| 59 | \( 1 + 0.618T + T^{2} \) |
| 61 | \( 1 + 1.90iT - T^{2} \) |
| 67 | \( 1 - T^{2} \) |
| 71 | \( 1 + 1.17iT - T^{2} \) |
| 73 | \( 1 + T^{2} \) |
| 79 | \( 1 - 1.17iT - T^{2} \) |
| 83 | \( 1 - 2T + T^{2} \) |
| 89 | \( 1 - 0.618T + T^{2} \) |
| 97 | \( 1 - 1.90iT - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.55659384046715586786129192363, −9.658503490873419471616398030091, −9.230608660697126333432813215695, −8.668012208593368509539302893483, −7.77272380949124463408614760904, −6.30859000117540929748295568381, −5.22943843399799874715578687605, −4.70331704210385831845864675399, −3.51475578958502495483302169726, −2.15833606164075396586359970695,
0.73193377152842458121715506240, 1.85968381314560660724426055721, 3.84099739825948163578429689560, 4.48453321000380256502910651092, 6.01147990756952397556880159451, 7.12765120247226943879114138473, 7.47261228052334532118473597486, 8.249419379799970576825237215070, 9.224021066914751676971607364408, 10.26015650052542518179465895946