Properties

Label 799.1.c.d.798.2
Level 799799
Weight 11
Character 799.798
Analytic conductor 0.3990.399
Analytic rank 00
Dimension 44
Projective image D10D_{10}
CM discriminant -47
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [799,1,Mod(798,799)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(799, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("799.798");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 799=1747 799 = 17 \cdot 47
Weight: k k == 1 1
Character orbit: [χ][\chi] == 799.c (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.3987529450940.398752945094
Analytic rank: 00
Dimension: 44
Coefficient field: Q(ζ10)\Q(\zeta_{10})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x3+x2x+1 x^{4} - x^{3} + x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a17]\Z[a_1, \ldots, a_{17}]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D10D_{10}
Projective field: Galois closure of 10.2.6928449225617.1

Embedding invariants

Embedding label 798.2
Root 0.809017+0.587785i0.809017 + 0.587785i of defining polynomial
Character χ\chi == 799.798
Dual form 799.1.c.d.798.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q0.618034q2+1.17557iq30.618034q40.726543iq6+1.90211iq7+1.00000q80.381966q90.726543iq121.17557iq14+(0.8090170.587785i)q17+0.236068q182.23607q21+1.17557iq241.00000q25+0.726543iq271.17557iq281.00000q32+(0.500000+0.363271i)q34+0.236068q36+1.17557iq37+1.38197q42+1.00000q472.61803q49+0.618034q50+(0.6909830.951057i)q51+0.618034q530.449028iq54+1.90211iq560.618034q591.90211iq610.726543iq63+0.618034q64+(0.500000+0.363271i)q681.17557iq710.381966q720.726543iq741.17557iq75+1.17557iq791.23607q81+2.00000q83+1.38197q84+0.618034q890.618034q941.17557iq96+1.90211iq97+1.61803q98+O(q100)q-0.618034 q^{2} +1.17557i q^{3} -0.618034 q^{4} -0.726543i q^{6} +1.90211i q^{7} +1.00000 q^{8} -0.381966 q^{9} -0.726543i q^{12} -1.17557i q^{14} +(-0.809017 - 0.587785i) q^{17} +0.236068 q^{18} -2.23607 q^{21} +1.17557i q^{24} -1.00000 q^{25} +0.726543i q^{27} -1.17557i q^{28} -1.00000 q^{32} +(0.500000 + 0.363271i) q^{34} +0.236068 q^{36} +1.17557i q^{37} +1.38197 q^{42} +1.00000 q^{47} -2.61803 q^{49} +0.618034 q^{50} +(0.690983 - 0.951057i) q^{51} +0.618034 q^{53} -0.449028i q^{54} +1.90211i q^{56} -0.618034 q^{59} -1.90211i q^{61} -0.726543i q^{63} +0.618034 q^{64} +(0.500000 + 0.363271i) q^{68} -1.17557i q^{71} -0.381966 q^{72} -0.726543i q^{74} -1.17557i q^{75} +1.17557i q^{79} -1.23607 q^{81} +2.00000 q^{83} +1.38197 q^{84} +0.618034 q^{89} -0.618034 q^{94} -1.17557i q^{96} +1.90211i q^{97} +1.61803 q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+2q2+2q4+4q86q9q178q184q254q32+2q348q36+10q42+4q476q492q50+5q512q53+2q592q64+2q68++2q98+O(q100) 4 q + 2 q^{2} + 2 q^{4} + 4 q^{8} - 6 q^{9} - q^{17} - 8 q^{18} - 4 q^{25} - 4 q^{32} + 2 q^{34} - 8 q^{36} + 10 q^{42} + 4 q^{47} - 6 q^{49} - 2 q^{50} + 5 q^{51} - 2 q^{53} + 2 q^{59} - 2 q^{64} + 2 q^{68}+ \cdots + 2 q^{98}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/799Z)×\left(\mathbb{Z}/799\mathbb{Z}\right)^\times.

nn 5252 377377
χ(n)\chi(n) 1-1 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −0.618034 −0.618034 −0.309017 0.951057i 0.600000π-0.600000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
33 1.17557i 1.17557i 0.809017 + 0.587785i 0.200000π0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
44 −0.618034 −0.618034
55 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
66 0.726543i 0.726543i
77 1.90211i 1.90211i 0.309017 + 0.951057i 0.400000π0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
88 1.00000 1.00000
99 −0.381966 −0.381966
1010 0 0
1111 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
1212 0.726543i 0.726543i
1313 0 0 1.00000 00
−1.00000 π\pi
1414 1.17557i 1.17557i
1515 0 0
1616 0 0
1717 −0.809017 0.587785i −0.809017 0.587785i
1818 0.236068 0.236068
1919 0 0 1.00000 00
−1.00000 π\pi
2020 0 0
2121 −2.23607 −2.23607
2222 0 0
2323 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
2424 1.17557i 1.17557i
2525 −1.00000 −1.00000
2626 0 0
2727 0.726543i 0.726543i
2828 1.17557i 1.17557i
2929 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
3030 0 0
3131 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
3232 −1.00000 −1.00000
3333 0 0
3434 0.500000 + 0.363271i 0.500000 + 0.363271i
3535 0 0
3636 0.236068 0.236068
3737 1.17557i 1.17557i 0.809017 + 0.587785i 0.200000π0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
3838 0 0
3939 0 0
4040 0 0
4141 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
4242 1.38197 1.38197
4343 0 0 1.00000 00
−1.00000 π\pi
4444 0 0
4545 0 0
4646 0 0
4747 1.00000 1.00000
4848 0 0
4949 −2.61803 −2.61803
5050 0.618034 0.618034
5151 0.690983 0.951057i 0.690983 0.951057i
5252 0 0
5353 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
5454 0.449028i 0.449028i
5555 0 0
5656 1.90211i 1.90211i
5757 0 0
5858 0 0
5959 −0.618034 −0.618034 −0.309017 0.951057i 0.600000π-0.600000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
6060 0 0
6161 1.90211i 1.90211i −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 0.951057i 0.400000π-0.400000\pi
6262 0 0
6363 0.726543i 0.726543i
6464 0.618034 0.618034
6565 0 0
6666 0 0
6767 0 0 1.00000 00
−1.00000 π\pi
6868 0.500000 + 0.363271i 0.500000 + 0.363271i
6969 0 0
7070 0 0
7171 1.17557i 1.17557i −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 0.587785i 0.200000π-0.200000\pi
7272 −0.381966 −0.381966
7373 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
7474 0.726543i 0.726543i
7575 1.17557i 1.17557i
7676 0 0
7777 0 0
7878 0 0
7979 1.17557i 1.17557i 0.809017 + 0.587785i 0.200000π0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
8080 0 0
8181 −1.23607 −1.23607
8282 0 0
8383 2.00000 2.00000 1.00000 00
1.00000 00
8484 1.38197 1.38197
8585 0 0
8686 0 0
8787 0 0
8888 0 0
8989 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
9090 0 0
9191 0 0
9292 0 0
9393 0 0
9494 −0.618034 −0.618034
9595 0 0
9696 1.17557i 1.17557i
9797 1.90211i 1.90211i 0.309017 + 0.951057i 0.400000π0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
9898 1.61803 1.61803
9999 0 0
100100 0.618034 0.618034
101101 1.61803 1.61803 0.809017 0.587785i 0.200000π-0.200000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
102102 −0.427051 + 0.587785i −0.427051 + 0.587785i
103103 1.61803 1.61803 0.809017 0.587785i 0.200000π-0.200000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
104104 0 0
105105 0 0
106106 −0.381966 −0.381966
107107 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
108108 0.449028i 0.449028i
109109 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
110110 0 0
111111 −1.38197 −1.38197
112112 0 0
113113 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
114114 0 0
115115 0 0
116116 0 0
117117 0 0
118118 0.381966 0.381966
119119 1.11803 1.53884i 1.11803 1.53884i
120120 0 0
121121 −1.00000 −1.00000
122122 1.17557i 1.17557i
123123 0 0
124124 0 0
125125 0 0
126126 0.449028i 0.449028i
127127 0 0 1.00000 00
−1.00000 π\pi
128128 0.618034 0.618034
129129 0 0
130130 0 0
131131 1.90211i 1.90211i 0.309017 + 0.951057i 0.400000π0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
132132 0 0
133133 0 0
134134 0 0
135135 0 0
136136 −0.809017 0.587785i −0.809017 0.587785i
137137 0 0 1.00000 00
−1.00000 π\pi
138138 0 0
139139 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
140140 0 0
141141 1.17557i 1.17557i
142142 0.726543i 0.726543i
143143 0 0
144144 0 0
145145 0 0
146146 0 0
147147 3.07768i 3.07768i
148148 0.726543i 0.726543i
149149 1.61803 1.61803 0.809017 0.587785i 0.200000π-0.200000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
150150 0.726543i 0.726543i
151151 0 0 1.00000 00
−1.00000 π\pi
152152 0 0
153153 0.309017 + 0.224514i 0.309017 + 0.224514i
154154 0 0
155155 0 0
156156 0 0
157157 −0.618034 −0.618034 −0.309017 0.951057i 0.600000π-0.600000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
158158 0.726543i 0.726543i
159159 0.726543i 0.726543i
160160 0 0
161161 0 0
162162 0.763932 0.763932
163163 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
164164 0 0
165165 0 0
166166 −1.23607 −1.23607
167167 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
168168 −2.23607 −2.23607
169169 1.00000 1.00000
170170 0 0
171171 0 0
172172 0 0
173173 1.90211i 1.90211i −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 0.951057i 0.400000π-0.400000\pi
174174 0 0
175175 1.90211i 1.90211i
176176 0 0
177177 0.726543i 0.726543i
178178 −0.381966 −0.381966
179179 0 0 1.00000 00
−1.00000 π\pi
180180 0 0
181181 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
182182 0 0
183183 2.23607 2.23607
184184 0 0
185185 0 0
186186 0 0
187187 0 0
188188 −0.618034 −0.618034
189189 −1.38197 −1.38197
190190 0 0
191191 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
192192 0.726543i 0.726543i
193193 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
194194 1.17557i 1.17557i
195195 0 0
196196 1.61803 1.61803
197197 0 0 1.00000 00
−1.00000 π\pi
198198 0 0
199199 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
200200 −1.00000 −1.00000
201201 0 0
202202 −1.00000 −1.00000
203203 0 0
204204 −0.427051 + 0.587785i −0.427051 + 0.587785i
205205 0 0
206206 −1.00000 −1.00000
207207 0 0
208208 0 0
209209 0 0
210210 0 0
211211 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
212212 −0.381966 −0.381966
213213 1.38197 1.38197
214214 0 0
215215 0 0
216216 0.726543i 0.726543i
217217 0 0
218218 0 0
219219 0 0
220220 0 0
221221 0 0
222222 0.854102 0.854102
223223 0 0 1.00000 00
−1.00000 π\pi
224224 1.90211i 1.90211i
225225 0.381966 0.381966
226226 0 0
227227 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
228228 0 0
229229 0 0 1.00000 00
−1.00000 π\pi
230230 0 0
231231 0 0
232232 0 0
233233 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
234234 0 0
235235 0 0
236236 0.381966 0.381966
237237 −1.38197 −1.38197
238238 −0.690983 + 0.951057i −0.690983 + 0.951057i
239239 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
240240 0 0
241241 1.17557i 1.17557i 0.809017 + 0.587785i 0.200000π0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
242242 0.618034 0.618034
243243 0.726543i 0.726543i
244244 1.17557i 1.17557i
245245 0 0
246246 0 0
247247 0 0
248248 0 0
249249 2.35114i 2.35114i
250250 0 0
251251 1.61803 1.61803 0.809017 0.587785i 0.200000π-0.200000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
252252 0.449028i 0.449028i
253253 0 0
254254 0 0
255255 0 0
256256 −1.00000 −1.00000
257257 0 0 1.00000 00
−1.00000 π\pi
258258 0 0
259259 −2.23607 −2.23607
260260 0 0
261261 0 0
262262 1.17557i 1.17557i
263263 −0.618034 −0.618034 −0.309017 0.951057i 0.600000π-0.600000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
264264 0 0
265265 0 0
266266 0 0
267267 0.726543i 0.726543i
268268 0 0
269269 0 0 1.00000 00
−1.00000 π\pi
270270 0 0
271271 1.61803 1.61803 0.809017 0.587785i 0.200000π-0.200000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
272272 0 0
273273 0 0
274274 0 0
275275 0 0
276276 0 0
277277 1.17557i 1.17557i −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 0.587785i 0.200000π-0.200000\pi
278278 0 0
279279 0 0
280280 0 0
281281 0 0 1.00000 00
−1.00000 π\pi
282282 0.726543i 0.726543i
283283 1.90211i 1.90211i 0.309017 + 0.951057i 0.400000π0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
284284 0.726543i 0.726543i
285285 0 0
286286 0 0
287287 0 0
288288 0.381966 0.381966
289289 0.309017 + 0.951057i 0.309017 + 0.951057i
290290 0 0
291291 −2.23607 −2.23607
292292 0 0
293293 0 0 1.00000 00
−1.00000 π\pi
294294 1.90211i 1.90211i
295295 0 0
296296 1.17557i 1.17557i
297297 0 0
298298 −1.00000 −1.00000
299299 0 0
300300 0.726543i 0.726543i
301301 0 0
302302 0 0
303303 1.90211i 1.90211i
304304 0 0
305305 0 0
306306 −0.190983 0.138757i −0.190983 0.138757i
307307 1.61803 1.61803 0.809017 0.587785i 0.200000π-0.200000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
308308 0 0
309309 1.90211i 1.90211i
310310 0 0
311311 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
312312 0 0
313313 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
314314 0.381966 0.381966
315315 0 0
316316 0.726543i 0.726543i
317317 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
318318 0.449028i 0.449028i
319319 0 0
320320 0 0
321321 0 0
322322 0 0
323323 0 0
324324 0.763932 0.763932
325325 0 0
326326 0 0
327327 0 0
328328 0 0
329329 1.90211i 1.90211i
330330 0 0
331331 −0.618034 −0.618034 −0.309017 0.951057i 0.600000π-0.600000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
332332 −1.23607 −1.23607
333333 0.449028i 0.449028i
334334 0 0
335335 0 0
336336 0 0
337337 1.90211i 1.90211i −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 0.951057i 0.400000π-0.400000\pi
338338 −0.618034 −0.618034
339339 0 0
340340 0 0
341341 0 0
342342 0 0
343343 3.07768i 3.07768i
344344 0 0
345345 0 0
346346 1.17557i 1.17557i
347347 1.17557i 1.17557i −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 0.587785i 0.200000π-0.200000\pi
348348 0 0
349349 0 0 1.00000 00
−1.00000 π\pi
350350 1.17557i 1.17557i
351351 0 0
352352 0 0
353353 −0.618034 −0.618034 −0.309017 0.951057i 0.600000π-0.600000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
354354 0.449028i 0.449028i
355355 0 0
356356 −0.381966 −0.381966
357357 1.80902 + 1.31433i 1.80902 + 1.31433i
358358 0 0
359359 0 0 1.00000 00
−1.00000 π\pi
360360 0 0
361361 1.00000 1.00000
362362 0 0
363363 1.17557i 1.17557i
364364 0 0
365365 0 0
366366 −1.38197 −1.38197
367367 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
368368 0 0
369369 0 0
370370 0 0
371371 1.17557i 1.17557i
372372 0 0
373373 0 0 1.00000 00
−1.00000 π\pi
374374 0 0
375375 0 0
376376 1.00000 1.00000
377377 0 0
378378 0.854102 0.854102
379379 1.90211i 1.90211i −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 0.951057i 0.400000π-0.400000\pi
380380 0 0
381381 0 0
382382 1.23607 1.23607
383383 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
384384 0.726543i 0.726543i
385385 0 0
386386 0 0
387387 0 0
388388 1.17557i 1.17557i
389389 0 0 1.00000 00
−1.00000 π\pi
390390 0 0
391391 0 0
392392 −2.61803 −2.61803
393393 −2.23607 −2.23607
394394 0 0
395395 0 0
396396 0 0
397397 1.17557i 1.17557i 0.809017 + 0.587785i 0.200000π0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
398398 0 0
399399 0 0
400400 0 0
401401 1.17557i 1.17557i −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 0.587785i 0.200000π-0.200000\pi
402402 0 0
403403 0 0
404404 −1.00000 −1.00000
405405 0 0
406406 0 0
407407 0 0
408408 0.690983 0.951057i 0.690983 0.951057i
409409 0 0 1.00000 00
−1.00000 π\pi
410410 0 0
411411 0 0
412412 −1.00000 −1.00000
413413 1.17557i 1.17557i
414414 0 0
415415 0 0
416416 0 0
417417 0 0
418418 0 0
419419 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
420420 0 0
421421 0 0 1.00000 00
−1.00000 π\pi
422422 0 0
423423 −0.381966 −0.381966
424424 0.618034 0.618034
425425 0.809017 + 0.587785i 0.809017 + 0.587785i
426426 −0.854102 −0.854102
427427 3.61803 3.61803
428428 0 0
429429 0 0
430430 0 0
431431 1.90211i 1.90211i −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 0.951057i 0.400000π-0.400000\pi
432432 0 0
433433 0 0 1.00000 00
−1.00000 π\pi
434434 0 0
435435 0 0
436436 0 0
437437 0 0
438438 0 0
439439 0 0 1.00000 00
−1.00000 π\pi
440440 0 0
441441 1.00000 1.00000
442442 0 0
443443 0 0 1.00000 00
−1.00000 π\pi
444444 0.854102 0.854102
445445 0 0
446446 0 0
447447 1.90211i 1.90211i
448448 1.17557i 1.17557i
449449 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
450450 −0.236068 −0.236068
451451 0 0
452452 0 0
453453 0 0
454454 0 0
455455 0 0
456456 0 0
457457 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
458458 0 0
459459 0.427051 0.587785i 0.427051 0.587785i
460460 0 0
461461 0 0 1.00000 00
−1.00000 π\pi
462462 0 0
463463 0 0 1.00000 00
−1.00000 π\pi
464464 0 0
465465 0 0
466466 0 0
467467 0 0 1.00000 00
−1.00000 π\pi
468468 0 0
469469 0 0
470470 0 0
471471 0.726543i 0.726543i
472472 −0.618034 −0.618034
473473 0 0
474474 0.854102 0.854102
475475 0 0
476476 −0.690983 + 0.951057i −0.690983 + 0.951057i
477477 −0.236068 −0.236068
478478 1.00000 1.00000
479479 1.90211i 1.90211i −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 0.951057i 0.400000π-0.400000\pi
480480 0 0
481481 0 0
482482 0.726543i 0.726543i
483483 0 0
484484 0.618034 0.618034
485485 0 0
486486 0.449028i 0.449028i
487487 0 0 1.00000 00
−1.00000 π\pi
488488 1.90211i 1.90211i
489489 0 0
490490 0 0
491491 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
492492 0 0
493493 0 0
494494 0 0
495495 0 0
496496 0 0
497497 2.23607 2.23607
498498 1.45309i 1.45309i
499499 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
500500 0 0
501501 0 0
502502 −1.00000 −1.00000
503503 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
504504 0.726543i 0.726543i
505505 0 0
506506 0 0
507507 1.17557i 1.17557i
508508 0 0
509509 0 0 1.00000 00
−1.00000 π\pi
510510 0 0
511511 0 0
512512 0 0
513513 0 0
514514 0 0
515515 0 0
516516 0 0
517517 0 0
518518 1.38197 1.38197
519519 2.23607 2.23607
520520 0 0
521521 1.90211i 1.90211i 0.309017 + 0.951057i 0.400000π0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
522522 0 0
523523 2.00000 2.00000 1.00000 00
1.00000 00
524524 1.17557i 1.17557i
525525 2.23607 2.23607
526526 0.381966 0.381966
527527 0 0
528528 0 0
529529 −1.00000 −1.00000
530530 0 0
531531 0.236068 0.236068
532532 0 0
533533 0 0
534534 0.449028i 0.449028i
535535 0 0
536536 0 0
537537 0 0
538538 0 0
539539 0 0
540540 0 0
541541 1.90211i 1.90211i −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 0.951057i 0.400000π-0.400000\pi
542542 −1.00000 −1.00000
543543 0 0
544544 0.809017 + 0.587785i 0.809017 + 0.587785i
545545 0 0
546546 0 0
547547 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
548548 0 0
549549 0.726543i 0.726543i
550550 0 0
551551 0 0
552552 0 0
553553 −2.23607 −2.23607
554554 0.726543i 0.726543i
555555 0 0
556556 0 0
557557 0 0 1.00000 00
−1.00000 π\pi
558558 0 0
559559 0 0
560560 0 0
561561 0 0
562562 0 0
563563 0 0 1.00000 00
−1.00000 π\pi
564564 0.726543i 0.726543i
565565 0 0
566566 1.17557i 1.17557i
567567 2.35114i 2.35114i
568568 1.17557i 1.17557i
569569 0 0 1.00000 00
−1.00000 π\pi
570570 0 0
571571 1.17557i 1.17557i 0.809017 + 0.587785i 0.200000π0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
572572 0 0
573573 2.35114i 2.35114i
574574 0 0
575575 0 0
576576 −0.236068 −0.236068
577577 0 0 1.00000 00
−1.00000 π\pi
578578 −0.190983 0.587785i −0.190983 0.587785i
579579 0 0
580580 0 0
581581 3.80423i 3.80423i
582582 1.38197 1.38197
583583 0 0
584584 0 0
585585 0 0
586586 0 0
587587 0 0 1.00000 00
−1.00000 π\pi
588588 1.90211i 1.90211i
589589 0 0
590590 0 0
591591 0 0
592592 0 0
593593 0 0 1.00000 00
−1.00000 π\pi
594594 0 0
595595 0 0
596596 −1.00000 −1.00000
597597 0 0
598598 0 0
599599 0 0 1.00000 00
−1.00000 π\pi
600600 1.17557i 1.17557i
601601 1.90211i 1.90211i −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 0.951057i 0.400000π-0.400000\pi
602602 0 0
603603 0 0
604604 0 0
605605 0 0
606606 1.17557i 1.17557i
607607 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
608608 0 0
609609 0 0
610610 0 0
611611 0 0
612612 −0.190983 0.138757i −0.190983 0.138757i
613613 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
614614 −1.00000 −1.00000
615615 0 0
616616 0 0
617617 1.17557i 1.17557i −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 0.587785i 0.200000π-0.200000\pi
618618 1.17557i 1.17557i
619619 0 0 1.00000 00
−1.00000 π\pi
620620 0 0
621621 0 0
622622 0 0
623623 1.17557i 1.17557i
624624 0 0
625625 1.00000 1.00000
626626 0 0
627627 0 0
628628 0.381966 0.381966
629629 0.690983 0.951057i 0.690983 0.951057i
630630 0 0
631631 0 0 1.00000 00
−1.00000 π\pi
632632 1.17557i 1.17557i
633633 0 0
634634 0 0
635635 0 0
636636 0.449028i 0.449028i
637637 0 0
638638 0 0
639639 0.449028i 0.449028i
640640 0 0
641641 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
642642 0 0
643643 1.90211i 1.90211i 0.309017 + 0.951057i 0.400000π0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
644644 0 0
645645 0 0
646646 0 0
647647 −0.618034 −0.618034 −0.309017 0.951057i 0.600000π-0.600000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
648648 −1.23607 −1.23607
649649 0 0
650650 0 0
651651 0 0
652652 0 0
653653 1.17557i 1.17557i −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 0.587785i 0.200000π-0.200000\pi
654654 0 0
655655 0 0
656656 0 0
657657 0 0
658658 1.17557i 1.17557i
659659 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
660660 0 0
661661 1.61803 1.61803 0.809017 0.587785i 0.200000π-0.200000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
662662 0.381966 0.381966
663663 0 0
664664 2.00000 2.00000
665665 0 0
666666 0.277515i 0.277515i
667667 0 0
668668 0 0
669669 0 0
670670 0 0
671671 0 0
672672 2.23607 2.23607
673673 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
674674 1.17557i 1.17557i
675675 0.726543i 0.726543i
676676 −0.618034 −0.618034
677677 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
678678 0 0
679679 −3.61803 −3.61803
680680 0 0
681681 0 0
682682 0 0
683683 1.90211i 1.90211i 0.309017 + 0.951057i 0.400000π0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
684684 0 0
685685 0 0
686686 1.90211i 1.90211i
687687 0 0
688688 0 0
689689 0 0
690690 0 0
691691 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
692692 1.17557i 1.17557i
693693 0 0
694694 0.726543i 0.726543i
695695 0 0
696696 0 0
697697 0 0
698698 0 0
699699 0 0
700700 1.17557i 1.17557i
701701 0 0 1.00000 00
−1.00000 π\pi
702702 0 0
703703 0 0
704704 0 0
705705 0 0
706706 0.381966 0.381966
707707 3.07768i 3.07768i
708708 0.449028i 0.449028i
709709 1.90211i 1.90211i −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 0.951057i 0.400000π-0.400000\pi
710710 0 0
711711 0.449028i 0.449028i
712712 0.618034 0.618034
713713 0 0
714714 −1.11803 0.812299i −1.11803 0.812299i
715715 0 0
716716 0 0
717717 1.90211i 1.90211i
718718 0 0
719719 1.90211i 1.90211i 0.309017 + 0.951057i 0.400000π0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
720720 0 0
721721 3.07768i 3.07768i
722722 −0.618034 −0.618034
723723 −1.38197 −1.38197
724724 0 0
725725 0 0
726726 0.726543i 0.726543i
727727 0 0 1.00000 00
−1.00000 π\pi
728728 0 0
729729 −0.381966 −0.381966
730730 0 0
731731 0 0
732732 −1.38197 −1.38197
733733 1.61803 1.61803 0.809017 0.587785i 0.200000π-0.200000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
734734 0 0
735735 0 0
736736 0 0
737737 0 0
738738 0 0
739739 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
740740 0 0
741741 0 0
742742 0.726543i 0.726543i
743743 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
744744 0 0
745745 0 0
746746 0 0
747747 −0.763932 −0.763932
748748 0 0
749749 0 0
750750 0 0
751751 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
752752 0 0
753753 1.90211i 1.90211i
754754 0 0
755755 0 0
756756 0.854102 0.854102
757757 0 0 1.00000 00
−1.00000 π\pi
758758 1.17557i 1.17557i
759759 0 0
760760 0 0
761761 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
762762 0 0
763763 0 0
764764 1.23607 1.23607
765765 0 0
766766 1.00000 1.00000
767767 0 0
768768 1.17557i 1.17557i
769769 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
770770 0 0
771771 0 0
772772 0 0
773773 1.61803 1.61803 0.809017 0.587785i 0.200000π-0.200000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
774774 0 0
775775 0 0
776776 1.90211i 1.90211i
777777 2.62866i 2.62866i
778778 0 0
779779 0 0
780780 0 0
781781 0 0
782782 0 0
783783 0 0
784784 0 0
785785 0 0
786786 1.38197 1.38197
787787 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
788788 0 0
789789 0.726543i 0.726543i
790790 0 0
791791 0 0
792792 0 0
793793 0 0
794794 0.726543i 0.726543i
795795 0 0
796796 0 0
797797 0 0 1.00000 00
−1.00000 π\pi
798798 0 0
799799 −0.809017 0.587785i −0.809017 0.587785i
800800 1.00000 1.00000
801801 −0.236068 −0.236068
802802 0.726543i 0.726543i
803803 0 0
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 1.61803 1.61803
809809 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
810810 0 0
811811 1.17557i 1.17557i −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 0.587785i 0.200000π-0.200000\pi
812812 0 0
813813 1.90211i 1.90211i
814814 0 0
815815 0 0
816816 0 0
817817 0 0
818818 0 0
819819 0 0
820820 0 0
821821 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
822822 0 0
823823 0 0 1.00000 00
−1.00000 π\pi
824824 1.61803 1.61803
825825 0 0
826826 0.726543i 0.726543i
827827 1.90211i 1.90211i −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 0.951057i 0.400000π-0.400000\pi
828828 0 0
829829 0 0 1.00000 00
−1.00000 π\pi
830830 0 0
831831 1.38197 1.38197
832832 0 0
833833 2.11803 + 1.53884i 2.11803 + 1.53884i
834834 0 0
835835 0 0
836836 0 0
837837 0 0
838838 0 0
839839 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
840840 0 0
841841 −1.00000 −1.00000
842842 0 0
843843 0 0
844844 0 0
845845 0 0
846846 0.236068 0.236068
847847 1.90211i 1.90211i
848848 0 0
849849 −2.23607 −2.23607
850850 −0.500000 0.363271i −0.500000 0.363271i
851851 0 0
852852 −0.854102 −0.854102
853853 1.17557i 1.17557i −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 0.587785i 0.200000π-0.200000\pi
854854 −2.23607 −2.23607
855855 0 0
856856 0 0
857857 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
858858 0 0
859859 0 0 1.00000 00
−1.00000 π\pi
860860 0 0
861861 0 0
862862 1.17557i 1.17557i
863863 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
864864 0.726543i 0.726543i
865865 0 0
866866 0 0
867867 −1.11803 + 0.363271i −1.11803 + 0.363271i
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 0 0
873873 0.726543i 0.726543i
874874 0 0
875875 0 0
876876 0 0
877877 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
878878 0 0
879879 0 0
880880 0 0
881881 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
882882 −0.618034 −0.618034
883883 −0.618034 −0.618034 −0.309017 0.951057i 0.600000π-0.600000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
884884 0 0
885885 0 0
886886 0 0
887887 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
888888 −1.38197 −1.38197
889889 0 0
890890 0 0
891891 0 0
892892 0 0
893893 0 0
894894 1.17557i 1.17557i
895895 0 0
896896 1.17557i 1.17557i
897897 0 0
898898 0 0
899899 0 0
900900 −0.236068 −0.236068
901901 −0.500000 0.363271i −0.500000 0.363271i
902902 0 0
903903 0 0
904904 0 0
905905 0 0
906906 0 0
907907 0 0 1.00000 00
−1.00000 π\pi
908908 0 0
909909 −0.618034 −0.618034
910910 0 0
911911 1.90211i 1.90211i −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 0.951057i 0.400000π-0.400000\pi
912912 0 0
913913 0 0
914914 1.00000 1.00000
915915 0 0
916916 0 0
917917 −3.61803 −3.61803
918918 −0.263932 + 0.363271i −0.263932 + 0.363271i
919919 0 0 1.00000 00
−1.00000 π\pi
920920 0 0
921921 1.90211i 1.90211i
922922 0 0
923923 0 0
924924 0 0
925925 1.17557i 1.17557i
926926 0 0
927927 −0.618034 −0.618034
928928 0 0
929929 1.17557i 1.17557i −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 0.587785i 0.200000π-0.200000\pi
930930 0 0
931931 0 0
932932 0 0
933933 0 0
934934 0 0
935935 0 0
936936 0 0
937937 0 0 1.00000 00
−1.00000 π\pi
938938 0 0
939939 0 0
940940 0 0
941941 1.90211i 1.90211i −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 0.951057i 0.400000π-0.400000\pi
942942 0.449028i 0.449028i
943943 0 0
944944 0 0
945945 0 0
946946 0 0
947947 0 0 1.00000 00
−1.00000 π\pi
948948 0.854102 0.854102
949949 0 0
950950 0 0
951951 0 0
952952 1.11803 1.53884i 1.11803 1.53884i
953953 0 0 1.00000 00
−1.00000 π\pi
954954 0.145898 0.145898
955955 0 0
956956 1.00000 1.00000
957957 0 0
958958 1.17557i 1.17557i
959959 0 0
960960 0 0
961961 −1.00000 −1.00000
962962 0 0
963963 0 0
964964 0.726543i 0.726543i
965965 0 0
966966 0 0
967967 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
968968 −1.00000 −1.00000
969969 0 0
970970 0 0
971971 0 0 1.00000 00
−1.00000 π\pi
972972 0.449028i 0.449028i
973973 0 0
974974 0 0
975975 0 0
976976 0 0
977977 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
978978 0 0
979979 0 0
980980 0 0
981981 0 0
982982 −0.381966 −0.381966
983983 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
984984 0 0
985985 0 0
986986 0 0
987987 −2.23607 −2.23607
988988 0 0
989989 0 0
990990 0 0
991991 1.90211i 1.90211i 0.309017 + 0.951057i 0.400000π0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
992992 0 0
993993 0.726543i 0.726543i
994994 −1.38197 −1.38197
995995 0 0
996996 1.45309i 1.45309i
997997 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
998998 0 0
999999 −0.854102 −0.854102
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 799.1.c.d.798.2 yes 4
17.16 even 2 inner 799.1.c.d.798.1 4
47.46 odd 2 CM 799.1.c.d.798.2 yes 4
799.798 odd 2 inner 799.1.c.d.798.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
799.1.c.d.798.1 4 17.16 even 2 inner
799.1.c.d.798.1 4 799.798 odd 2 inner
799.1.c.d.798.2 yes 4 1.1 even 1 trivial
799.1.c.d.798.2 yes 4 47.46 odd 2 CM